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In this note we consider the effects of the transversely polarized electron 

and positron beamslin the e+e- colliding beam experiment. V. N. Baier and 

his co-workers2 have discussed many of the cross sections with two-body final 

states. We have expanded their treatments and generalized their results to ar- 

bitrary inclusive cross sections in which only one particle in the final state is 

detected. 

We consider processes which contain only a time-like photon in the inter- 

mediate state 0 The reactions e++e- - e++e- and e++e- - 2y are exceptions 

which will be dealt with later. Let us consider an arbitrary process in which 

only one final particle, whose four momentum is denoted by P = (E ,p3, is de- 

tected. We choose the direction of the incident electron to be the z-axis and 

that of the magnetic field gto be the x-axis, as shown in Fig. 1. The cross sec- 

tion for an arbitrary process mediated by one time-like photon exchange can be 

written as 

da = d3p e4 -1 LPVW 

2E (2~)~ ~~~@,” pJ2 -m4 q4 PV l 

LPV is the tensor formed by the initial electron-positron current: 

(1) 

where s and s+ are, respectively, the polarization of the electrons and posi- 

trons in the direction of the magnetic field. The tensor 

vanishing components in the limit m = 0. They are 

% 
= g (1-s+sJ 

and 

L 
YY 

= q; (l+s+sJ . 

L 
PV 

has only two non- 

(3) 

(4) 
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In the colliding beam machine one has in general’ 

s+ = -s- = 0.924 [l - exp(-t/T)] , (5) 

where the characteristic time T is given by 

7 = ‘a 075 x lo4 minutes . (l&v2 
E2H3 

. (kG)3 . (6) 

Attimet=O, Lxx=L 
YY’ 

since the e+ and e- beams are initially unpolarized. 

As t becomes large compared with T , s+ and s reach their maximum values 

% = *to, 924. When this occurs L.= dominates over L 
YY” 

Lk can be regarded 

as the intensity of a virtual photon beam completely polarized in the x direction. 

Similar interpretation can be made for L o 
YY 

It is also interesting to observe 

that if one beam is polarized and the other is unpolarized then no polarization 

effect is observable. 3 

Next we consider the tensor for the final state W 
PV’ 

Since q and p are the 

only two available vectors in the problem, gauge invariance and Lorentz in- 

variance demand that 

wpv =(~-qbv)y+-4& -yqp)ipv -yc+72, (7) 

where Wi and W2 are functions of q2 and p-q. The situation is very similar to 

the structure functions in the electron scattering4 except in this case W2 is not 

positive definite while WI is. When dealing withW it is more convenient to use 
PV 

a coordinate sys tern5 where the direction of Fis the zv axis. In this system the 

only nonvanishing components of W 
CGV 

are diagonal ones: 

W z’z’ 
=w,,2w =w 

M2 2- 0 

and 
W x’x’ =w 

Y’Y’ 
zwl ) 

(8) 

(9) 
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where x’ and y’ can be in any direction perpendicular to the z’ axis as can be 

seen readily from (7). In terms of W. and WI, Eq. (1) reduces to 

do 
dxd0 (10) 

2 where < - - s+s-, p = p/E is the velocity/c of the detected particle, and x = 

Zq*p/q2 = E/Energy of the incident electron. 

W. and W1 are 

wO = .q2Tf)364@+. . . q) k-p.. 0 
all final states 

Ijz,(0)lO> I2 

except p 

(11) 

and 

w1 = Z(2Tq3 64 (p+. D . -a) kp. 0 0 lj, (O)lO> I 
2 

(12) 
all final states 

except c 

jt is jxr, j Y ,, 
or (jx, f ijy,)/&, all of which give the same answers because of 

(7). 

When the final state contains only two particles (p and p’), W1 and W. con- 

tain a 6 function, hence it is convenient to introduce form factors Gl(q2) and 

(13) 

and 

WocS2, Wp) = 6 l(s-pJ2-m~, 1 Go&‘) , (14) 
where 

Go(q2) = 2 I<ph,p1h11jz,(0)10>12 , (15) 
hh’ 

G,(q’) = C I<pA,p’h’ Ij, (O)lO> I2 . 
AA! 

