
sLAc PUB- 1628

August 1975

AN -ATION 0~ PASCAL SETS 0N THE IBM 3603~

Loretta R. Guarino**

Stanford Linear Accelerator Center
Stanford, California

August 1975

ABSTRACT

An implementation of the powerset data type of the programming

language PASCAL in a compiler for the IBM System 360/370, is described.

Design decisions such as the choice of a bitstring representation and

restrictions on the size of sets are discussed. The solutions to pro-

blems arising from the one-pass organization of the compiler and the

System/360 machine architecture are presented.

(Submitted to Communications of the ACM)

*Work supported by U.S. Energy Research and Development Administration
under contract E(Oh-3)515

**Current address is Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania 15213

INDEX TERMS

sets

powersets

PASCAL

’

bitstring

data structures

compiler design

C.R. Categories: 4.12, 4.22

I

1. Introduction

The programming language PASCAL (6) was designed with a rich set of

data and program structuring facilities. Since the design goals of

PASCAL included portability, implementers are given freedom and flexi-

bility in implementing language features within the rigorous definition

of the language. (3)

This paper describes the implementation of sets, a PASCAL data type,

in a compiler for the IBM 360 and 370 computers. The flexibility in the

language definition allows the implementation to reflect System/360 ma-

chine characteristics, although certain implementation decisions are di-

rected by the language definition. Specifically, the choice of a bit-

string representation for sets is influenced by the set operations in-

cluded in the language.

The compiler for which sets were implemented is described in Section

2, and PASCAL sets are defined in Section 3. The actual implementation

decisions are discussed in Section 4: the choice of data structure, imple-

mentation restrictions on sets, and the implementation of set operators.

Section 5 discusses problems resulting from these decisions and presents

possible solutions to those problems. Steps taken to improve the effi-

ciency of the implementation are described in Section 6, and other opti-

mization suggestions for sets are included.

2. Compiler

The compiler for which sets were implemented is a modification of the

January 1972 version of the PASCAL/6600 compiler. It was bootstrapped to

System/360 by graduate students in the Stanford University Computer Science

Department!5) Some of the features of the full language were omitted since

they were not necessary for the completion of the bootstrap.

-l-

The powerset data type is one of the features which was omitted from

the bootstrapped compiler. The implementation of powersets, described

in this paper, is part of a project to extend the compiler to the full

language.

The compiler is written in PASCAL. It is a one-pass compiler, and

uses recursive descent. These two features of the compiler caused many

of the difficulties in implementing sets, but they also make the compiler

easy to understand and modify. The basic structure of the compiler is

described by Wirth, (71 and the modifications made during the bootstrap

are described by Russell and Sue. (5)

3. PASCAL Set Definition

A PASCAL set data type is defined by Wirth (3) as

type T = set of To --

where T o is a subrange of integers, a subrange of characters,or a user-

defined scalar type. PASCAL allows the number of elements in the base

type To to be limited to some implementation-dependent maximum. Sets of

more complex items, such as sets of real numbers and sets of sets, are

not allowed.

Sets are built from their elements by means of set constructors which

enumerate the set elements. For example, [0,6, 10..20] and ['A'..'Z'] are

set constructors. The empty set is denoted by [1.

The primitive binary operations on sets are union, intersection, and

difference, represented by +, *, and - respectively. The relational

operators applicable to sets are equality and inequality (=, < >), set

inclusion (< =, 1 =), and a test for membership (e.g., i in A, where i is -

an element of the base type of A).

As an example and for purposes of future reference, several set types

-2-

and variables are defined here.

type ALPHANUM = set of CHAR; --

MONTHS = set 0f (JAN,FEB,MARCH,APRIL,MAY,JUNE,JULY, --
AU@JST,SEPl?,OCT,NOV,DEC).

