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ABSTRACT 

As a simple model of a supernova explosion we study a point mass 

exploding into two equal point masses moving back to back at high 

velocity, or a superposition of such elementary explosions. We employ 

two calculational methods. In one method we assume an infinite accel- 

eration for zero time and calculate the gravitational field and the distri- 

bution of emitted energy. A cutoff frequency in the power spectrum is 

necessary to obtain a finite total energy output. The spectrum is 

constant from zero to this cutoff frequency. For nonrelativistic ejecta 

velocities the angular distribution is typical of quadrupole radiation, 

while for ultra relativistic ejecta it is isotropic. To justify the infinite 

acceleration approximation we also calculate with the quadrupole approx- 

imation, using a smooth finite acceleration, and verify the previous 

qualitative results in the nonrelativistic limit. A brief table of fields, 

energies, and fluxes is given for some reasonable supernova parameters. 
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I. INTRODUCTION 

Gravitational radiation is of intrinsic interest since it is one of the few 

qualitatively novel predictions of general relativity theory,’ having no classical 

analogue; moreover the specific nature of such radiation could, in principle, 

distinguish between conventional general relativity and such variations as the 

scalar-tensor theory of Brans and Dicke. l-3 On the other hand, if we assume 

the correctness of general relativity theory, gravitational radiation presents an 

observational window for astronomy which can provide new information on highly 

energetic astrophysical phenomena such as supernova explosions or quasars. 

The general subject of gravitational radiation astronomy has been discussed by 

a number of authors, e. g., Thorne and Press, 4 Ruffini and Wheeler, 5 Misner , 
3 Thorne, and Wheeler, and Weber. 6 

In this paper we will study in detail the gravitational radiation from a very 

simple model of a supernova: a point mass exploding into two equal point masses 

moving apart at high velocity. Such a model recommends itself for its simplicity, 

and should provide a reasonable description of some types of supernova explo- 

sions as evidenced for example by the asymmetric ejecta in the crab nebula; a 

superposition of such explosions should provide an even better description. Our 

model clearly ignores details such as the implosion preceding the ejection of 

material, and all effects of rotation. Rotational effects might be expected to 

give interesting structure to the frequency spectrum, e.g., peaks at character- 

istic frequencies. We also ignore radiation from the remnants of the supernova, 

for example from stellar fragments in short period orbits, or rapidly rotating 

eccentric young neutron stars; these have been discussed, for example, by 

Ruffini and Wheeler. 5 
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We calculate the gravitational radiation in two complementary ways. First, 

using a method of Weinberg, 1 we assume the acceleration is infinite and of zero 

duration. For this highly idealized situation we find the gravitational radiation 

field and the distribution of energy in frequency and angle; the field has a theta 

function time dependence, and the energy distribution is independent of frequency. 

A frequency cutoff is thus necessary to achieve a finite total energy. The angular 

distribution of energy for nonrelativistic ejecta is the typical sin4 Q of quadru- 

pole radiation. This calculation however is valid for arbitrary velocities of 

ejecta and would be applicable to a supernova explosion in which a large mass of 

high energy protons and electrons is emitted. For ultra relativistic ejecta the 

gravitational radiation is isotropic. 

The calculation with infinite acceleration contains the implicit assumption 

of an infinite stress energy tensor, which is contrary to the basic idea of 

linearized general relativity theory. We thus verify our results for the non- 

relativistic limit by studying finitely accelerated ejecta in the quadrupole approxi- 

mation. 6 For this purpose we choose an arbitrary convenient smooth function 

to describe the ejecta motion during explosion. The results are of course finite 

with no cutoff required. We find that the net change in the radiation field is the 

same as with the previous calculation, the power spectrum is very similar, and 

the physical significance of the cutoff frequency is made explicit. ’ 

