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ABSTRACT 

We examine the photoproduction of the J1(3095) within the context of 

the assumption that it contains a pair of new fundamental constituents. 

Using an inequality based on unitarity, we derive a lower limit on the 

cross section 

o(yp + DE + anything) ,> 300 nb 

where the D's are hadrons carrying the new constituent bound to ordinary 

quarks. This suggests it should be possible to detect D's from their lep- 

tonic decays in y beams. Comparing the unitarity relation for yp + $p and 

$P + $P, we predict corrections to the vector dominance hypothesis so that 

0 
tot (*??) is about a factor of two larger than expected. We discuss briefly 

the precision necessary for experiments on nuclear targets to test this 

prediction. 
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1. INTRODUCTION 

Recent measurements of $ photoproduction at Cornell,' SLAC2 and 

FNAL3 have clarified and sharpened our understanding of the properties of 

the new particles. It is particularly significant that experimental meas- 

urements of the pseudoelastic cross section 

do/dt(yp +- $P) 

are larger than the upper limit implied by nonhadronic models for the $- 

particles. 4 This supports the idea that the $-particles experience the 

strong interactions and in this paper, we will adopt the most popular of 

the strong interaction models for the new particles. We will assume that 

the JI and $' are bound states of a quark-antiquark pair carrying a new 

quantum number. For convenience, we will call this quantum number charm 

but our results are more general than the usual SU4 model. 

The fundamental prediction of the generalized charm model for the 

$(3100) and j~(3700) is the existence of new hadrons carrying a conserved 

quantum number. As this is being written, there is as yet no conclusive 

experimental evidence of these charmed hadrons but there are a number of 

indirect indications they might exist. 5 We intend to explore the implica- 

tions for $ photoproduction of the existence of these new particles. Our 

results are insensitive to the symmetry group in which the new particles 

are classified 6 and to their decay modes. The properties we do assume 

for these particles are as follows: 

1. They are massive. The meson masses begin in the range of 2 GeV. 

This value is approximately determined by the narrow width of the +(3100) 

and Q(3700) and the location of the "threshold" rise in R = a(e+e- + 



hadrons)/a(e+e- + u+u-) at around & = 4 GeV. 

2. They interact strongly with both the Jl's and with ordinary 

hadrons subject to the restrictions of the Okubo-Zweig-Iizuka7 (OZI) 

selection rules. These rules restrict the class of quark-line duality 

diagrams which can contribute to strong interaction amplitudes. Basically, 

the constraint is that a quark-antiquark pair in the same hadron cannot 

annihilate each other. 

3. They carry an additive quantum number which is conserved in the 

strong interactions. They therefore decay either electromagnetically or 

weakly and are formed in pairs through the strong interactions. 

Using these properties for charmed particles, we construct a model 

based on a peripheral approximation to unitarity for the imaginary part 

of the elastic +N amplitude. By looking at this model amplitude as a 

function of the mass of one of the external JI legs, we conclude that the 

usual vector dominance model assumption 8 which neglects the off-mass- 

shell dependence of the scattering amplitude should be modified. Our 

best estimate of the quantitative value of the modification gives the 

result that the physical $N total cross section should be about a factor 

of two larger than that implied by the vector dominance model. We point 

out that it is possible to test our results by measuring the A-dependence 

of $ photoproduction on nuclear targets or by measuring the q2-dependence 

in electroproduction experiments. Our model for the $N amplitude can be 

applied, with trivial modification, to the $N amplitude where we also 

find a correction factor which modifies the usual vector dominance expres- 

sion. Interestingly, this factor produces a value of o tot ($N) which 

agrees with the simple additive quark model. 9 
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We also present an analysis based on unitarity which demonstrates 

the strong connection between the photoproduction of the $ and $' and the 

photoproduction of charmed particles. This relationship can be conven- 

iently expressed in terms of lower bound on the product of the cross sec- 

tion for the production of charmed particles in a photon beam and the JIN 

total cross section. Using our best estimate for cs tot($N), we get 

0 
yp -f charm 2 300 nb 

at FNAL and in the upper range of energies available at SLAC 

(ELAB Q > 18 GeV). From this value and estimates for the semileptonic and 

leptonic branching ratios of charmed particles 10 we can see that the 

decay of charmed states should provide a significant contribution to the 

inclusive cross section Edo/d'p(yN + e + anything). . 

One implication of the vector dominance assumption which is not 

changed substantially by our modifications isthat the ratio o elastic 

(WI htot (VI must be a very small number (approximately 0.02-0.04). In 

this respect, the behavior of the $ is anomalous since for all other 

known hadrons the ratio aelastic(hN)/atot(hN) is about l/5. We make 

some effort to understand the implications of this anomaly. We find, 

for example, that the application of simple ideas based on duality imply 

that the cross section for the diffractive breakup of the $ into a pair 

of charmed particles should be small compared to the elastic cross sec- 

tion. Since this is just the opposite of what we would infer from the 

small ratio o e1 (W /otot (~JN) , it would seem that it is impossible to 

naively extend dual models to the $ in this manner. 

The remainder of this paper is organized as follows: In Section II 
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we discuss the available data on I/J photoproduction within the framework 

of the vector dominance model and define a factor which measures the off- 

mass-shell behavior. We then briefly discuss how this factor can be de- 

termined experimentally from the A-dependence of nuclear photoproduction. 