SUMMER = set of MAY . . SEPT; --

S = set of 0 . . 100; --

var LETTERS,DIGITS : ALPHANUM;

A,B,C : S;

VACATIONl, VACATION2 : SUMMER;

SCHOOLYEAR : MONTHS;

FARSET : set of 2000 . . 2003;

NEGSET : -50 . . 50;

LETTERS : = ['A' . . 'Z'];

DIGITS : = ['O' . . '(y-j;

VACATION1 : = [MAY . . AUGUST];

VACATION2 : = [JUNE . . SEPT];

4. Implementation

4.1 Choice of Bitstring Representation

Aho, Hopcroft and Ullman (1) and Low(') present a variety of

data structures for representing sets. These include hash tables,

binary search trees, 2-3 trees, linked lists and bitstrings. An

appropriate choice of powerset representation depends upon the set

operations to be performed and on assumptions about the size and

characteristics of the underlying set. Because of the operations

defined for the language and the restriction of the underlying set

to scalar types and integer and character subranges, the bitstring

representation was chosen for PASCAL sets.

- 3 -

These restrictions on the base type of a set permit a simple

mapping between the elements of a set and some non-negative range

of integers. For instance, in the scalar type

COLOR = (RED,BLUE,YEILOW)

RED would be represented by 0, BLUE by 1, and YELLOW by

the presence of an element in a powerset is represented

the corresponding bit position of the bitstring. It is

2. Hence,

by a 1 in

not necessary

to retain any further information about the type or element at run-

time. Hoare(2) discusses the advantages of this representation at

length, and Wirth adopted it in the CDC 6000 PASCAL compiler. (7)

The choice of the bitstring representation seems to have in-

fluenced the choice of set operations defined for PASCAL. The PAS-

CAL primitives union, intersection, set difference and test for

membership can be implemented by one or two machine instructions

with the bitstring representation. Some or all of these operations

would be more awkward with the alternate data structures. With

lists or trees, testing for membership involves searching. Taking

the union of two sets represented as hash tables would require

hashing the elements of one table into the other. However, operations

such as iterating through the elements of a set, or the FIND operation

of Aho, Hopcroft and Ullman, (1) which might be more appropriate for

the other data structures, have been omitted from the set of PASCAL

primitives.

4.2 Size Restrictions

Wirth(7) suggests an efficient implementation of powersets as

a bitstring by restricting the number of elements in the underlying

base set to the number of bits in a computer word. This may be

-4-

tolerable on the CDC 6000 series family of computers with its 60-

bit word size. Even then, the 60 element limitation precludes

powersets of the entire 64 character character set, which would be

very useful for lexical scanners. The 32-bit word of the IBM

System/360 series of computers is too small to make sets very useful

if the set representation is limited to one word.

Using a 64-bit doubleword instead of a single word would

approximate the 60-bit sets of the CDC machine. However, this in-

herits the limitations of small size while losing the efficiency

advantages of fitting a complete set into a register. Furthermore,

character sets would require

character code ranges from 0

to 63.

a special mapping, since the EBCDIC

to 255 instead of BCD's range from 0

Since the efficiency of single word sets is to be. lost, it

seems desirable to ease the restriction on set size as much as

possible. The 360 storage-to-storage instructions allow operations,

such as logical AND and logical OR on bitstrings in memory having

lengths up to 256 8-bit bytes (2048 bits), which can be used to im-

plement intersection and union. In accordance with Hoare's recom-

mendation(2) that basic operations be executable by single machine

instructions, 2048 elements is the upper limit on set size for this

implementation.

The maximum number of elements in a set type is known at the

time of type declaration. All set variables of a given type are

allocated the same amount of space. Set variables of different

types may have different sizes since set operations are allowed only

on sets of the same type.

-5-

4.3 Implementation of Operations and Set Construction

In the two-address instruction format of a System/360 stor-

age-to-storage instruction, the first operand address is also used

as the address of the result. Hence, temporary'work areas must be

used to avoid destroying the operand. Since operands must be of

the same type, they will always be of the same length, and no

padding or alignment is needed.

The union operation A + B is implemented by moving the first

operand A to a temporary location and performing a logical OR of

the bitstrings. The intersection operation A * B is implemented

similarly, executing a logical AND instead of a logical OR. The

set difference A - B is implemented by moving the first operand A

to a temporary location , performing an EXCLUSIVE-OR between the

temporary bitstring and B, then performing a locigal AND with that

result and A.

