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This paper studies two concepts of time delay in few particle 

scattering. The first is a global time delay that refers to the 

total advancement or retardation of the entire wave packet motion 

due to the presence of interactions not contained in the asymptotic 
Hamiltonian. The second type, the angular time delay, is the early 

or late arrival of a particle in a counter subtending an angle 8 
with respect to the incident beam direction. In the two body problem 

the magnitude of this time delay is known to be & f(W), where 

f(E,8) is the scattering amplitude at energy E. We discuss the 

definition of these two kinds of time delay in the three body problem. 
We provide a generalization of the relation between angular time 
delay and the scattering amplitude that is valid for elastic, rearrange- 

ment and breakup scattering. The interdependence of these two kinds 

of multichannel time delay is established. Possible physical appli- 

cations of the resulting theory are discussed. 
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I. IRTRODUCTION 

This paper comprises a study of two, physically distinct concepts 

of time delay that occur in multiparticle scattering,theory. The 

first of these is related to the total advancement or retardation of 

the wave packet motion due to the presence of interactions not con- 

tained in the asymptotic Hamiltonians. We shall characterize this 

kind of time delay as "global." The second form of time delay is 

one appropriate for a scattering observed by counters in a differential 

cross-section measurement. We shall call this later concept the 

"angular" time delay. In the main body of this article we develop 

both of these concepts for the three-body problem within the theo- 

retical context of Faddeev's time-dependent multichannel scattering 

theory. 1 However, it is our belief that the three-body problem pro- 

vides a paradigm within which we may explicitly state our analysis. 

The simple and general nature of our results suggest a much wider 

range of validity. 

In the multiparticle time-delay phenomena - the definitions, 

the theory, and the associated derivations are elaborate. Thus it 

is helpful to have a balanced overview in a simpler context of the 

various features that may arise. The two-body problem provides us 

with just such a simple parallel and one in which most of the theo- 

retical problems have been resolved. So we shall briefly describe 

the structure of the two-body time-delay theory. 

We turn first to the global time delay. The idea for this defi- 

nition is found first in the work of Smith2 where it appears in a time- 

independent description. Later Goldberger and Watson' posed this 
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concept in an abstract definition set in the time-dependent wave-packet 

formalism. In this latter approach, one writes, 

O" (f,Qf) = lim 
I 

[(l#d, ~(R)'/(t)) - @P(t), ~(Rh'(t)) ldt Y (1-l) 
R+ca a 

where 
-iHot 

T(t) = e f is the freely evolving wave packet for Hamiltonian 

HO* The wave function q(t) is the exact solution of the time-dependent 

Schroedinger equation with the fully interacting Hamiltonian H that 

evolves from O(t). The function f specifies the initial wave packet. 

Finally, -9(R) is a projection operator that is unity for interparticle 

distances less than R and zero otherwise. 

The physical meaning of (f,Qf) may be read off from the right- 

hand side of Eq. (1.1). We see that the first scalar product in Eq. 

(1.1) represents the probability of finding the particle described 

by 'b(t) inside the sphere of radius R at time t. When integrated 

over all time, this gives the total time spent by the particle in that 

sphere during the scattering process described by q(t). The second 

term in Eq, (1.1) shares this same meaning, but the exact wave is 

replaced by the free wave q(t). Clearly the integral in Eq. (1.1) 

gives the time difference the waves q(t) and q(t) dwell in the 

sphere. By taking R -+ 03 we obtain a time delay defined for all of 

space. Thus for each f one determines a matrix element (f,Qf), 

and this quantity is an aggregate property of the scattering averaged 

over all space and time. Consequently, we label this phenomena global 

time delay. 

The problem associated with global time delay is to compute 

(f,Qf> in terms of fundamental properties of the scattering process. 

A rigorous and general solution of this problem was found by Jauch 
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and Marchand. 4 These authors succeed in relating the time delay to 

an on-shell hermitian operator. First they establish that Q is 

energy conserving and may be expressed, 

In this formula E is the kinetic energy, p is the reduced mass, 

and 5.2 are exit and incident momenta in the directions i\p,hp'. A 

similar on-shell representation may be introduced for the two-body 

S matrix, 

< 5jsp > = 6(;;E') < ^pls(E)lhp* > . 

(1.2) 

(1.3) 

These last two equations of course define a one parameter family of 

energy dependent operators, q(E) and s(E), that act on the two- 

dimensional Hilbert space L2($) as reduced operators. The solution 

to the global time-delay problem is given by the operator relation, 

q(E) = -i&(E) $ s(E) . (1.4) 

The unitarity of s(E) implies q(E) 

of Eq. (1.4) is valid for all physical 
L; 

is hermitian. The derivation 

wave packets f. Also it is 

known' that the time dependent definition Eq. (1.1) is in fact equi- 

valent to Smithqs original time independent definition. 
2 

Let us now consider the angular time delay. Here the problem 

is to assign a delay for a particle incident in the direction ^p i 

and subsequently detected in the direction ^p. The idea for this 

type of time delay apparently was present in the original work of 

Wigner and Eisenbud,6 and has since been studied by Brenig and Haag, 7 
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Froissart, Goldberger and Watson, 8 and recently again by Goldrich 

and Wigner. 9 The formal definition for this concept is obtained from 

the expression 

I- d% ‘;rJq(F;t> I2 
< x(t) > = ~0’ 