In Section III we present our model for the off-mass-shell behavior to 

calculate this factor. Section IV develops the inequality for u yp -t charm 

and Section V contains a brief discussion of dual models, Finally, in 

Section VI, we summarize and present our conclusions. 
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11. DATA ON $-PHOTOPRODUCTION AND THE VECTOR DOMINANCE ASSUMPTION 

We would like to discuss the data on J, photoproduction in a frame- 

work which is compatible with the vector dominance model8 but which allows 

explicitly for the possibility that the coupling of a photon and a $ may 

be different at q2 = Othanatq2 
2 

=m +. We therefore write the equation 

Ao/dt(YN + +N) = ;% X2 do/dt(+N -f W) 

9J 

where 

v;/4r = 2.8 t 0.3 

is determined from the SPEAR results on P($ + e+e-). 
11 

The factor 

(2.1) 

(2.2) 

(2.3) 

measures the variation of the photon-$ coupling, Y 
$' 

with q2 and the off- 

mass shell extrapolation of the invariant amplitude. We are making the 

assumption that this factor does not depend sensitively on s and t. We 

do not here try to distinguish the two, possibly related, dynamical 

origins for h but we will have some comments on this later. As it stands, 

Eq. (2.1) is not terribly useful unless do/dt(yN -+ $N) and do/dt($N -f $N) 

can be measured separately, or unless X can be estimated in a particular 

model. The traditional application of Eq,(2.1) comes from the vector dom- 

inance assumption X = 1 which allows us to infer da/dt($N + $N) from a 
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measurement of the photoproduction cross section. This assumption has 

been found to be valid in p and w photoproduction' but some hint of the 

necessity for corrections to it may be inferred from the trouble that 

naive vector dominance has with data on electroproduction. 10 In what fol- 

lows, we will explicitly display the factor X in most of the formulas. 

If we, for simplicity, parameterize the spin-averaged amplitude for 

$N + $N in the form 

A($N -f JIN) = tot CT ($N) eBt'2 (i + P) qQN & (2.4) 

where P = ReA/ImA, qqN is the JIN CM momentum and the optical theorem con- 

straint at t = 0 is built in, we can then write 

2 

E ($N -+ $N) = otot ($N) 
161~ (1 + P2) eBt (2.5) 

We can then use (2.1), (2.2), and (2.5) to infer the value of 

X(1 + p2) 
4 

r 
Y2 

u tot(W) = i $ 
-Bt 

161~ e max do 3 

t 
dt (~3 + 'IN& 1 (2.6) 

max 

In Fig. 2.1, we have taken data from Cornell,' SAC, 2 and FNAL3 and 

plotted this quantity. We have used the SLAC value for the slope of the 

differential cross section 

B = 2.6 - 2.8 GeVm2 (2.7) 

at FNAL energies. The experimental papers should be consulted directly 

for details concerning the measurements but we note here that there may 

be some uncertainty in isolating the elastic component in experiments 

which were designed primarily as inclusive measurements. 
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In particular, the shallow slope inferred for the differential cross 

section at SLAC and Cornell may indicate a preferential contribution from 

inelastic channels to the measurements at large t. We might infer that 

the slope of the elastic cross section should be larger than that for a 

pointlike particle scattering from a nucleon, i.e., 

B 2 -& Rn F2 (t> I t = <t> (2.8) 

where F(t) is the spin-averaged nucleon form factor and <t> is the 

average value of t which reflects the range where the slope is measured. 

Inserting the dipole approximation for the nucleon form factor, Eq. (2.8) 

reads 

B 2 5.6 (1 - <t>/0.71)-1 (2.9) 

and a measured value of B smaller than this is a strong indication that 

some of the data are from inelastic channels which have a shallower slope. 

We note here that the SLAC estimate of a 20% contamination from inelastic 

channels is made at t = t max' The fraction of the data at more negative 

values of t which is inelastic may be much greater. We make no effort to 

correct for this possible underestimate of the slope but one place where 

the actual value of the slope is important is in the estimate of integrated 

elastic cross section. 

Within the context of the vector dominance framework, we can also 

infer the ratio of the elastic to total cross sections for JiN scattering. 

Using Eq. (2.4), we can write 

per _ - $ig (1 + <p2> > e 
Btmax u to' (W) 

u tot(~N) 
(2.10) 
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where we have averaged over the possible differences in the t dependence 

of the Real and Imaginary parts of the amplitude. Inserting into 

Eq. (2.6), we get 

I 

4 
E($N + W) 1 (2.11) 

tmax 

If we assume that, at high energies, p-+0, we find that the data imply a 

small value for this ratio 

(2.12) 

\ It is of interest that for all other known hadrons, the ratio of elastic 

to total cross sections turns out to be considerably higher 

eR CT 
- (PP, "p, Kp, PP, wp, $p) z 0.1 - 0.2 got 

(2.13) 

This means that if A g 1, so that vector dominance is approximately 

correct, inelastic channels must play a significantly different role in 

$N collisions than in ITN collisions, It is notable that analysis of the 

experimental data on $ photoproduction suggests that it is not those in- 

elastic channels containing Jl's which contribute the bulk of the total 

cross section. 

If we make the usual assumption that the $J is a bound state of a 

quark-antiquark pair where the quark carries some new quantum number, ap- 

plication of the OZI selection rules suggests that the final states in 

JIN collisions should usually contain these new quarks. Since (2.11) and 

(2.12) suggest the quarks are not bound to form a JI , we can form the 
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estimate 

CT tot ($N) z o($N -t Dz + anything) (2.14) 

- 
where D and D are used as generic names for particles carrying the new 

quantum number. Applying vector dominance ideas to the photoproduction 

of these new particles, we would estimate 

a(Yp -t DE + any) s ~(YP + $N) 

Z A500 nb (KY 2 18 GeV) (2.15) 

We note that the identification of the $JN total cross section with 

the cross section for the production of new particles is consistent with 

the fact that the $ photoproduction cross section appears to exhibit some 

threshold behavior in the region between & = 4.6 and & = 5.5. It is 

only above the threshold for the OZI rule allowed inelastic channels that 

the elastic amplitude can develop its full magnitude and diffractive 

character. The energy dependence in Fig. 2.1 can be contrasted to the 

situation in 0 photoproduction where the data show remarkably little 

energy dependence from threshold to high energy. 13 We will discuss the 

cross section for the photoproduction of these hypothetical charmed par- 

ticles at more length in Section IV. We will also return in Section V 

to the problem of determining under what circumstances we can estimate 

independently the ratio o 
ek /o tot' 