The System/360 Compare Logical Character instruction compares

two bitstrings in memory and indicates whether or not they are

identical. This is used for testing equality and inequality. Set

inclusion, A < = B, tests whether A is a subset of B. This is im-

plemented by moving A to a temporary location, performing a logical

AND with B, and comparing the result with A. If they are identical,

then A is a subset of B.

Inefficiencies of the PASCAL/360 code generator in the

handling of logical conditions affect the implementation of the test

for membership, I in A. The test is presently accomplished by in-

serting the byte containing the Ith bit of A into a register, shifting

that bit into the low order position, and masking out the rest of the

-6-

word. When the compiler's logical condition handling is improved,

it will be possible to use the Test Under Mask instruction to test

for the presence of the bit in a single instruction.

A set is constructed by setting the bitstring to zero and

inserting each element into the bitstring. If the value of the

element is known at compile time, a single OR-IMMEDIATE instruction

will insert the element into the bitstring. If the element is a

variable, a byte address is calculated and then the proper bit mask

is inserted into the OR-IMMEDIATE instruction at run-time by means

of an EXECUTE instruction.

5. Problems of Generalization

Originally, we hoped to make sets even more general by permitting a

set type to span any range containing no more than 2048 elements. This

would allow sets containing negative as well as positive elements. Hence,

the set type

XYZ = set of -1000 . . 1000

would be allowable, since the base type contains only 2001 elements.

However, the one-pass, recursive descent organization of the compiler

forced limitations on the handling of sets.

When the compiler encounters a set constructor, code is generated to

construct the set in a temporary location. If all sets were of a stan-

dard size, a standard amount of space could be allocated for the temporary

set. However, since different set types require different amounts of

space, information about the set type is needed immediately. Unfortunately,

the PASCAL definition does not always provide this information. Even the

type of the elements is not sufficient to determine the size of the set,

since the base type of the powerset may be a subrange of the element type.

-7-

For instance, if the set constructor [JULY] is encountered, it could be

a set of type MONTH or of type SUMMER. These types require different

amounts of space, but there i, c: no indication from the set constructor

itself as to the type of the set.

This lack of type information causes other problems in constructing

sets. Even if a default of 256 bytes (the maximum set size possible) is

allotted for the temporary set, without set type information there is no

way to determine the smallest element of the set type. For example, the

set [2,6] might be assigned to the variables A or NEGSET as defined in

Section 3. The set would have different representations in these two

instances. If the set were assigned to A, the element 2 would be the

third bit in the bitstring, but

ment 2 would be the fifty-third

The problem illustrated by

if it were assigned to ?XEGSET, the ele-

bit.

the above example is handled by allo-

cating space and constructing sets as if the first element were either

the integer 0 or the first element of the scalar base type. For instance,

the set constructor [2,6] would be constructed as if it were of type 'set

of 0 . . 2047", and [JULY] as if it were of type MONTH. This restricts

sets to integer subrange within the range [0,2047] and to scalar types

of no more than 2048 elements. It also implies that small sets require

an unexpectedly large amount of space if their elements occur in the

upper end of this range. Thus, the set variable FARSET, defined in

Section 3, requires 2004 bits rather than the 4 bits which one might

expect.

There are some advantages to this representation. Despite the po-

tential waste of space which this implementation requires, reasonably

large sets are supported while staying within the PASCAL syntax. The

-8-

unnecessary additional length of some sets will slow down some set

operations slightly. However, this overhead is considerably smaller

than that required for a more general scheme which minimizes the bit-

string length by maintaining a header containing the'set length and its

smallest element with the set representation at run-time. Such a scheme

would require adjustments and recalculations of these items with each

set operation, since this information may not be known until run-time.

The problems resulting from lack of type information could be solved

easily if the compiler were not one-pass. An initial pass could deduce

the necessary type information for the set constructor from its context.