C d3x[@(Zjt)12 ' 
jr-y 

(1.5) 

In this equation q(x,t) is the exact time-dependent wave function 

that appeared 

subscript C* 

in Eq. (l.l), here expressed in coordinate space. The 

on the integral sign means that the integration is to 

be carried out only for the interior of a cone C' whose axis points 

in the ^p direction. Mathematically the cone is the set in coordinate 

space given by C'($,h) = I?: -);;^, > ~lgl], where 0 < h < 1, Clearly, - - 

as h + +1 the apex angle of the cone vanishes. Thus < x(t) > has 

the physical meaning of the average position at time t of the portion 

of the wave q(t) found inside the cone Cq. For the case where 

the incident momentum-space wave packet f is strongly peaked about 

~iY computing the right-hand side of Eq. (1.5) in the limit h --, 1 

yields, 

< x(t) > = vat - v. < $[n(E)l^pi > . (1.6) 

The time variable t in this 

the average separation of the 

The mean velocity of the wave 

formula is defined such that at t = 0 

particles in the wave function is zero. 

is just v. = Pi/cI. It is found that7y8yg 

= -& arg < $ls(E)I$i > . (1=7) 

The physical interpretation of Eq. (1.6) is straightforward. The term 
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vat is the position one expects the outgoing wave to have if it 

always has a mean velocity vo. The term A(E) gives a correction 

to this position and represents the time delay in the ^p direction. 

Note that formulae (1.7) and (1.4) are quite different in structure. 

Equation (1.4) is an operator relationship, but (1.7) involves only 

the energy derivative of the argument of the reduced s-matrix element. 

It is interesting to understand how these two time delays are 

interrelated. If one sets f@ = 6($ - $)fi(p) in Eq. (l.l), 

then it is easy to deduce that the forward matrix element, 

’ hpiIq(E) ]^Pi >Y is proportional to the global time delay for a plane 

wave of energy E and incident direction ai. For a final scattering 

direction ^p then < $]A(E)]$$ > is the associated angular time 

delay. The likelihood of the plane wave scattering into $ is 

I< ^pb(E)]^pi >12. Thus we anticipate that if we weigh the angular 

time delay with its probability and integrate over all angles we 

will get the global time delay, viz. 

< “Pilq(E) I^Pi > = Re -i ; 
I 

'"< ^Pls(E)]$$>*< $I& s(E) I?$ > d'i, J I 

= < ^pls(~)J^p~ >*< ^~]s(E)]$~ > Re -i & h < ^PIS(E>I^Pi > 6 
I 

(~-98) 

= I< ^pls(~)I^pi >I2 ' ^pIA(E) I^Pi ‘a~ l 

As the last form of Eq. (1.8) shows, our anticipated result is correct. 

The first form of Eq. (1.8) employs just the integral version of Eq. 

(1.4) and the reality of the diagonal element < $i]q(E)l$i >, In 

fact, Nussenzveig 10 found a connection between the angular and global 



-7- 

time delays. It is not difficult to show Nussenzveig!s result is 

equivalent to that above. 

There remains one important feature of the two-body time delay 

we have not yet discussed. This is the spectral property. For the 

moment, consider the resolvents To(z) = (Ho - z)-' and r(z) = (H-z) -1 

that are related to the free and exact Hamiltonians, Ho and H. 

Then the spectral property is the statement that 

5 Im tr[r(E+io) - ro(E+io) 1 = & 6’k q(E) , (1.9) 

where tr is the trace on L2(G) and t^r is on L2($). In its 

mathematical guise this has been carefully studied by Birman and 

Krein," and by Buslaev. I2 The explicit connection of the spectral 

property to time delay is found first in the paper of Jauch, Sinha, 

and Misra. 13 A very simple proof is found in Reference 14. It is 

well-known13,14 that the left-hand side of Eq. (1.9) is physically 

equal to the change of state density at energy E produced by the 

interaction v = H - H 0' It is through this state density meaning 

that the global time delay enters statistical mechanics. ~-5~6 

The above list of properties, summarized by Eqs. (1.1) through 

(1.9) form the theoretical framework of time-delay theory in the two- 

body problem. Let us close this summary by mentioning some other 

approaches and applications extant in the literature. Attempts to 

view the problem from a classical perspective have been worked out 

by Smith 17 and by Bar-Gadda. 18 Time delay for two-body scattering 

with absorption has been analyzed by Martin. 19 The time delay concept 

has been recently extended to one-dimensional field theories by Jackiw 
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and Woo. 20 Applications of the time delay formalism include corrections 

to the Boltzman equation derived by van Santen. 21 Causal lower bounds 

on global time delay have been obtained by Nowakowski and Osborn. 22 

Fong has discussed some aspects of the static coupled channel problem. 23 

Finally, Dalitz and Moorehouse 24 have used the time delay formalism 

to investigate resonances in the coupled channel problems. 