The A-Dependence of Nuclear Photoproduction 

It is possible in principle through measurements of photoproduction 

on nuclear targets to obtain independent information on the size of 
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atot ($N) . It is interesting to see how precise the experimental measure- 

ments must be to detect the possible corrections to vector dominance. Using 

the Glauber scattering formalism 14 we can characterize the effective num- 

ber of nucleons per nucleus in a @photoproduction experiment 

A eff = u 
to:(IVN) /m p - expj-otot(W)TO)] d2b , 

0 

where 

+oO 

T(b) = A 
/ 

p(b,z)dz , 

--CC 

(2.17) 

p(b,z) is the nuclear density and A the nut 

tnt 
lean number. In the limit 

that o--'(JIN) is small, nuclear matter is transparent to $'s and Aeff Z A. 

We note that an experiment on a nuclear target which measures cross 

sections outside the coherent nuclear peak should measure cross sections 

(2.16) 

do inc 

dt (yA -+ $A) = Aeff 2 (yN -f +N) 3 (2.18) 

while within the coherent peak, 2 the cross section is proportional to (Aeff) . 

We can estimate the effect of o tot($N) = (l/h>otot vector dom- 

inance Z (l/x)1 mb on nuclear targets by using a simple hard-sphere 

model for the nuclear density: 

T(b) = A -?-- (R2 - b2)% 
2aR3 

b<R (2.19) 

= 0 b>R 

where R = r A l/3 
0 (for r 0 = 1.12 fm) is the nuclear radius. Using (2.19) 
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we can integrate (2.16) directly and write 

A eff = kR) 
u 3 

where 

k = Aotot($N) 3 3 - = - utot (+N) 
27~R~ 

(2.20) 

(2.21) 

is the inverse mean free path of $'s in nuclear matter and y(a,x) is the 

incomplete y function. Since o tot ($N) is assumed to be small, we can 

approximate for small kR 

A eff r A(1 - j/ kR) = A /1 - - 9 $ot 

\ 164 
($N) A1'3 (2.22) 

/ 

, 

For typical values of u($JN), we see the plot of Aeff/A in Fig. 2.3. We 

see that measurements of A efflA f ormed by taking the ratio of the inco- 

herent nuclear cross section to the nucleon cross section 

do' ($A -f +A) Aeff 

Ado(j,NqN) = A 

can distinguish A = l/2 from X = 1 if these are accurate to within 5%. 

A more careful treatment of this ratio using realistic Wood-Saxon 

nuclear densities and phenomenological radii can be done but the calcula- 

tion presented here gives a rough estimate of the importance of rescat- 

tering effects and establishes the feasibility of determining experi- 

mentally whether or not corrections are needed to vector dominance. 
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III. A MODEL FOR THE CORRECTIONS TO VECTOR DOMINANCE 

We have indicated that, in view of the large range of q2 involved in 

the vector dominance extrapolation, the factor X defined in Eq. (2.3) may 

be substantially different from unity. We turn here to the problem of 

estimating this factor. We assume that the J, couples strongly to particles 

carrying a new quantum number and, in agreement with the discussion in Sec- 

tion II, that channels containing these particles dominate the unitarity 

integral for the yp + $~p and $p + $p cross sections. We make a peripheral 

approximation to unitarity in order to evaluate this integral. Since uni- 

tarity is the operational principle in this calculation, only physical 

particles are involved. 

Charmed Particles and the Peripheral Approximation to Unitarity 

First we assume that we can approximately factorize the amplitude for 

the process $N + MIT + DC + N in the form suggested by the diagram in 

Fig. 3.1(a) 

AW 
N A -+MTF+DE+N- TJ,+DD - (s D,OD)R(tl)AxN ~ Mv + N(.**k..*.) (3.1) 1 

where A - is the amplitude for a Reggeized IT and a $ to produce a 
@r -+ DD 

DC pair, R(t1) is a Regge propagator and AnN -f Mrr + N is the amplitude for 

TN + MT + N. This factorization is motivated by the success of the 

Amati-Bertocchi-Fubini-Stanghellini-Tonin type of multiperipheral model. 

We will discuss later the consequences of choosing another type of ex- 

change. As usual, we neglect the dependence of the amplitudes on the 

bss> 
2 of the Reggeized pion. 

The next step is to assume that this peripheral configuration of 
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intermediate particles dominates the unitarity integral for JIN + $N, and 

write 

1 
Disc A$1N+$2N=K 

A 
'l'l+DD 

b,,,e,) $2G2+Do (SD,eD)R(tl)R(t2) (3.2) 

2x (6, 
mfTy 4 

(W4 
u ;;’ (4’) 

where 

% 
X(x,y,z> = x2 + y2 + z2 - 2(xy f xz + yz) I (3.3) 

and the other kinematic variables are defined in Fig. 3.1(b). This per- 

ipheral approximation to the unitarity integral implements the constraints 

of the OZI selection rule and the assumption that those inelastic chan- 

nels not directly involving a + dominate the total cross section. As be- 

fore, we use D and D as generic names for particles carrying the new type 

of quark bound to a u, d, or s quark. Our result will not depend sensi- 

tively on the number of these new particles or the details of their spec- 

troscopy. The only assumption we make here about the new particles is 

that they are heavy 

% E 2 GeV (3.4) 

We want to study the dependence of the discontinuity (3.4) as we 

continue one of the external q's off mass shell to the q2 of the photon. 