(16) 
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h and At are respectively the helicities of p and ptO In this case (10) becomes 

the simplified expression 

do cY2 
dl;2=- 

a4 
P [cl(s2) + (Go(s2) - G1(4 (17) 

If the undetected particle p’ is a resonance with a width IT instead of being a 

stable particle, then the 6 function in (13) and (14) must be replaced by a Breit- 

Wigner function 

6 (s-pJ2-m~, [ I ,mplr 1 
7r 

I 
212 tw)2-m,,J + r2m2 

P’ 

(18) 

which produces a bump in the x distribution with a peak at 

x=1-(m2 - 
P’ +)/q2 . (19) 

Since the matrix element of jz, transforms like Yy , we see from (11) that 

W. represents the probability that the final state is in the angular momentum 

state IJ, Jz, > = Il,O >. Similarly the matrix element of +=(jx, * ijy,)/& trans- 

*’ forms like Y1 0 Hence from (12) we see that w1 represents the probability that 

the final state to be in the state I J , Jz, > = 11, %l >. In the scattering (spacelike 

photon) case, W. is proportional to the scalar photon cross section6 a;j and W1 is 

proportional to the transverse photon cross section6 rTO When the final state is 

the particle-antiparticle two-body state, its S channel equivalent is elastic scat- 

tering. In this case our Go becomes ccGz,the square of the coulomb form faci 

tor7” 7,8 
, and our G1 becomes czG2 m, the square of the magnetic form factor. 

Let us proceed to calculate W. and W1 corresponding to different final states. 
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e++e- 
+ - 

-7r -hr 

In this case, the matrix element of current can be written as 

<p,p’ lji(0)lO> = @-P’)~ F(q2) = 2pi F(q2) (20) 

where F(q2) is the pion form factor normalized such that F(0) = 1. Since the 

direction of p is chosen as the zf axis we immediately obtain, using (15), (16), 

and (20), 

and 

G1 = 0 (21) 

GO = 4p2F2(q2). (22) 

Thus, when the polarization is complete (t2 = l), we have 

do a2 
a3 =p p3 sin28 cos2$ F2(q2) 

e+ + e- -+p++p- 

<pp’ Ijp(0)10 > = ii@)ypv(pf) . 

Ignoring the mass of the muon, we have 

G1 = 8E2 

and 

Go = 0. 

When the polarization iscomplete (t2 = l), we have 

sin20 cos2$) 0 

(23) 

(24) 

(25 ) 

(26) 

These two examples are two extremes. For the spin 0 case the component of 

angular momentum along Fis zero, hence only Go contributes to the cross sec- 

tion and the @ distribution is maximum at Cp = 0 and 7~ but minimum at C$ = 7r/2. 

For the spin- 3 case (zero mass and no anomalous magnetic moment) exactly the 
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opposite is true, namely, the component of angular momentum5 along zis f 1, 

hence only G1 contributes to the cross section and the @ distribution is maxi- 

mum at $ = n/2 but minimum at $I = 0 and r. All other possibilities are inter- 

mediate between these two extremes. For example, when G 0 = G1 the angular 

distribution is isotropic. 

e++e- - (spin 0, parity -) f (spin J, parity (-1) ) or 
e+ + e- - (spin 0, parity +) + (spin J, parity (-1)“‘) 

The case J = 0 is forbidden by conservation of angular momentum and parity. 

We show in the following that when 511, the conservation of parity and angular 

momentum also demand that Go = 0. Hence the angular distribution is exactly 

the same as that for e+ + e- - pf + ~1~~ The proofs for the two cases are sim- 

ilar. Therefore let us prove only the first one. We call the particle with spin 0 

and parity - the pion, whose momentum is denoted by p. The momentum and the 

helicity of the other particle are denoted by p’ and A’. A particle with natural 

parity, spin J, and momentum p’ can be represented by a completely symmetric 

tensor of rank J, F satisfying g F = 0 and 
1-11’k5’ooo 9I-LJ /‘5c”2 l.Gl’,$” o Q &J 

P’ F = 0. 
,-ll /++““” +J 

Since the pion has odd parity, the matrix element must 

be of the form 

(27) 

But qv is nonzero only when v = 0, and pa! is nonzero only when a! = 0, z’. 

Hence,when p = z’ , the matrix element is zero, This proves our assertion. 

From (27), we also see immediately that J cannot be zero. 

Another way of proving the above assertion is to use the operator* Y, which 

changes a state into its mirror image, the mirror being in the x’z’ plane. The 

operator Y does not change the direction of momenta 5 and 2 but it changes the 

signs of the helicities of particles: 
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Y I$ JA’> = sp,(_qJ-’ ‘13 J-A’> 

YITspin O> =qplp spin O> 
(28) 

where 77 p, = (-l)J andgp= -1 are parities of particles p’ and p respectively. We 

also have 

Thus 

Y-l j,,tW = jz,W l 

<c spin 0, 2 Jh'lj,,(O) IO> 

= <F spin 0, 3 Jht IY -' jz,(0)YIO> 

= (-$J+l6 A,O <F spin 0, 2 JX I jz,(0) IO> (29) 

Hence CC spin 0, 3 JX ljz,(0) IO> = 0. 

e++ e- - p+p (A pair of spin l/2 particles) 

The matrix element is 

<pp’ IjP(0) IO> = ii(p) AYC, + @‘-P)~B 
[ 1 v(p’) , 

where 

A=Fl+F2~=G m 

B = F2~/(2M) = (Gm-G,)/[2M(l+ti] 

K = 1. 79, T = -q2,‘(4M2), F1(0) = F2(0) = 1 . 