The purpose of our paper is to derive the multiparticle equivalents 

of the global and angular time delay. We have elsewhere 25 discussed 

the mathematical features of global time delay. Consequently, the 

primary emphasis of this paper is to analyze the forms of the angular 

time delay as it occurs in the three-body problem and to establish 

the connection between the global and angular forms. 

In Section II we present a discussion of the definition and 

physical meaning of angular time delay. We use the two-body problem 

to carry out this discussion and to illustrate the general method of 

solution we employ. Section III describes the angular time delay 

results for elastic, rearrangement and breakup scattering in the 

three-body problem. Section IV gives the interconnection statement 

that is analogous to Eq. (1.8). Also included in this last section 

are some remaining difficulties in the physical interpretation and 

a discussion of some of the observable effects of these time delays. 

Finally, in the Appendix we study some aspects of the convergence of 

the asymptotic and exact time dependent wave functions needed in the 

treatment of angular time delay. 

We do not derive the three-body spectral property. Its proof 

requires the introduction of a new analytical method in the three-body 
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problem based on Cayley transforms and will be presented separately. 

II. ASPECTS OF TWO-BODY ANGUUG? TIME DELAY 

The method we use to obtain the three-body angular time delay 

results is easy to understand in the context of two-body scattering. 

So we shall use the two-body problem as a model in which we may present 

the more sensitive physical and mathematical aspects of the angular 

time delay derivation. 

Let us begin our analysis by examining the definition of angular 

time delay. Suppose f- is the incident asymptotic wave packet, 

then the exact time dependent solution to the Schroedinger equation, 

40) Y is determined by the condition 

12-11 llIf(t) - e 
-iHot 

f'll = 0 . 
t-,a 

(2.1) 

Equation (2.1) implies that q(t) has the unique form 

9(-H = e -iHtn(+)f- 
(2.2) 

where ,(+) is the Moller operator satisfying the outgoing radiation 

condition. Long after the collision q(t) again evolves according 

to the free Hamiltonian, Ho, and the asymptotic wave (p+(t) = e 
-iHot + 

f 

converges in norm to *l(t) for large positive times, i.e. 

II*(t) - O+(t)11 z 6(t) + 0 as t -+ so0 . (2.3) 

The wave packet function ff characterizes the outgoing state and is 

known to be 26 

ff = ,wt,w,_ = Sf- . (2.4) 



- 10 - 

Here .Q(-) is the Moller operator with the incoming radiation condition 

and S the S-matrix operator. 

The quantity we need to compute is the average position of Q(t) 

in a cone C*(^n,h) for large positive times. We find it convenient 

to carry out this calculation in momentum space. The position operator 

2 has the momentum space form 

-+ i- x= ,,+&~. (205) 

Let C(hn,h) be the momentum space dual of the coordinate space cone 

C'(hn,h), i.e. 

C(hn,J.) = C$j 52 > J-Ii511 O<h<l. _ - 

The mean position of $(t) in cone C is given by the expression 

(2.6) 

(2.7) 

One needs the form of Eq. (2.7) only for very large positive t. 

Because the convergence property (2.3) it is plausible that we are 

allowed to replace JGt) in Eq. (2.7) by the simpler cp+(s,t). 

We shall take as a basic ansatz that this replacement leads to an 

error that vanishes as t + w. Such an ansatz is characteristic 

of all the former treatments of angular time delay. 839 Intuitively, 

one might think that the convergence condition (2.3) is sufficient 

to prove that the ansatz is correct. This would be so if we were 

computing the expectation value of a bounded operator. However, 
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3 x*?i is unbounded and is expected to have a behavior like At f B, 

where A and B are constants. Thus 6(t) -+ 0 is not sufficient 

to show 

JC iC 

i-dE;1$(;,t)j2 - 
+o J (2.8) 

h 
,+%P+(ib) 1' 

jC 

as t -+ soo. In the Appendix we study the sufficient conditions for 

this convergence. We conclude that if 6(t) < const.-t -'+ for 

large t, and where E > 0, then the ansatz (2.8) is valid. We 

are not aware of any studies of the rate of convergence in t of 

(2.3), so for this reason the relation (2.8) is retained as an ansatz. 

In posing the definition of the mean position in momentum space 

we have implicitly assumed that the correct momentum space cone restric- 

tion is the cone C($i,h) that is identical to the coordinate space 

cone C'(hn,h), but set in momentum space. This reasonable assumption 

is given a rigorous statement in a theorem of Dollard. 27 For the 

freely evolving wave cp(t) = e 
-iHot 

f then Dollard proved 

21 (e 
-iHot 

f)(;;)12 = 

Here f is any L2 I"unction and 'F its Fourier transform. The 

physical content of the above statement is that if at time t = 0 

a particle is contained in the momentum space cone C(hn,h), then 

as t+,= it must be found in the dual coordinate space cone C’(hn,h) l 

The final important ingredient in this derivation is the nature 

of the incident wave packet, The simplest structure for the incident 
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wave packet is that of a plane wave of momentum si. This wave function 

is just f-(s) = S(s - $i). If this form of wave function is used, 

then our method of derivation is meaningless. Technically, we must 

employ normalizable wave packets that are successively more and more 

like a plane wave. Specifically, our assumed wave packet properties 

are: 

Pl The incident wave packet f-(s) is almost monochromatic with 

an average momentum value pi. It is also highly collimated 

with a direction hpi. These two properties are implied if 

the modulus of f-(G) is sharply peaked about si. We 

assume that relative to this sharp peak the t-matrix is 

slowly varying. 