There are two separate types of dependence on m2 
$1 

in Eq. (3.2). The 



-15- 

amplitude ?rl$l -f DE can depend on the mass of the Q and the region of 

integration can depend on m 
2 
$1 

through the variation of the region of in- 

tegration and 

- max N 
t1 = 

(a - m;l) is' - m3 
S 

If we parametrize 

(3.5) 

(3.6) 

with Z m2 = 
J1 

1, we can examine the second type of variation separately. 

Using the complete set of unitarity relations, we might hope to solve for 

both A and Z but we will not attempt this here. After some manipulation, 
\ 

we can write 
. 

disc ‘Q1” -f e2N cc ’ 

?T$ -f Dz (sD) R(tl) R(t2)h(s/, mz, 4) okit (s') 

(3.7) 

Cj(j?,n s - Rn s' - Rn SD - c> 

[ 
d4’6 
- 
(2703 

6(+) iSD _ g-g d4K’ 
(2r) 3 

g(+> (s-- _ K-2) g(4) (PA + PB - K' - RD> 1 
The e-function represents the constraint that the interval in rapidity 

space between the D and ?? plus the interval spanned by the pions cannot 
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be greater than the total rapidity available. At fixed sD,s' the quan- 

tity in square brackets is merely the two-body phase space integration 

with s D and s' playing the role of masses. We can express this in terms 

of integrals over t 1 and t 2 and write 

disc A$lN + I/I~N = Z m 5 rni, 
2 

1 m$)"~$ -f DD (SD) 

h s’, mi, (s') B(Qns - Qns' - Qns D - c> (3.8) 

where A 4 is the symmetric gram determinant defined by A4 = A4(s,t,t 

2 
m$l' mfj2, 4, SD3 s' ) 

A4 = 

2s s+&-4 s+G2-mzl 
s+s -s D 

S+lT&~ 2m$1 2 2 2 2 
m$l+mlJ2-t mJ,l+sD-tl 

S+g2-(j 2 2 2 2 
m$l+m$2-t .2mlJJ2 m+2+SD-t2 

s+s -6 m$l+sD-tl 
2 

D $2+"D+2 2sD 

,t 2' 

(3.9) 

and the region of integration in t 1' 
t2 is the interior of the ellipse 

defined by the equation A4(tl, t2) = 0. If we make the approximation 

that the Reggeon propagators in (3.8) are exponentials, 

R(tl) R(t2) = e 
b(t1 + t2) 
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we can do the t integration in closed form. (See, for example, the dis- 

cussion of Byckling and Kajantie. 15) In the limit of large s and t = t max 

we can write 

I 
b (tl+t2) 

dtl dt2 e 
r 

I 

Le 
-A4 (t,, t2) 

I 
+ bs 

(3.10) 

WX 
where t1,2 are given by Eq. (3.5). In this limit, therefore, we have 

the expression 

lirn disc A~1N+~2N~Z rn$l 
s-t 00 

( 2 

t=t 

~dsDds~~(sD,m~,m~)u~~ jDD (sD) 

max 

( ) 
-b 

S (3.11) 

xB(Qns-Qns'-Qns -c) D 

We now make the approximation that oTN tot (s') is approximately constant 

over the entire region of integration so that 

(3.12) 

By using the high energy expansion throughout the region of integration, 

we have made the assumption that this gives the average value of the in- 

tegral. The 8' integration runs from 4 to ds/sD where d is a parameter 

determined by the average transverse momenta in the multiperipheral chain. 

We can express the s' integration in terms of an incomplete y-function, 
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and write 

disc A+lN -+ +2N cc z(m;,) m;y m;) ua$jDz $) 

(3.13) 

6 2' 
S2 

b (2sD - rntl - mi2)2 
( 
2sD 

Since b determines the cutoff in tl and t2 and d is related to the average 

2 transverse (mass) , we expect the dimensionless product, db, to be a num- 

ber O(1) which is comparatively insensitive to our assumptions. If we 

denote 

2sD - m2 2 

r = r(sD) = $1 - mJ/2 

SD 

we have 

(3.14) 

(3.15) 

y(2,d br) 

2 2 Fixing m$2 = me = 9.6 and varying SD from 44 E 16 to infinity, we see 

that r varies from 

2 

= 1.4 -$ 

(3.16) 

r(a) = 2 
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The Continuation in $-Photoproduction 

We can do an analogous calculation for the continuations involved in 

(9 photoproduction. In that case, we write the expression 

disc A@N+$2N = or++5 (sK) si2 

2 
SK t 2sK - m,2, - m;2 i X 

2sK - rn& - rni2 
SK 

(3.21) 

1 

The quantity in brackets again varies slowly throughout the region of in- 

tegration but the integrand vanishes at s = (m$ + rn$ 2 
K 

and attains its 

maximum value near s K S 3rni = 3 GeV2 and not at threshold. Again, we 

can estimate the variation with m2 $1 by using the mean value theorem to 

approximate the integral, 

h(2, db(5/3 mi)) 

h(2, db '4/3 mi)) 
(3.22) 

The value of this suppression factor as a function of the parameter db 

is plotted in Fig. 5.1. We note that if we take db near its expected 

value of 1, we obtain a suppression factor X 
(9 

Z 0.8. This value of X 
4, 

helps resolve a long-standing conflict between the quark model and vector 

dominance. Using the quark model estimate 

otot($P> =o tot (K+p) i-0 tot (K-n) -o tot (r'p) S 13 mb (3.23) 

we can use the analog of (2.1) and (2.6) to fit data on 4 photoproduction, 
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1 y$ - = 5.1 5 0.6 -q 4Tr 

Using the measured value of the T(@ -t e+e-) from Orsay, we have 9 

- = 2.8 + 0.2 
47l 

or 

A2 = 9 0.55 2 0.09 

’ X4 = 0.74 t 0.06 

(3.24) 

(3.25) 

(3.26) 

Data on otot ($N) from the nuclear A dependence gives 17 

Qot (4J-J) = 12.0 k 3.9 mb (3.27) 

which provides some support for the quark model result but is also con- 

sistent with A 
9 

= 1. We believe that the fact that our unitarity model 
n 

apparently gives the right magnitude of the qL dependence in Q photopro- 

duction justifies its use in JI photoproduction even though the range in 

q2 over which the extrapolation is made is much larger. 