After taking the spin average, we obtain 

G 1 = 8E2G2 m 
and 

G 0 = 8M2G2 e * 

(31) 

(32) 
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e++ e- - V+ + V- (A pair of spin 1 particles) 
9 

cpp’ I jp(0) IO> 

= F (q2) { (p’-p+&o& +;A q2/M2) - AM-‘qaqP] + (lcK+~)(ga~qp-g8pga)] P(E’p*) 

(33) 

where K and A are functions of q2, At q2=0, they are related to the magnetic 

dipole moment by 

p = e(l+K+h)/(2M) 

and the electric quadrupole moment by 

Q = -e(K-h)/M2 . 

E and et are polarization vectors for V-(=p) and V+(=p’) respectively. If the 

coupling is minimal, then h=O but K is arbitrary. 
10 In the gauge theory which 

has Yang-Mills type of coupling, we have h=O and ~=l. F(q2) is the charge form 

factor normalized such that F(O)=l. In this case G1 and Go defined in (14), (15) 

and (16) can be shown to be 

G1 = 8p2y2 (1+K+ii)2 F2(q2) , 

and 

+ 4p2(1+by2j2 1 F2tq2) 3 

(34) 

(35) 

where y=E/M. 

We note that at high energies, y>>l, the angular distribution is similar to 

thatof e++ e--77+ + T- as long as A#0 or K#O. On the other hand when A=K=O 

we have Go<< G1 which means the angular distribution is similar to that of 

e+ + e--- p++/.L-. 

Bhabha Scattering (e+ + e- - e+ + e-1 

There are two Feynman diagrams contributing to this process. One is the 

annihilation diagram and the other contains the exchange of a space-like photon. 
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The square of the latter diagram dominates the cross section and it is not af- 

fected by the transverse beam polarization. Hence the overall polarization ef- 

fect is small for this cross section. The cross section can be written as 

do _ a! 
2 1 

m 
-- 

8q2 (l-cos 0)2 [I 
(3 + ~20~~8)~ + t2 sin46 cos 2$ 1 (36) 

2 where 5 =-s+s-. 

Thus the polarization increases do/d&! at $ near 0 and X- and decreases it at 

$ near x/2 and 3x/2. This is more like the pion case than the muon case, The 

reason is that the polarization affects both the square of the annihilation diagram 

and the interference term between the two diagrams. The interference term 

dominates over the square of the annihilation diagram in the spin dependent 

terms (similar to the spin independent term). The interference term has the 

opposite sign from the square of the annihilation diagram. Hence the effect is 

opposite that of the muon pair case. In Baier’s paper’ the sign in front of t2 is 

wrong. This error was first found experimentally at SPEAR. J. D. Bjorken 

and this author have independently derived Eq. (36), thus confirming the experi- 

mentalists’ conclusion. 

e+ + e- - 2y 

The angular distribution for this cross section is (me = 0) 

2 
da = c 
m 4E2 (37) 

where t2 = 
2 - s+s _- This expression agrees with the one given by Baier. The 

effect of the transverse polarization is to decrease the cross section near @ = 0 

and x but to increase the cross section near @ = x/2, Thus the effect is similar 

to the case for ef + e- --,u+ + p-, except that in the two-photon reaction it is 

less pronounced. 
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Remarks 

1. As can be seen from (lo), in principle no new information can be gained 

from using the transversely polarized beams, because when i2 = 0 we can 

still obtain W. and W1 by measuring the B dependence of the cross section. 

However in practice the transversely polarized beams are very useful for 

separating W. and W10 For example, at SPEAR the range of 0 is from 45’ 

to 135O, hence sin2 f9 varies only from 0.5 to 1.0, whereas the range of $ 

is 27r. Hence the factor (1 + t2 cos 2$) varies from (1 + t2) to (1 - t2). In 

addition, the radiative corrections affect the ,9 dependence more than the @ 

dependence of the cross section. 