P2 The phase of the wave packet f-(:), arg f-(G), is slowly 

varying and vanishes in the limit as f- approaches a plane 

wave structure. Note that a plane wave is represented by 

SC;; - Gi) and since it is purely real it has no phase 

variation. 

P3 The coordinate space position of each incident wave packet 

is at the origin at time t = 0. 

This last property P3 simply defines the origin of the time variable 

t. The vector position, z-(t), of the incident wave packet f-, is 

determined by 

P(t) = 
i 

ra$ip-*(;;,t) gp-(;;,t) 

If-($, I2 - {&%) I2 V arg f-(s) (2.10) 
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where it is assumed that f- is normalized to unity. The requirement 

P3, that z-(O) = 0, means that 

d$]f-(c)12 '7 arg f-(s) = 0 . (2J-u 

In the plane wave limit,property F2 implies property P3. 

Let us consider the derivation of Eq. (l.7) for C in any non- 

forward direction. To do this we need to compute the ratio 

(2.12) 

in the t-+ +co limit. Only the numerator requires attention. Recalling 

the momentum space representation of 2 given by (2.5), we note the 

useful identity, 

$ cp+*(;,t) 7.6 cp+(;,t) = -lcpf(;5,t)12 f & ax T+G,t) 

where E is the kinetic energy E = p2/%. For Cp+ we have the 

representation, 

cp+($,t) = emiti d$' < iZpls(E)jhp' > f-(p"p') . 

(2.13) 

(2.14) 

Thus the energy derivate of arg cp+(f;,t) gives us 

& arg T+($,t) = -t + -& arg 
i 

d$' < ^p]s(~)]hp' > f-(p$*) . (2.15) 

The evaluation of the time independent term is carried out by employing 

the wave packet property Pl. For C not in the forward direction 

< hpl s(E) ]^pi > is a smooth function of ^p and ai, thus we have the 

approximation 



i 
d$' < $js(E)j$' > f-(pij') " < ^PiS(E)IBi > F(P) 

where 

F(p) z 

Now Eq. (2.15) takes the form 

(2.16) 

(2.17) 

& arg V+($,t) = -t + 2 kg < ̂ pIs(E) I^Pi > + a% F(P)] (2.18) 

and Eq. (2.13) becomes 

. 
; cp+*(&t) 7% .‘P+(&t) = /cp”(;,t)12ft - 4 arg < $lS(g)l$i> - $ arg F(P)] 

(2.19) 

Property P2 tells us that If-(p,$')l 2 will be strongly peaked about 

T;i* From representation (2.14) it follows that IT+(~,t)12 is also 

peaked about E = Ei. As a consequence the enera E in the two-argument 

terms in Eq. (2.19) may be replaced with Ei. We also have to take 

the opening angle of the cone C to be small enough such that the 

variation of arg < ^pjs(~)lfj~ > is constant with respect to ^p. 

This step incorporates the limit h + 1. Putting this modified form 

of (2.19) into the ratio (2.12) gives the desired solution 

< x(t) >c = < v >c t - g C i 
arg < $l.S(Ei) a% F(Pi) 1 

(2.20) 

where < v >c is the mean velocity of cp'($,t) in the cone C 

(2.21) 

In the plane wave limit we expect the term with arg F(pi) to vanish. 
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It is an essential feature of the above derivation that we only used 

the wave packet properties to assist in the computation of the constant 

terms in Cx(t)>C. The coefficient of the linear term must be computed 

without approximation since any error in this coefficient is multiplied 

by t which goes to + m . 

We close this section with a few general remarks about the nature 

of the result found above. It is important that property P3 states 

that it is the non-interacting rather than the interacting wave packet 

that is at z = 0 when t = 0. Thus it is clear that the spatial 
. 

shift of the position of the outgoing wave, < v >c &- arg < $ls(Ei) I^pi > 
i 

includes effects from accelerations as the particle approaches the 

scattering region, as well as accelerations affecting the outgoing 

stage of the scattering. So for the scattering geometry (hp,si) 

Eq. (2.20) represents the total time delay. With this interpretation 

the connection formula (1.8) makes good physical sense. 

It is of some interest to contrast our method of derivation with 

those employed in Refs. 8, 9. The major difference is in fact that 

the above derivation, Eqs. (2.13)"(2.2l), is much shorter. There 

is a simple reason for this. The derivations of Refs. 8, 9 are set 

initially in coordinate space and then fourier transforms to momentum 

space must be introduced to complete the calculation. However, the 

presence of the cone restriction make the fourier transform uncommonly 

awkward. Our derivation is set completely in momentum space so we 

need only algebraic manipulations. 
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III. THREE-BODY ANGULAR TIME DELAY 

We derive here the angular time delay results for three-body 

scattering. The method we use is just a multichannel modification of 

that employed in Sec. II. We begin our discussion by setting up the 

appropriate definitions. Let fi(rd,J be the momentum space function 

describing the free relative motion of 

composed of particles CX and 7. The 

particle S and the cluster 

momentum ;f 
B 

is the relative 

momentum of particle @ and the center-of-mass of the CV-cluster. 