Finally we discuss and present a short numerical table of fields, energies, 

and fluxes for some reasonable supernova parameters. These values are in 

substantial agreement with previous estimates. 4 

Our purpose in this work is two-fold: (1) we display in some detail the 

qualitative nature of radiation expected from actual supernovas-properties 

such as time dependence and power spectrum; (2) we verify the applicability of 
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the infinite acceleration approximation, which is very convenient but whose 

basic physical assumption may be considered suspect, as noted above. 1 

Many of our conclusions have been obtained previously. 3,4,5 The novel 

features, we believe, are: (1) 0 ur results are valid for arbitrary ejecta 

velocity, e. g. , the radiation is isotropic for ultra relativistic ejecta. (2) The 

infinite acceleration method employed is demonstrated to be applicable, at 

least in the nonrelativistic limit. (3) The time structure of the energy emission 

is displayed, and for the motion we have studied is seen to contain several 

pulses. 
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11. INFINITE ACCELERATION 

We first review briefly the solution of the standard equations of linearized 

general relativity theory as discussed in detail by numerous authors. 1,396 The 

perturbation of the metric, h 
PV ’ 

is given in terms of the energy-momentum 

tensor T by 
CLV 

s v(?;l, tr, 
hPv(‘;;’ t) = 4G / P 

I%T;;*r 
d3x’ . S&z, t) = TPv(;, t) - ;nPv T,“(‘;I t) (2.1) 

Here G is the gravitational constant, tt= t - I? -2 I is the retarded time, 17 
PV 

is the Lore&z metric with signature (+, -, -, -), and we have set the velocity of 

light c=l. Asymptotically far from the source the solution becomes 

h,,(;,t) =F / SpvOG4 e -iwtt-r) dw + ,-.. c. 
(2.2) 

where 2r = IFI, k= w??, SPv @,,w ) is the Fourier transform of SPv (2, t), defined 

explicitly by 

spv (z,t) = Im dw 1 + SPv@,,w) ewiwt + c. c. 
0 (270 

(2.3) 

In a small volume of the asymptotic region the field h 
PV 

approximates a plane 

wave. If the propagation direction is taken as the z axis it can be shown that 

all the components of h 
IJV 

except hll= -h22 and h12 = h21 can be made zero by a 

coordinate transformation, which leaves hll and h12 unchanged. 2 This may 

also be interpreted as a gauge transformation, i. e., we use the traceless trans- 

verse gauge. 193 Accordingly we need only calculate Sll and S12 to find the 

radiation field. 

As in Ref. 1 we now consider a system of freely moving point particles 

with four-momenta pip, energies Ei, and three-velocities Ti, which change 
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abruptly at t = 0 to corresponding primed quantities ; the energy-momentum 

tensor for this system of infinitely accelerated particles is 

Pl-lP v 
TCIV (r;-,t) = c 

i 
iE i 

i 
ag(x’-G$) e (-t) + 63(iiyt)e(t) 1 

The Fourier transform S is then 
FLV 

SPV(&q = 
pPpv-&9PVm2 

i -2?+--- - 
ppp v-+~‘Pvm2 

i i i 
2niEi(w-5 o gie) 2niE;(w-3 . i&e ) 1 

(2.4) 

(2.5) 

which leads to the radiation field 

prPp,V . . CLV m,2 -+q . 
0(r-t) + ’ ’ E;(I-vf cos 0;) ’ @(t-r) 1 

P-6) 

where v. = IT I and 8 i is the angle between 3 and c the wave direction. Note 1 
that the field changes abruptly, and that the metric before and after the radia- 

tion pulse is constant. A transformation can of course make the perturbation 

zero before the pulse so only the change in h 
PV 

is physically significant. 