The expression (3.20) can also be used to give an estimate for the 

suppression in ~'(3684) photoproduction if we again make the assumption 

that the cross section for v+' -f DE peaks very near threshold. This 

factor also is plotted as a function of (db) in Fig. 3.2. Using SLAC 

data on I/J' photoproduction, we therefore estimate 

qot (4J-w Z 1.5 (mb) 
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We note that the suppression factor calculated here has a similar 

physical origin to the factor calculated by Aviv et al. 
18 in the context 

of a slightly different model. One important difference is that their 

suppression is much stronger for 4 photoproduction than for J, photopro- 

duction, while our approach is consistent with what is known about both 

systems. 

If we modify our IT exchange model so that instead of (3.1), we let a 

Reggeon with intercept a be exchanged, the largest correction to (3.20) 

involves the intercept in the form 

84 - 2rnGf 
- 2a 

As the intercept, a, approaches 1, the factor h becomes identically 1 and 

there is no dependence on the mass of the external leg. 
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IV. THE SCHWARZ INEQUALITY AND PHOTOPRODUCTION 

There are some manipulations we can do to photoproduction amplitudes 

without invoking directly the vector dominance concept. One of these, 

which we will discuss here, illustrates the power of the OZ17 selection 

rules by deriving a connection between JI photoproduction, the photoproduc- 

tion of charmed particles and o tot (W * 

Suppose we begin with the unitarity relation, indicated in Fig. 4.la 

i [<YP\A+l*P> - <+pjA-l~p>] = -(2~)~x <yp/A'Im) <mlA-I$p> 
m 

x d4) (P i - Pf) (4.1) 

In the forward direction, we can then use hermitian analyticity and time 

reversal to write the LHS of (4.1) as the imaginary part of the nonflip 

amplitude 

2 ImA yp -f #p(sst = 5Ilax > = (27~)~~ uyplA+lm> <mlA-lW> 
m 

x d4) (P 
i - Pf) (4.2) 

Now on the right-hand side of (4.1) and (4.2) we want to divide the sum 

over intermediate states into two parts reflecting our dynamical assump- 

tion that the $ is a CC state, where c and c are quarks carrying a new 

additive quantum number. This separation is indicated in Fig. 4.lb, 

where we isolate those states containing charmed quarks, either bound to- 

gether in a +,$* or separated in the associated production of a pair of 
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charmed hadrons 

~<~++lm><mb-l QP> = c <yp/A+lmc><mcIA-/$p> 
m 

C 
(charmed) (4.3) 

+c <vp IA+Im*> <m* IA- 1 $p> 
m' 

(no charmed 
quarks) 

where m c denotes those states containing at least one cc pair and m' are 

those intermediate states without charmed quarks. We now use the fact 

that the OZ17 selection rules suppress all the diagrams in the second 

sum. We do not have a perfect understanding of how big the suppression 

will be so for the time being we simply parameterize it in the form 

C<yplA+Im><mIA-Il',D)I (1 + ~1 ~<yp/A'~mc><mc~A-[~p> (4.4) 
m m 

C 

where E is some parameter which bounds the possible violations of the OZI 

rules. We will not discuss in detail the problem of estimating E but we 

believe it to be small. We now note that the RHS of (4.4) defines a 

scalar production in the Hilbert space of all those states containing 

charmed quarks. Since the photon is assumed to couple to charmed quarks 

with a typical electromagnetic coupling, we can include the state Iyp> 

in the space . We can then use the Schwarz inequality to write 

c <yp 
m 

C 

~A+Imc><mc~A-I~~>I II<YP~A+II~ I/A- [$p>ll, (4.5) 
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where we have used the subscript c to denote the norm defined on the OZI- 

rule allowed subspace. Combining (4.4) and (4.5) and inserting into (4.2), 

we have 

21m A 
w + *p 

(s,t=t 
IlElX 

> 5 L27d4(l + E)/I;<TP/A+~~~IIA-I~P>II~ 

J4) (P - P ) f i (4.6) 

Taking the absolute square of each side of (4.6), we have 

4(ImA yp -t Jp)2s (2Tr)8(1+e)2 

( 

c <YPIA+lmc><mcIA-IYP> 
m 

C > 

(4.7) 

We can use the fact that momentum is conserved for each subset of par- 

ticles to write 

d4) (P f - Pi) 6(4) (pf - pi) = 6(4) (pf -pm )o(~)(P~-P~ ) (4.8) 
C C 

so that we have 

(4.9) 

$p -f charm (s) 

where q AB is the cm momentum of the AB system. With this normalization 
S 

l 2 C 
(ReA)' + (ImA)' I (4.10) 

64m (qyp) 
S 
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and so we write 

161~ s yp -f $p(s,t=t max) 5 (1+e)2(1+p2) 
yp -t &&mo*p&Lm (4'11) 

where P = Re A(s,t max)/Im A(s,t ) and the ratio max - qqp S i ) -= 
s -'(m +m$)21?zLs - (mp - rn$)“% L 

qyp (s - m 
2 

S P 
> 

(4.12) 

The cross sections o yp -f charm and o $p -+ charm include all those final 

states with particles containing charmed quarks. For the Qp case we have 

reason to believe that 

(4.13) 

since all other final states are forbidden by the OZI rules. For the 

photon 

u 
‘YP 

+ charm(s) = 'yp j $+x(s) + aypy,'&) + avip+Dlj+x(S) + *'* (4.14) 

where the D's are charmed particles. We can use Eq. (4.11) in two ways. 