The internal momentum of the 03' cluster is denoted by <*, and 

the conjugate coordinates of SS, ZS are ;S, gP. A 

description of our Jacobi coordinates may be found in 

The freely evolving wave packet associated with 

where 

I-J 
more detailed 

Ref. 28. 

fs is given 

(3.1) 

(3.2) 

(3.3) 

Here x" 
B 

is the S channel Hamiltonian, 2 is the boundstate 
B 

energy of cluster 07 and $,({S) is the unit normalized two-body 

boundstate wave function. The reduced mass of cluster 07 and particle 

p is denoted by ne while 
% 

denotes the reduced mass of particles 

a and 7. The exact time dependent state @S(t) evolving from 



- 17 - 

D;(t) is defined by 

lim 
t-+-W 

ll4p - mpll = 0 . 

As t-'toc, $r (t) has wave function components satisfying four 
B 

different boundary conditions, that are determined by 

lim I/P [* (t) - @nil/ = 0 
t-*-w a i3 

a = 0,1,2,3 . 

(3.4) 

(3.5) 

Here Pa is a projection operator associated with the subspace of CX 

channel motion, and is given by the kernels 

For a = 0, PO is the identity. The asymptotic wave functions are 

O~(~p~jt) = e 
-iHot + + -P 

fO(P,9) (3.8) 

where HO is the Hamiltonian, Ho = G; + -6. The outgoing wave packets 

are related to - fs 
by the S-matrix 

f; = E&f; a = 0,1,2,3 . (3.9) 

All of the above statements have been given a rigorous proof 

by Faddeev. 
1 To find either the elastic or rearrangement time delays 

we have to calculate the mean position of the outgoing wave packet 

in a cone. The operator gG, whose matrix elements give the separation 

of cluster BY and particle CX is 
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(3.10) 

We denote by C,(?&,X) the cone that is related to .gol. This cone 

is the set of vectors satisfying 

(303-o 

The mean position z&(t) for the state evolving from fi is given 

by the expression 

< xap(t) >c = l (3.=) 
a 

Following the procedure used in Sec. II we shall also need 

in this case our fundamental ansatz is that 

1i.m < y&l >c - < x&(t) >c = 0 . (3.14) 

As in the two-body case, sufficient conditions for the validity of 

this ansatz are that the limit in Eq. (3.5) vanish faster than t -1 0 

We also assume that our wave packet f- satisfies the properties B 
PLP3. A few changes need to be incorporated so that these properties 

apply to the multichannei case. For example, the position z 
B 

Of 
the non-interacting incident wave is given by (2.10) again, with f- 
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replaced by fi. For convenience we will also assume that fi is real. 

It is straightforward to add the terms arising from a complex fi. How- 

ever, the effect of P2 is to argue that 

terms vanish. 

Let us complete the computation of 

sentation (3.7) of O:(t) allows us to 

Thus xi@(t) may be simplified to read 

in the plane wave limit these 

< x,r,(t) Bc. Using repre- 

perform the integrations. 

where 

(3.15) 

(3.16) 

25 We next introduce a reduced s-matrix, defined by 

where E = iz - Xz, E' = $* - This leads then, together with 

Eq. (3.9), to the following representation for 97i(sa,t) 

with G2 
B 

=,.x2+ 
P 

We now use the analogue of Eq. (2.13). 

So we have to calculate the energy derivative of the argument 

& arg T~(;i,,t) = -t + 2 
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We observe that the presence of the factor (i-$Pp/naP$"* in Eq. 

(3~8) does not modif'y the above expression because this factor is 

real and does not alter the phase. Thus we are lead .to 

where Al 
pB 

is the direction of collimation of the incident wave. 

Defining the mean velocity in the cone Ca to be 

we have then 

(3.21) 

< x,,(t) >c = < va >c 
a [ 

t - g- 
a i 

arg < !&I sap(Ei) 1%; >] . (3.22) 

This completes the derivation for elastic and rearrangement scattering. 

The remaining case to be treated is the breakup scattering. The 

final state of three free particles in the center of mass coordinate 

system has five degrees of freedom after energy conservation is taken 

into account. We shall introduce a six dimensional spherical coordinate 

system to describe this final state. Let E be the total center-of- 

mass kinetic energy 

E.z~*+;;*~~ "( m. = (ml zy -s):i = (napa)1'2 (3.23) 

where ml7 m2' m3 are the individual particle masses. Equation (3.23) 

defines a momentum p. that is related only to the kinetic energy. 

In terms of po, the momenta pa and c& are 



(3.24) 

(3.25) 

where the ratio pak may be used to define the angle w . a We shall 

further represent the pair of vectors {$a,?&] by Go. Associated 

with F: 0 

nent is 

is the six dimensional gradient O+ and the radial compo- 

pO 
where ^n 0 is the unit vector in six dimen- 

sions. The canonically conjugate variable to p. is p. which 

is given by the expression 

p. = (2mo)-1~2(2nolx~ f 2paYz11’2 a = 1,2,3 . (3.26) 

This coordinate pO is independent of the Jacobi coordinate system 

chosen. It may also be written 

po = (*mo)-1~2(blr~ + 2m2rz + ~3r~)1’2 (3.27) 

-?. -9 + 

where rlJ r2' r3 are the individual position vector of particle 1, 2, 

3 in the center-of-mass coordinate system. 