Using the standard expression for the energy density of the radiation 

field” 3 we can then obtain the distribution of emitted energy in frequency and 

angle 

dE 
dS-&do 

= 2Gw2 
[ 1 t2e 7, 

-1 
Since S 

PV 
is proportional to w as evident in (2.5) we see that the power 

spectrum (2.7) is independent of w and the total energy E is infinite unless a 

cutoff frequency is introduced. 
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We now introduce our model as discussed in the introduction. That part of 

the mass of the pre-supernova star which will be lost in the explosion we denote 

by 2M. The remainder of the stellar mass we assume remains or is emitted in 

such a way as to produce no radiation, i. e. , spherically symmetrically. The 

two ejected masses are assumed to be of equal mass m < M, and to have mo- 

menta Fand -c We view the explosion then in terms of a system of freely mov- 

ing but infinitely accelerated particles with four-momenta 

p p1 = W,O,O,O) , PI’ = (M,O,p sin 8, p cos 0) 

(2.8) 
I-J p2 = W,O,O,O) , Pi’ = (M, 0,-p sin 0, -p cos e) 

where M2 = m2 +p2. For convenience we have oriented the axes so the motion 

is in the y , z plane and the z-axis is the radiation direction. It is evident that 

s12 = 0 and hence h12 = 0, so the radiation is 

We find the field from (2.6) 

4GM - h&b = r 
L 

e(r-t) + m2 

M2 - p2 c0s2e 

As previously noted only the net change in h 
CLV 

totally polarized in the + mode. 

2 2 
A hll = _ 4GF p2 sin2 ’ 

M -p cos e 
. 

8 (t-r) 1 
has physical significance. 

(2.9) 

(2.10) 

The time derivative hll is a measure of emitted energy. It is an infinitely nar- 

row pulse 

. 2 2 
hll(zt) = - 4GMp sin 0 6(r-t) 

M2-p2 c0s2e 
(2.11) 

Finally the energy distribution is very easily obtained from (2.7) since there is 

only one polarization 
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dE = 4GU2 ISll@EW) I2 = GM2p4s in4 e 
daddw n2 (m2+p2sin2 8 )2 

(2.12) 

As noted before the total energy diverges unless a cutoff frequency wc is intro- 

duced. 

In the nonrelativistic limit we write the kinetic energy of one ejecta mass as 

T = p2/2m and have 

dE 
iTri=Ez = 

4GT2sin4e 
lr2 

dE 
dx 

= 4 GT2sin4 e WC 
T2 

(2.13) 

E = 
32 GT2wc 

15a 

The sin4 8 angular dependence is. characteristic of quadrupole radiation as may 

be expected. It is easy to verify these results by order of magnitude dimensional 

arguments as we will discuss shortly. 

In the ultrarelativistic limit the radiation is isotropic and very simple. 

dE = GM2 
4GM2wc 

dQdw 7f2 ’ 
E = . 7r (2.14) 

As has been discussed by a number of authors3 the power output of a low 

velocity source with internal power flow Pi is of order 

= G-l = 3.6 X 105’ erg/set 

(2.15) 

In the low velocity limit of our model the internal kinetic energy is T and the 

characteristic frequency is oc so the internal power flow is of order Ttic which 

must have a characteristic duration of order l/we. Thus 
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P -GT’wE, E - GT2wc (2.16) 

which is consistent with (2,13). For a high velocity source the relation (2.15) 

still holds if Pi is suitably interpreted as the total energy of the source times 

w C’ 7’8 Then 

P - GM2w2 c ’ E - GM2wc $ (2.17) 

which is consistent with (2.14). 

Let us summarize our main results: 

(I) The field changes abruptly with a theta function dependence on retarded time. 

(2) The power spectrum is constant up to the cutoff frequency wc. 

(3) In the nonrelativistic limit the angular dependence is that of a quadrupole 

source. 