The first, and most straightforward application of the inequality, is that 

a measurement of the photoproduction of the hypothetical charmed particles 

can be made which will give a lower bound on o gtw. This lower bound 

depends only on unitarity and on the OZI rules and is completely inde- 

pendent of the vector dominance hypothesis. Measurement of charmed- 

particle photoproduction can therefore provide a significant bonus in that 

it can be combined with $ photoproduction data to give an independent test 

of vector dominance. 



-27- 

In the absence of data on charmed particle photoproduction we can 

apply (4.11) in the opposite way. Given a model for the J?Er total cross 

section we can see (4.11) to give a lower bound on the cross section for 

the production of charmed particles. If we take the vector dominance 

result in Section II we can plug into the inequality and get the lower 

limits on the quantity 

(1 + E12(1 + 02)kyp -t charm(s) (4.15) 

shown in Fig. 4.3. Under the assumption that the photoproduction amplitude 

is predominately imaginary and that x is small we can then estimate 

u yp+ D&x?' ' X 500 nb (Ey z 20 GeV) (4.16) 

This is an extremely large cross section when compared with $ photo- 

production and the lower range agrees with our previous estimate (2.16). 

It is still, of course, true that if the vector dominance hypothesis 

underestimates otot($p) by a factor x then we have overestimated 

u 
YP 

-+ charm by the same factor. 

If we adopt the usual assumption that the new particles have a sub- 

stantial branching ratio into leptons (in either purely leptonic or semi- 

leptonic decay modes) we can see that there should be a detectable contri- 

bution from these particles to the direct photoproduction of leptons. 

Using the lower limit (4.16) we can estimate at large-pT ratio of the e's 

from D decay to the 'TTfs. Let Br(D + e) be the total leptonic branching 

ratio, we can estimate 
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- ayp -f Dii . Bi (zi-kef) 

p'&pTO = <nr'> aYP 
tot x f(w 

5 
F Pro) 

(4.17) 

where f(e' LpTO) and f(*' 2 PTO) are the fractions of e's and 71's with 

transverse momentum greater than p 
TO' Since the e's 

from the decay of a massive D, f(e& > pTo) falls off 

mD/2 while for x's it falls off rapidly. Putting in 

the pion spectrum we get 

+. 
RSL ‘L 

,,& pT;tl GeV 
= 10 ‘l. x l Br(D -t e) 

are assumed to come 

slowly until pTo > 
-6PT 

an e falloff for 

(4.18) 

This is large compared to similar estimates for the contribution of 

charmed particles to this ratio in pp collisions since photons provide a 

rich source of the new quarks. 

It is instructive to use the inequality (4.11) in a situation where 

we have better understanding over all facets of the result. Obviously we 

can go through entirely analogous arguments in the case of +p photo- 

production to write the inequality 

+P(%t max) 2 (l+Q2(l+ P2)o yp -f strange 

(4.19) 
where we have used 

qQp s To 

\F' 1 
for s LlO GeV2 

s ' 

(4.20) 

In this case we can look at specific two-body reactions involving +'s in 

order to get an idea of how big the parameter E which measures the vio- 
S 

lation of the OZI selection rules can be. For example we can use crossing 
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to write 

da($p + K'A)z do(K'-p'+ $A) 
da($p -f n-n) do(n'p * en) = 52 I! 16 (4.21) 

where the experimental value for the latter ratio is due to Ayres et al. 
19 

From this we can estimate es < l/i'. Data on + photoproduction give' 

da 
x (s*tmax) = 2.6 ?: 0.5 vb/GeV2 

YP + $P 
(4.22) 

and a measurement of interference with Bethe-Heitler pairs has yielded at 

P.53 
= Re A/Im A ~0.2 at t = tmax 

so that using the quark model result 

a$P + strange 2 12 mb 

from vector dominance arguments we get 

4.2 2 0.8 (ub) 2 (1 + ss)2 a yp + strange (s) 

(4.23) 

(4.24) 

(4.25) 

The production of strange particles by photons has been measured directly 

in a bubble chamber experiment which gives 

aYP -f strange(s) 2 8.5 ub (s=6-18 GeV2) (4.26) 

so the inequality fails by roughly a factor of 2 of being an equality. 
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The Inequality near Threshold 

It is interesting to consider the inequality (4.11) just above the 

$p threshold but below the $'p threshold. If we assume that the s-wave 

dominates so that 

u yp -f $)p(s) 2 4lT g yp -+ $p(s,9=0) (4.27) 

and the real-to-imaginary ratio does not change drastically in the avail- 

able kinematic region, we can write the inequality (4.11) in the form 

4a(ImA)2 
< (1+c)2(q’p)2a 

(ImA)2+(ReA)2 - S llrP + J/P (4.28) 

where Im A and Re A are respectively the average values of the imaginary 

and real parts of the photoproduction cross section. We see that in this 

kinematic region the inequality suggests that the amplitude should be pre- 

dominantly real. Only substantially above the available inelastic thres- 

holds can the imaginary part of the amplitude dominate. In conjunction 

with typical estimates of the masses for charmed particles this should 

serve to warn against the assumption P << 1 below E = 16 GeV. This means 

that the $JN cross section may be much lower than the values plotted in 

Fig. 2.1 in the Cornell-SLAC regimes. 
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V. THE RATIO o elastic(Qp),ototal ($p) IN THE FRAMEWORK OF DUAL MODELS 

The analysis of the available data on JI photoproduction within the 

context of the vector dominance model has led us to the conclusion 

aelastic ($p)/atot($p)<<l . (5.1) 

If we, in addition, assume the validity of the Okubo-Zweig-Iizuka (OZI) 

selection rules for reactions involving JI's, we observe that the dominant 

inelastic channels must contain the quark-antiquark pair of the initial $. 