The cone restriction in momentum space is now the set 

Co(i\no,h) = c~o;~o~f;o > hP03 O<h<l. - - 

The position operator of p. in the cone has the form 

(3.28) 

(3.29) 

We must calculate the mean position of p. in Co. The ansatz (3.14) 
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means it is sufficient to compute 

f- d6p a+*($ t) L ^n 

< x&(t) >c 
j cO 

00 0' 2 o 'yj; @;GoYt) 

0 = 
0 

/ 
d6polQ;(~o,t) I" ' 

(3.30) 

cO 

The outgoing breakup wave packet may be represented with the help of 

the S-matrix 

(3.31) 

Introducing the reduced breakup s-matrix defined by 29 

< ‘oh&$ ’ = ‘m < $obOp(E) I$; > (3.32) 
m. 0 73 B 

Eq. (3.31) becomes 

where 

pi = [2ng(E + Xz)]112 . 

Inserting Eq. (3.33) into Eq. (3.30) gives the result 

< x,,(t) >c pO 
0 

= < - >c m. 0 ’ B,ISo~(Ei)I~~ > 1 
with the average radial velocity in the cone Co given by 

(3.34) 

(3.35) 

(3.36) 
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It is appropriate to comment here on the generality of these 

results and the method of analysis. Are the ty-pe of results given in 

formulas (3.22) and (3,,35) valid in the four- and N-body problem? 

It is obvious that they are. The two basic ingredients of our deri- 

vation are the convergence of the asymptotic outgoing wave to the 

exact wave given by Eq. (3.5) and the representations (3.18) and (3.33) 

of the asymptotic waves in terms of the channel S-matrices. These 

general features should be a part of any rigorous N-body scattering 

theory. 

IY. GL0EA.L TIME DELAY 

In this section we discuss global time delay in three-body 

scattering. We emphasize the definition of this concept and the 

corresponding solution. The elaborate mathematical analysis needed 

to obtain the solution is found in an earlier paper. 23 Here we shall 

also derive the multichannel equivalent of connection statement (1.8). 

This establishes the mutual interdependence and self-consistency of 

the angular time delay results obtained in Sec. III and the global 

time delay results presented in this section 

Consider the exact three body wave packet w@(t) that evolves 

from the asymptotic wave packet @i(t) given by Eq. (3.1). The 

function @S(t) is defined by Eq. (3.4) and is knowne6 to have the 

form 

tip(t) = emiHtUh-)fg o (4.1) 

In this formula and subsequent ones we drop the superscript - that 

appeared on 
fP 

in Sec. III. The operator U c-1 
B 

is the Moller 
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operator defined in Faddeev's work. The momentum space matrix elements 

of up, < s ,I*;-) 1;; >, give the exact time independent wave f'unc- 

tion solution for a plane wave 'of momentum Gt incident in the@3 
B 

channel. This wave function satisfies the outgoing radiation condition 

in all final channels. 28 The wave functions (-1 up fB and ,(t) are 

both members of the Hilbert space with six momentum or coordinate 

degrees of freedom. 

Let us define a six dimensional sphere in the $ay?a space. 

An invariant radial distance, po, is specified by Eq. (3.26). Thus 

for any function f(;T,$) we can define a projection operator onto the 

sphere of radius R by 

(4.2) 
= 0 po’R. 

The matrix element (*$t), 8R)@&t) > g ives the probability that the 

state ti (t) is inside the sphere at time t. 
B 

The integral 

* ,?O 

,i -to 
@&t), @(R)@p(t) )dt (4.3) 

has the meaning of the fraction of time between -to and to that 

the state @ 
B 

spends inside the sphere. At this stage we refrain 

from letting to + a, since it is likely that (4.3) will be infinite. 

If we write down the same quantity for the asymptotic solutions 

in the absence of the intercluster potentials, we have the integral 

/to (@&t),~(R)@&t))dt . 
f-to 

(4.4) 
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The difference of these two integrals in the compound limit as to + co 

followed by R + m defines our time delay for channel B. For each 

value of 0 and incident wave packet f 
B 

a related time delay is 

defined. 

We now must develop a technique which allows us to compute these 

time delays. We do this by embedding this problem in a larger mathe- 

matical problem. In this larger problem we find a natural hermitian 

operator that is related to the time delay defined above. The larger 

problem is suggested by treating the matrix elements as though they 

were transition probabilities rather than observable amplitudes. For 

example, related to the integral in (4.4) one writes 

(4.35) 

where L$ is the two-body lk i e channel projection operator that is 

given by the kernel 

When ~2 = p and f,$ = fB, then 'I$(R,to) is equal to the integral 

(4.4). For the case of the interacting waves one has the quantity 

T$(R,tO), 

$$(R,to) = 
i 

t0 -ii? t 
(f&e ' fg)dt . (4.7) 

-tO 

This quantity is equal to the integral (4.3) when a = p and f& = fs. 