It might even determine that a set had no specific type and could be con-

structed using as little space as necessary. One such example is the

expression

if 5 in [2,3, 101,

which always evaluates to FALSE. A one-pass compiler might realize that

it could evaluate such expressions at compile time and optimize other ex-

pressions involving set constructors. For instance, it might compile

A + [l,lO] by issuing code to insert the elements 1 and 10 into A instead

of constructing the set [l,lO] and taking the union of the two sets.

Low(lc) mentions other such optimizations. However, the one-pass con-

straint makes these optimizations difficult to implement.

A change to the PASCAL set syntax would also solve these problems

neatly. Hoare's set examples (2) show type names preceding the set con-

structors. This procedure forces the user to state specifically what

type of set he is using. In particular, it distinguishes between what

are now lexically identical sets of two different types with overlapping

ranges. Hence, the set [JULY] would become either MOJ!KCHS[JULY] or

SUMMER[JULY], depending upon its use.

- 9 -

With this change, the necessary set type information would be

available before the construction of the set is started. The size of

the set and the value of its smallest element would be available from

the symbol table, and a bitstring representation minimizing space use

is easily implemented. This solution to the set representation problem

was not adopted because it does not adhere to the PASCAL language defin-

ition. It was deemed more important to remain consistent with the stand-

ard language than to implement the most general and efficient repre-

sentation of sets in a compiler which must already sacrifice some

efficiency to its one-pass structure.

6. Optimization

Two global variables, SETTYPIR and SETTEMP, were introduced in the

compiler to optimize space usage. SETTEMP is a Boolean variable, and

SETTYPTR is a pointer into the symbol table, used to reference a symbol

table type entry.

SETTYBTR retains set type information gathered from the context for

a statement or expression. This information can then be used if a set

constructor is encountered. Since type compatibility is required, the

size of the set to be constructed can be determined from the symbol table

entry referenced by SETTYPI'R. This can produce considerable savings in

space since most set types will be substantially smaller than the default

of 256 bytes.

For example, in the statement

VACATION1 = [JUNE,JULY]

the set constructed by [JUNE,JULY] must be of the same type as VACATIONl.

The recursive descent technique hides this type of information until

after the set has been constructed and the actual assignment is to be

- 10 -

processed. Whenever the left-hand side of an assignment statement is a

set, SETTYBTR is assigned the symbol table entry for the type of set.

This type information can then be used in compiling the expression on

the right-hand side of the statement.

The type of a set constructor can often be determined from the con-

text when the set constructor is an operand of a set operation. For in-

stance, in the expression

A + [WI

the set [O,l] must be of the same type as A. However, care is needed in

determining set types from expressions. In the expression

D ((SCHOOLYEAR = [SEBT..DEC]) v (I in [l..loo]))

it would be disastrous to assume that [l..lOO] is of the same type as

SCHOOLYEAR, as might happen with a casual approach to setting the global

variable SETTYPIR. SETTYITR must always be reset to the null pointerwhen

its range of validity terminates. Thus, in the above example, SETTYPIR

must be set to NIL after the Boolean expression (SCHOOLYEAR = [SEFI!..DEC])

has been compiled.

The Boolean variable SETTEMP indicates whether or not a temporary

work areas has been used in the set expression being compiled. Because

of the two-address instruction format of System/360 storage-to-storage

instructions, a temporary area must be allocated for set expressions to

avoid destroying the value of the operand variables. However, once an

intermediate result has been generated in this temporary area, additional

set operations can use the same work area.

For example, consider the statement

C:=A*B+C;

the set A is moved to a temporary work area so that the intersection of

- 11 -

A and B can be taken without destroying A or B. The result is left in

the temporary area. The standard implementation of the union operation

would then move this intermediate result to another work area before

taking its union with C. However, the intermediate result will not be

needed again so there is no need to move it to avoid destroying it.

SETTEMP would indicate that the first operand need not be saved after

the set operation. The union of the intermediate result and C would be

left in the same temporary area, and this result is assigned by moving

the contents of the temporary area to the storage area assigned to C.