In the following section we will study these points further by comparison 

with a calculation using the quadrupole approximation. 
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III. QUADRUPOLE APPROXIMATION 

The calculation of the preceding section contains the convenient but danger- 

ous assumption that linearized general relativity theory is applicable to the in- 

finite acceleration approximation with a cutoff frequency wc. However such an 

infinite acceleration implicitly corresponds to an infinite stress energy tensor, 

contrary to the basic ideas of the linearized theory. To verify the applicability 

of the infinite acceleration approximation method we now study the same simple 

physical model with the quadrupole approximation. 6 A smooth and finite accel- 

eration is used in this calculation and no divergences occur, 

To obtain the quadrupole approximate solution to (2.1) we suppose that radi- 

ation from all points in the source is in phase. This will be so if the relevant 

wavelengths are much greater than the source size and if the source motion is 

nonrelativis tic. Thus we ignore time retardation across the source and write the 

retarded time as t r = t-r. The field is then a simple integral over s 
IJV 

hpv(zt) = y /spv(st-r) d3x1 (3. I) 

As noted previously we only need the space components Sll and S12’ For this we 

use the conservation of T” to obtain the well-known result6 

/ 
1 d2 Tij(gt)d3x = 2 -2 xixj 3 d x 

dt 
P-2) 

where e = T 00 is the mass density of the low velocity source. Then for propaga- 

tion in the z direction 

d3x t 
3 r 

P-3) 

h12t% = y[-$/eq d3x] tr 
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If the axes are oriented as before, with motion in the y, z plane, we see that 

h12 - - 0 and that hll is proportional to sin2 e D We may write (3.3) for the 2- 

point particles as 

Q&b) = t r 
(3.4) 

where 5 describes the linear motion of one ejecta mass. 

We now choose a convenient function 5 to represent accelerated motion from 

t = 0 to t = tc and uniform motion at velocity v thereafter, Since the third time 

derivative of < will enter the expression for the energy of the radiation field we 

choose a function with a finite third derivative 

t(t) = 0 ) t<o 

t(t) = fe - sin w,t/w) , 0 < t < tc 

t(t) = tv - tcv/2 , t, < t 
(3.5) 

This has convenient derivations, integrals, and a simple Fourier transform. We 

obtain the field, with tr = t-r, 

hlltj-h = 0 , tr < 0 
-. 

h&h = - 4Gmvr2 sin20 [ (2 cos2w t 0 - 2 cos wet + 

11 P-6) 
+ oat sin wot)4, t , 0 < tr < tc 

r 

hllt$h) = 
- 4Gmv2 sin20 

r , tc < tr 

The field rises smoothly from zero, reaches a peak at about WOtr = 2.75, and 
. 

becomes constant after tc . The net change is the same as for the infinite accel- 

eration calculation in the nonrelativistic limit, (2. lo), with m = M and 
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p2 <<M2. (See Fig. 1. ) 

The average energy density of a radiation field with + polarization is given 

by” 3 

<too> = IQa) I2 
16 nG 

from which we obtain the energy output 

dE 2 4GT2 sin4 Ou2 
dQ dt = r <too> = 0 

167r sin2 wet cos2 wet 

+ 9 sin2 wgt + ,it2 cos2 wgt - 24 sin2 wet cos wet 

P-7) 

(3.8) 

- 8 wet cos2 mot sin wet f 6 wet sin wet cos wet 1 t 
r 

where T = mv2/2 is the kinetic energy of one ejected particle. This function is 

shown in Fig. 2. Due to the peak occurring in hll (Fig. 1) the energy output has 

a peak followed by a zero, and then a narrow spike. The integrated energy is 

This is identical with the infinite acceleration result (2.13) if we identify the cut- 

off frequency as wc = 8. 52/tc. This is close to 2n/tc as we might expect on 

dimensional grounds, and provides a verification of the obvious physical inter- 

pretation of the cutoff oc. 1 

Next we obtain the power spectrum. For this we need the Fourier transform 

of h 11, which we denote by g(w). 

--c 
I 

03 
h&h) = o g(w)e 

-iwt dw 2n + C.C. 