Thus computing the difference TtP(R,to) - TF,&R,to) will solve the 
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global time delay problem. We denote this difference by 

(f;,QaB(btO)fS) l 
The operator notation for QaB(R,to) is justified 

since the difference &(R,to) - $& R,tO) is a bilinear function 

of f* a and f 
B' 

So we get for the operator form of QaP(R,tO), 

eiEat[~~-)~(,),o) _ 6 
-iH" t 

Qa,(",to) = B a 8 R)le ' dt . (4.8) 

We then define Q 
w 

as the weak limit 

GB = lirn 
R-SW 

Em Q&,to) l 

t +w 

0 

(4.9) 

The operator 
(+@ 

has a number of properties closely related to the 

three-body S-matrix, viz. 

(4.10) 

The first property means %3 
is diagonal in energy, the second 

property is closely related to the unitarity of the S-matrix. Because 

of the first property one may introduce the diagonal representation 

The solution of the global time delay problem found in Ref. 25 is then 

(4.12) 

Our discussion above means that we interpret only b(E) as 

being related to observable time delays. Naturally, because of property 
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(4.10) all diagonal inner products of b(E) are real--as they must 

be for an observable. The matrix elements of %&E) are, however, 

complex and as far as we are aware not related to any observable 

phenomena. The only calculation these matrix elements could enter 

would be in computing the expectation value of 
SP 

for an initial 

state that is a coherent superposition of several incoming asymptotic 

channel wave functions. Although it is easy to write down such a 

state mathematicalIly, we cannot see how such an initial state could 

be prepared in a scattering experiment. 

We investigate now the connection between global and angular 

time delay. As we have shown in formulas (3.22) and (3.35)' the 

angular time delay may be written 

< &l+#) 1"; ' = & arg < $alsap(E)I$b >, a = 0,1,2,3 B > 0 (4.13) 

For the elastic 

strated only in 

scattering channel, APB(E) Y this formula is demon- 

the nonforward direction The integral form 

of the global time delay Eq, (4.X?) is 

< E&@E) 18, > = -i dj?; < ijjlsrpW I^PB >* 2 < +,,(E) IS, > . 
(4.14) 

Since the matrix element on the left is real, we may take the real 

part of Eq. (4.14) without altering the left-hand element. So we 

have (cf., Eq. (1.8)) 
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This statement has an obvious physical interpretation. The global 

time delay for an exact scattering state specified by a plane wave 

of energy E and incident direction ^p 
B 

is seen to,be the super- 

position of the angular time delays summed over all open channels 

and integrated over all directions. The weighting coefficient of 

the angular time delay is just the probability of that scattering-- 

i.e., the modulus of the s-matrix squared. 

A second form of this connection statement may be set up. We 

may introduce into Eq. (4.15) the differential channel cross-sections. 

Let us break up the right-hand side of Eq. (4.15) into two sets of 

terms. The first will contain the elastic term sBB(E), the second 

set will have all the remaining inelastic terms. These two cases 

are essentially different because the elastic scattered wave may 

interfere with itself in the forward direction, but the inelastic 

channels cannot have this feature. Consider the 7 f p terms first. 

The differential cross sections may be written in terms of the reduced 

s-matrices as3O 

d”rf3@;’ = (27r)2 -TJ-- I< :;b,,(E) IB, >I2 7 = 0,1,*,3, Y f f3 . (4.16) 
&; pB 

Thus all the nondiagonal terms have the form 

(4.17) 

In order to find the diagonal matrix element let us employ the scattering 

amplitude, f&E,f$), defined by 
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(4.18) 

(4.19) 

where -7% is the on-shell elastic amplitude defined by Faddeev. 

Using these last two equations to evaluate the elastic term in Eq. 

(4.15)' gives the expression 

&& Re[psfg(E,$B)] + 1 * 
do (^p’> 

" ' & arg fB(E,^pi). (4.20) 
d?; 

Thus, altogether we are led to 

< zplqss(E) I?@ > = & & Re[pgfs(E,$P)] 

(4.21) 

In this version of the connection statement the angular time delay is 

weighted by the differential cross section rather than the square modulus 

of the s-matrix. We note that the first term on the right accounts 

for the interference in the forward direction between the scattered 

and unscattered wave. For the two-body case one may restate the 

connection formula (1.8) in a fashion parallel to that of Eq. (4.21). 

This has been done by Nussenzveig. 
10 The result is just the first 

two terms on the right of Eq. (4.21)' with all the channel labels 

removed. 
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We shall close this paper with a discussion of the observable 

effects of the theory presented here. The entire treatment of angular 

time delay has been set up so that it can be directly related to 

scattering observed by counters. There are, in our opinion, three 

distinct difficulties which need be overcome before such a measure- 

ment could be practical. We shall comment on each of these in their 

order of severity. All these difficulties occur both in the two and 

three-body problem, so we shall confine this discussion to the simpler 

two-body case. The first problem is the presence of the wave packet 

structure term -& arg F(p) in formula (2.20). If this term is 

unknown, then in a single scattering observation, one could never 
a 

obtain a determination of z arg < ^pis(~)l^p~ > more accurately 

than 2 arg F(p). It seems likely that in an ensemble of similar 

plane wave-like packets the function & arg F(p) is random in sign. 