SETTEMP is set to TRUE whenever a temporary set variable is gen-

erated, and is reset to FALSE when an expression has been completed. As

with SETTYPTR, care must be taken that this global variable is rese after

leaving its range of validity. When large sets are used in complex ex-

pressions, however, substantial savings can be made in time and space

through the use of SETTEMP.

Since the compiler is one-pass, global optimizations cannot even be

attempted. This lack of global optimization leads to some extremely in-

efficient situations. For example, consider the loop

WHILE CH IN ['A' . . 'Z'] DC

BEGIl Sl ; S2 ; . . SN END;

The compiler produces code to construct the set ['A' . . 'Z'] in the

middle of the loop exit test. Hence each time through the loop, the set

is reconstructed, requiring approximately 40 instructions. In this in-

stance, the set should be constructed outside the loop and stored in a

variable.

Another desirable global optimization would be to recognize constant

sets and construct them at compile time. PASCAL presently has a facility

- 12 -

for declaring constant scalar types. Extending this facility to sets

(and possibly other structured types) would assist the compiler in this

optimization.

7. Future Work

Unit sets (2,P.l24) containing only one element should be recognized

and handled separately in most cases. For instance, in the expression

A + [1-33

great savings of time and space could be accomplished by simply inserting

the element 13 into the set A instead of constructing a set containing

only the element 13 and forming the union of this set and the set A.

The sets could be recognized and handled separately without too much

difficulty, even within the one-pass recursive descent format of the

compiler.

If a set type contains no more than 32 elements, the efficient

word-oriented implementation suggested by Wirth can be used. These sets '

will fit into a System/360 machine register, and the faster register-to-

register instructions would be used.

For sparse sets with exceedingly large underlying base types, the

bitstring representation is impractical. An alternate representation

for such sets could be provided if PASCAL allowed a SPARSE attribute for

set variables, similar to the PACKED attribute for records. Explicit

conversion routines similar to PACK and UNPACK or implicit conversion

would be necessary for set operations between SPARSE sets and regular

sets of the same type.

8. Conclusion

The PASCAL language definition is flexible enough to allow the im-

plementor to determine an efficient implementation of a language feature

such as sets. However, Wirth may have compromised the portability of

- 43 -

PASCAL by reflecting the CIX 6000 series machine structure in the PASCAL

language definition. The modifications to the language definition

suggested in this paper were not included in the original definition

because the CIX! implementation did not require them,'although they are

necessary for a more general set implementation.

This implementation of sets also points out the limitations of a

one-pass compiler. Most of the problems encountered are aggravated by

the need to generate code before sufficient information about a set is

available. If efficiency is an extremely important design goal, an

initial pass is necessary to gather the necessary type information and

attempt some global optimization.

ACKNOWIEDGMENTS

I would like to thank Professor Forest Baskett, V. Bruce Hunt,

and Charles T. Zahn, Jr., for their stimulating discussions

and valuable suggestions. In addition, I would like to thank

Jon Bentley and John Ehrman for their encouragement and help-

ful comments on this manuscript.

I

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

REFERENCES

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading,

Mass. 1974.

Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured Pro-

gramming, Academic Press, London and New York, 1972.

Hoare, C.A.R., and Wirth, N. An asiomatic definition of the

programming language PASCAL, Acta Informatica, 2 (1973),

335-355.

Low, J.R. Automatic coding: choice of data structures, Stanford

Computer Science Report CS-452, Stanford (August 1974).

Russell, D.L, and Sue, J.Y. Stanford PASCAL 1360 Implementation

Guide, Technical Memo 89, Stanford Linear Accelerator Center,

Stanford (November 1974).

Wirth, N. The programming language PASCAL, Acta Informatica, 1,

(1971), 35-63.

Wirth, N. The design of a PASCAL compiler, Software-Practice and

Experience, 1, (1970, 309-333.

Wirth, N. The programming language PASCAL (revised report).

Berichte der Fachgruppe Computer-Wissenschaften, Eidgenossische

Technische Tlochschule, Zurich (December 1973).