(3. IO) 

g(u) = Jahll(x7t) e iwtdt 
-CO 
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Note that g is simply 4GSllEw)/r0 In terms of g we can write the power spec- 

trum as 

dE -= r2w2 Ig(w) I2 
dfiddw 16 r2 G 

(3.11) 

We find g to be 

-8GT sin28 2 
g(u) = ru 

ieiWt A(w) -iB(w) + e iwtc(u) 
J 

= -8G;Jin eF(u) 

A(w) = 
6~2, - cd2 cd4 

2 (4w2,-w2) 2(CI$-w2)2 

(3.12) 

w2-2w 2 

B(w) = 2 2° + 
cd4 

2(4wo-w ) 2 (C+w2)2 

C(w) = ;” 2 
W()-~ 1 

Thus 

dE 4GT2 sin40 -= 
dfiddw 7r2 

IF(w) I2 (3*13) 

The function IF I2 is plotted in Fig. 3. We see that this power spectrum is qual- 

itatively very similar to that of the preceding section. 

In summary of the quadrupole calculation, we have obtained fields and energy 

distributions which justify the infinite acceleration results of Sec. 2. Moreover, 

the time structure and frequency structure are displayed explicitly. 
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Iv. NUMERICAL ESTIMATES 

Our calculation contains as parameters the mass m, velocity v, and fre- 

quency wc. These must be estimated from observation and from explicit super- 

nova models o For example, v is of order lo3 km/set and m is perhaps - lo33 

grn for the Crab nebula. 
9 

For a range of reasonable values of these parameters 

we have calculated the field change (2. lo), the total energy (2.13), and the aver- 

age energy flux at the earth given by 

2GT2w2 
<T> = dE = C 

r2tcdQ r27r3 

where we use 8 = 7r/2 and tc = 2r/mc0 These are given in the table for r = 5,000 

light years and wc = lo4 set -1 . This frequency corresponds to the time required 

for a shock wave moving at N 0 3c to cross a stellar core of size - 6 km. As is 

evident in Fig. 3, the peak flux will probably be several -times the average < F >. 

It is amusing to rephrase the energy output in a dimensionally convenient 

form as follows, For the relevant parameters we define 

m =trM, v =/3c, (4.2) 

where we have written c explicitly for later convenience. Here Q! is the fraction 

of the total stellar mass M ejected in the explosion, p is the dimensionless 

ejecta velocity, h is the size of the exploding stellar core in units of half the 

Schwarzschfid radius of the star, and p, is the characteristic dimensionless 

velocity for the explosion to proceed across the stellar core. Then the total 

energy output may be written as a fraction of the stellar rest energy as 

(4.3) 

As an example we set Q = .5, ,8 = 10W2, A =4, and p, =.3, a typical speed of 
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sound in a neutron star. Then (4.3) gives for a star of mass M = 2 X 10 34 
gm 

an energy output of D 4 X 46 10 ergs, approximately the same conditions and re- 

sult as the third example in the table. 
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TABLE 

m v/c IAh,, I 

1o33 10’3 o 6 x 1O-22 

1o33 If2 ,f3 x 1f2’ 

1o34 1o-2 .6 X 10-l’ 

1o34 10’1 .6 X lo-l7 

1O35 10 -1 .6 X lo-l6 

E <F> 
(erg) (erg/cm2sec) 

.4 x 1040 1.4 x 10-l 

.4x1o44 1.4 X lo3 

.4 x 1o46 1.4 X lo5 

.4 x 1050 1.4 X log 

.4 x1o52 1.4 x loll 

FIGURE CAPTIONS 

1. The time structure of the gravitational radiation field hll in the quadrupole 

approximation. The line ---- is the B function dependence in the infinite 

acceleration approximation. 

2, The time structure of the energy emission in the quadrupole approximation. 

3. The power spectrum of the radiation field in the quadrupole approximation 

compared with the infinite acceleration approximation, Normalized to 

4GT2sin40/r2 at w = 0. The ---- line is the infinite acceleration result. 
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