These quarks will usually appear in separate particles so the inequality 

(5.1) can be strengthened to read 

a elastic($p)/a(W + DE + anything)<<1 (5.2) 

Since the result (5.2) has important implications for charmed particle 

searches involving photon beams, it is interesting to see whether we can 

understand it from an independent line of reasoning. In this section we 

will examine the ratio (5.2) from the standpoint of some simple ideas 

based on duality. 

There are many possible approaches to the duality properties of 

amplitudes involving q's, such as for example the discussion of Finkelstein 
21 

and of Halzen and Kajantie 
22 

. Since we are interested in the relative 

normalization of elastic and inelastic cross sections, one straight- 

forward application of duality involves starting with the triple-Regge 

expression for the reaction +p -t p + anything. 
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E doTaR' a.(O)-2rqt) 29 (t>-1 
($p -f px) Q, r,G:ij (t> (m2> J s ,..I. 

d3p i,j 
(5.3) 

As indicated in Fig. 5.1we assume that the inelastic channels in this 

process are dominated by those containing a DE pair. 

We want to consider the relative normalization of the elastic and 

inelastic channels under the assumption that the triple-Regge expansion 

(5.3) gives a "semi-local" approximation to the elastic cross section, 

22 n-4 -+A/2 

I 
doTSR' da 

m$2-A/2 
dm2 dtdm 2 2 ,,NP + IJP) (5.4) 

2 where A is some (mass) parameter which defines the size of the region 

which must be averaged. In the triple-Regge formalism we can apply finite 

mass sum rules to the forward Reggeon J, discontinuity indicated in 

Fig. 4.lb and our assumption (5.4) states that there is some value of A 

which averages the $-pole in the direct channel. In dual models with a 

universal slope for all Regge trajectories we would have A 2 lla' 2 1 GeV', 

but we are going to leave A an arbitrary parameter. We therefore write 

r 

!&JP + $P> z 'x GYij(t)[mij aj(O)-2ni(t)s2ai(t)-2 A 

Liij 1 (5.5) 

At this point we make the additional assumption that the coupling to the 

protons in triple-Regge expansion, Eq. (5.3), is dominated by the 

Pomeranchuk singularity. At large s, this makes sense for the small-m2 

piece of the cross section but we must keep in mind the fact that we 
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might be neglecting contributions to charm production. For simplicity in 

comparing the elastic and the inelastic contributions we parametrize 

“mj (t) 2 GIrxjeBt 

(5.6) 

ffn(t) = 1 + a;(t) 

which allows us to integrate (5.5) over t and express 

,2 aj (W-2 

a elastic(s) = F?Y:aF1)ln(s/m2) a 
a 

(5.7) 

To get the contribution to the inelastic diffractive cross section 

we must integrate in m 2 from 44 and in t up to 
^ ^ 2 

(5.8) 

We therefore write 

ai$(s) 21 Is dm2 ~'""" dt GnnjeBt(m2)aj(o)-2(s/m2)2a~t 
j 4% -m 

(5.9) 

dm2 
(m2) xi (0)-2, 

-(B+Zai 

(B 4 2a;[ In s/m') 
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To get a rough estimate of the integral we can make the approximation 

?!I 2 0 inside the integrand and neglect the tmax suppression in those 

regions of mz where the integrand is large. We can then write 

2 a: (0)-l 

a;;;; (s) 2 1 G 
c4%) 3 

,j nflj B(l-aj (0) > 
(5.10) 

Within the spirit of these types of crude approximations we can assume 

that (5.7) and (5.10) are dominated by a single exchange. Making the 

approximation a' 71 = 0 in (5.7) we therefore have the estimate 

(5.11) 

We are faced with something of a paradox in that our analysis of the total 

cross section has suggested that this ratio be small whereas the duality 

arguments give the ratio to be large unless the intercept of the exchange 

trajectory, aj(0), is comparatively high. Since the $ should decouple 

from the usual high-lying meson trajectories, p, w, AZ, f, etc., this is 

a puzzle. Our analysis suggests that we have a fairly high lying tra- 

jectory, which we will call "fCharm" which couples substantially to 

23 
charm. This is surprising. Recall that Carson and Freund within the 

context of the dual pomeron model have predicted that any such trajectory 

must have a low intercept 

aj (0) 2 u f Ql-m2 X 
charm I) 

2 - 8.6 (5.12) 
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in order to explain the size of the $ coupling of the pomeron. We see 

therefore that our understanding of the duality properties of amplitudes 

involving JI's is far from complete. 

Since we do not know exactly what percentage of charmed particles 

should be produced in the configuration of Fig. 5.1, the numerical esti- 

mates of o el(Jlp) /a (W + charm) do not serve to put a stringent bound on 

the ratio (5.11). It would seem that values of typical charm trajectory 

intercepts used by Field and Quigg 24 or Barger and Phillips 25 

a charm (0) 2 - 0.57 (5.13) 

are probably sufficiently high to assure consistency between the vector 

dominance estimates of a tot QJN) and the duality estimates presented here. 

For comparison, we may do an analogous calculation to estimate the 

ratio of the elastic scattering of the cp meson to its inelastic breakup 
- 

into KK mesons 

Since rnt 2 4+ -= ?, A 2 1 GeV2 this depends roughly on the intercept of the 

appropriate trajectory which can couple to 4's. With 

ai 2 af, (0) 2 0 (5.15) 

we get the reasonable estimate of unity for this ratio which is in 
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agreement with what we know about (IN scattering. This indicates that the 

agruments leading to (5.12) have some possibility of being correct. 