Thus, in the average of many observations the effect of & arg F(p) 

will average to zero. The next problem is the limitation on obser- 

vation accuracy imposed by the uncertainty principle. Neglecting 

arg F(p) in (2.20) then 

& arg < j\Pjs(Ei)jhpi > = t - 
< x(t) >c 

,' <v>, l 

(4.22) 
I b 

The physical meaning of < x(t) >C, < v >C is the average value of 

position and velocity in the scattered wave packet. Assume for the 

moment that t is known. If one observes the position and the velocity 

for a large collection of identical wave packets, then the average of 

the observations converge to < x(t) >C and < v >C. For this reason, 

the uncertainty principle governing F and 7 will not limit accuracy 
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to which < x(t) >C/< v >C can be determined. The principal difficulty 

concerns determining t. Property P3 defines t as the elapsed time 

since the moment when the free asymptotic incident wave packet is at 
--L 
x = 0. How one could even in principle determine this is not clear 

to us. Another way of stating this problem is to say that we do not 

know where the point g= 0 is. 

There is one example of observed time-delay phenomena where the 

problems above are overcome. This is the observation of compound nuclear 

resonant lifetimes using crystal blocking techniques. These techniques 

succeed in measuring nuclear reaction times in the range 10 -16 - l(y18 

seconds. The theoretical study of time delay for a scattering in a 

crystal has been carried out by Yoshida 31. and Yazaki and Yoshida. 32 

The general structure of the crystal blocking problem is quite different 

than that studied here since the formalism must be appropriate to the 

compound nuclear resonance model of scattering and the effects of the 

crystal medium must be explicitly taken into account. The underlying 

feature of this type of scattering that makes the observations feasible 

is that one knows the location of the scattering site, and the crystal 

provides, through the channel mechanism, a precise measure of the 

distance traveled by the scattered wave. 

We believe the significant observable effects of the time delay 

theory studied here will come about through indirect mechanisms. The 

best understood of these is the spectral property given by Eq. (1.9). 

For example, it is well-known that the second virial coefficient for 

a gas of interacting quantum particles has an integral representation 

involving the trace of the global time delay. 10 This result can be 
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derived as an immediate consequence of the spectral property. Another 

consequence of the spectral property is that it implies the Levinson's 

theorem.14 It is reasonable to expect that similar predictions can 

be obtained from the three and N-body global time-delay theory. 
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In this Appendix we provide a brief discussion of the convergence 

features of our fundamental ansatz, Eq. (2.8). Consider the quantities 

N&t) = (V+(t), -%n^ T’+(t)),, N2(t) = (q(t), %n^ t*(t)), 
(A-1) 

where all the functions are those defined in Sec. II. The subscript 

C on the inner product indicates a restricted domain of integration 

given by the cone C($,h). The function Dl(t) is a constant and 

D2(t) converges to Dl(t) by Eq. (2.3). With this notation the 

ansatz reads 

< x(t) >C - < xf(t) >C + 0 as t-,-w (A.21 

where 

< x(t) >c = N2(t)/D2(t), < xf(t) >c = Nl(t)/Dl(t) . (A-3) 

Since Dl(t) and D2(t) converge to constants we can state the 

convergence problem without loss of generality as proving that 

= N1(D2 - Dl) + D1(N1 - N2) (A-4) 

vanishes for t --f spa. We will investigate this convergence under 

reasonable physical assumptions. First we note that the results of 

Sec. II imply that 

11 'zn^ T+(t& < Alt (A.51 

with Al some positive constant and t sufficiently large. We also 
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expect a similar result holds for the wave W) - So we make the 

assumption that for sufficiently large t 

11 Gf; +(t)ll, < A2t A2>o. (A-6) 

Inspecting relation (A.4) we see that the term with D2 - Dl is 

multiplied by N (t) 1 which has the behavior A3t, A3 > 0. Let 

A(t) = v+(t) - 4(t) (A-7) 

be the difference between the free outgoing wave and the exact one. 

Then we have 

s(t) = IlA(t>II 2 b(t)ll, > h(t)Ii, - I 

The first term in Eq. (A.&) has the estimate 

h-&D2 - Dl) 1 5 A3t(@l + fi@@) l 

Clearly, if 

F(t) -==c 60t-1-E, E > 0, E. = const > 0 

(A.8) 

(A-9) 

(A.lO) 

then 

1J5(D2 - D,)I rA3Eo(fil + fi2)t-e + 0, t -+w . (A.ll) 

We still have to consider the second term in Eq. (A.4). From the 

definitions (A.l) we are lead to 
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lNl(t) - N2(t)] = ](A(t), GfiA(t)), - 2 Re(LI(t),ge 6+(t))C 1 

5 b(t)lic~l’ ?Z A(t)li, + 211-2% .v+(t)ii,] 

< w [II - sn^ iir(t)llc + 311. 

(A-=) 

< 6(t)(A2 f 3Al)t + 0 as t 303 . 

So again the estimate (A.lO) is strong enough to show the second term 

vanishes. 

Our conclusion is that if the reasonable assumption (A.6) is 

valid, then the rate of convergence (A.10) is sufficient to prove our 

ansatz (A.2). 
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