Whatever values for the charm production cross sections are mea- 

sured experimentally, it seems clear that the study of the duality proper- 

ties of amplitudes involving charmed particles and Q's will turn out to be 

very instructive. It may be, for example, that the JI and $' are sub- 

stantially different types of bound states than the P, W, @ so that the 

usual duality ideas which are based on the existence of harmonic oscillator 

potentials are invalid. This possibility is, in fact, suggested by the 

charmonium approach 26 to the I/J and $' where it is pointed out that the 

effective mass of the charmed quarks must be quite large. This large mass 

gives rise to a new distance scale in the bound state problem. Whether 

or not some generalization of the duality concepts retains its validity in 

these models is uncertain. 
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VI. CONCLUSIONS 

If the currently attractive interpretation of the JI(3095) and +(3684) 

as bound states of quarks carrying a new additive quantum numben: is correct, 

there must be new hadrons which are bound states of the new quarks and 

ordinary constituents. We have examined in some detail the consequences 

for photoproduction data of the existence of these new hadronic states. We 

find two results with significant experimental impact which are compara- 

tively insensitive to the details of the spectroscopy of the new states: 

(1) The coupling of $p to new hadronic channels allows us to esti- 

mate the corrections to the usual vector dominance formula for do/dt(Yp + $p) 

in a simple and direct way. Doing this, we calculate that the total cross 

section for $p scattering should be about twice the value estimated from 

naive vector dominance. The validity of our calculation can be established 

by doing measurements with 5% accuracy on the photoproduction of $'s from 

nuclear targets. An interesting fact emerges in that we can apply our 

calculation in a straightforward way to $-photoproduction where we predict 

a modification of the vector dominance formula which gives agreement with 

the quark model value of o tot (@P) * The same type of corrections to vector 

dominance can be found in simple models for the quark-antiquark bound state. 

(2) Unitarity can be combined with the OZI selection rules to relate 

the "pseudoelastic" cross section da/dt(yp + @p) to o(yp -+ Dz + anything) 

and otot($p) where Dz are used as generic names for the new hadrons. 

Available data and our estimates for the corrections to the vector dominance 

expression can be combined to give a lower limit 

o(yp -t Ds + anything) 2 300 nb (Elab 2 20 GeV) 
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A cross section of this magnitude can be shown to contribute substantially 

to the rate of direct leptons if the D's have a significant leptonic 

branching ratio. 

In addition, we discuss the fact that analysis of photoproduction data 

leads to the conclusion that the ratio o elastic~~N~,ototal~~N~ is a very 

small number. This observation is hard to understand within the usual 

duality framework which has been found useful in the description of had- 

ronic dynamics. This suggests the possibility that the $'s will give a 

new and perhaps incisive perspective to dynamical problems. 
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Figure Captions 

2.1 

2.2 

3.1 

3.2 

4.1 

2 l/2 The value of (1 + p ) h atot determined from data on $ 

photoproduction. The Cornell data are from Ref. 1, the SLAC 

data from Ref. 2, and the FNAL data from Ref. 3. 

The hard-sphere model for nuclear densities and the estimate 

of Aeff/A using Eq. (2.21) for different values of u tot W). 

Diagram (a) demonstrates the multiperipheral configuration 

assumed for the process $N - DB + rn7r + N. 

Diagram (b) labels the kinematic variables appropriate when we 

insert the diagram (a) into the unitarity expression for 

$blN - z,~~N. We assume we can do this both for rn$f = 0 (photo- 

production) and m qF = m,2 (physical $N scattering). 

The suppression factors for yN- +N, yN-- $IN and yN - $‘N 

calculated in the peripheral unitarity model as described in the 

text. The parameter db is expected to be near unity since d 

measures the average and b gives the falloff in t of the pro- 

pagator but we display the dependence on this parameter to show 

how sensitive our results are to variations in the assumptions of 

the form of the matrix element. 

Diagrams which indicate the steps leading up to the inequality (4.11). 

Fig. (a) illustrates the unitarity equation for yp - $p. 

Fig. (b) demonstrates the breakup of the sum over intermediate 

states in the unitarity equation into two parts. The first consists 

of those states which contain charmed quarks and are allowed by 
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the OZI rules. The second set of intermediate states is suppressed 

by the OZI selection rules. 

Fig. (c) illustrates the application of the Schwarz inequality to the 

first sum. 

4.2 The use of vector dominance and (4.11) to deduce a lower bound on 

YP - charm’ 

5.1 Diagram (a) represents the leading contribution to $p - p + anything 

incorporating Zweig’s rule. 

Diagram (b) gives the triple Regge expression. 

Semilocal duality normalizes the inclusive and inclusive cross 

section as indicated in Diagram (c). 



I 
1.2 

I.0 z 
25 y 0.8 - N 

5 
2 0.4 
2 

4 
0.2 

I.C 

0.8 

I I I I I 
q Cornell (ref. I) 
0 SLAC (ref. 2) 
A FNAL (ref.31 

- 

0 

lu 20 30 50 
Ey (GeV) 

17,**, 

FIG. 2.1 

a%= (mb) 

n 

FIG. 2.2 



s,.,=(kD+k~)’ 

tl= (PA-k,-k-,)2 

& -d&+-)2 

3 -\lA’i~ rxD -kE)’ 

(b) 2752Al 

_ -.._ 
FIG. 3.1 ---- 



1.0 

0.9 

08 
z l 

,g 0.7 ' 0 
2 Q.6 

g' 0.5 
cn 
f$ 0.4 

g 0.3 
m 

02 . 

01 . 

0 
- 

I I 1 1 I I i 1 I 1 I 1 1 1 I I I _ 

0 I 2 3 4 5 6 7 8 9 
Mb) 27szs4 

-~ - 
._ FIG. 3.2 



I 

c 
m 

c 
m 

. 
quarks 

c 
m/ 
no 

charmed 
quarks 

(b) 

FIG. 4.1 



600 
s 

5 500 
AZ 0 
I 400 

t! 
z 300 

I I I 

20 
Ey (GeW 

50 

FIG. 4.2 



P 

P 
‘1 (b) 

\c/ 

x 

z1! - 

semi -local 

i i 

P P 

vf * 

x 
j 

i i 
( 1 C 2752A2 

FIG. 5.1 