2. In order to obtain W1 and W. for fixed q2 and x = 2 qep/q2, we do not need 

the information on detailed angular distributions. Let us define two inte- 

grated cross sections : H is the cross section integrated with respect to C$ 

from x/4 to 37r/4 and from 5x/4 to 7x/4 and cos 8 from -a to a. We may 

choose the normalization so that 

lr z 
H = 3 J a 16q2 do dcos e - 

0 aaa2 m&da 

2 1 = w1 + (w. - W1)(l - F)(z - t2 a, 0 (38 ) 

V is the cross section integrated with respect to $ from - 7r/4 to n/4 and 

from 3x/4 to 5x/4 and cos 0 from -a to a. We may choose the normaliza- 

tion so that 



I 

From (38) and (39), we may solve for W1 and W. in terms of H and V: 

W1 = H(-++;) -v(2 -9 

and 

The maximum value of A 
4) 

is obtained when W. = 0, 

max t 

AG = 

2Z($ -$) 

a2 ’ 1+7j- 

(39) 

(40) 

(41) 

where t2 =-s+s andais thecutincos 8, lcos B 

lation between (Wl,Wo) and (H,V) is the asymmetry 

*2;AW(1 -$) 
A+=%= 2 , 

l+AW 

where AW is the asymmetry in W, 

Aw =wl-wo. 
wl+wo 

I< a. Another useful re- 

,in Cp: 

(42) 

(43) 

(44 ) 

which must be satisfied by the muon pair, hence it can be used to determine 

the polarization t2. The minimum value of A 
G 

is obtained when W1 = 0: 
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min A+ 22 =-5 ;” (45 ) 

Preliminary experimental results 11 indicate that for pion inclusive reac- 

tions at q. = 7.4 GeV and with 3 or more prongs, A ~ = (II-V)/(El+V) is pos - 

itive and consistent with being Amax when 0.6 < x < 0.9. 
+ 

3. Let us consider in some detail the relationship between cs and oT used in 

the inelastic electron scattering and our W. and W1. us and cT in electron 

scattering are defined by 

4?r20! 
c %=-IF- * (2~)~ S4@,-q-p) I <final states I jx(0) Ip> I2 (46) 

all final 
states 

and 

u =& 
S k c 

all final 
(2*)3S4(pf-q-p) l<final states I Eyl jp (0) Ip > I2 (47) 

states 

where k = (p*q + $q2)/M and E ll is a four vet tor with components 

1 2 3 
t&Y Eli’ El19 Eli) = ts,, 0, 0, gwi2)i 0 

The direction of the spatial part of q is chosen as the z-axis. Because of 

gauge invariance, we have j, = jzqz/qo and 

-P . 
e11 Jp = tqzjo - s,jzW-12+ = jz t_s2ho o (48 ) 

In general -q2/qt is a very small number. Hence even if the matrix ele- 

ment of jz is comparable to that of jx we will obtain a very small value for 

R = as/crTe In other words, the smallness of R in electron scattering does 

not necessarily reflect the smallness of the matrix element of jz. It can 

simply reflect the fact that there is a near cancellation between the scalar 
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and longitudinal matrix elements due to gauge invariance. In contrast to 

this there is no such cancellation in the colliding beam experiment because 

here the scalar component of the current is zero due to gauge invariance. 

W. and W1 are not necessarily related to os and uT unless they are 

dominated by the same set of Feynman diagrams such as in the parton 

model. In hadron physics there are many processes which contribute to the 

total cross section at high energies. We expect that the diagram which 

dominates the total cross section in one kinematical region is not necessar- 

ily the one which dominates in the other. Hence one can not analytically 

continue the total cross section from one kinematical region to another, 

Yet it is interesting that experimentally as/oT N 0 and Wo/W1 N 0 (for 

large x) and both facts are consistent with a parton interpretation. 

4. It is interesting to observe that,in all the expressions for the angular dis- 

tributions given in this paper [see Eqs, (lo), (17), (36), and (37)], the C$ 

dependence always occurs in the form l2 cos 2$. In processes involving 

only one time-like photon exchange the origin of this combination can be seen 

easily from Eqs. (l), (2), (3), (4), and (a), which show that t2 dependent 

term must be proportional to 

t2 @Z-P$W, = t2p2sin2e cos 2@ W2 ., 

Let us try to understand why the combination t2 cos 2+ also occurs in the 

reaction e+ + e- - e + + e- and e+ + e- - 2y from some general principles. 

The absence of polarization effect when only one beam is polarized is due to 

invariance under time reversal and parity and neglect of radiative correc- 

tions as shown in Ref. 3. Thus the effect of polarization must occur bi- 

linearly in Z+ and s” and the cross section must have the form 
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= A + (c+= z-)(B + Cp2sin2B cos2$ + Dp2sin20 sin2$) (49) 

where F+ and r are polarization vectors of initial positrons and electrons, 

respectively, Fand ze are momenta of the detected particle and the inci- 

dent electron , respectively . A, B, C , and D are functions of q2, q-p, and 

8. 

In all the processes considered the spin dependent parts come only 

from the states of the initial e+e- system of opposite helicity. These are 

denoted respectively by I = > and ‘I = >, where the arrows denote the spin 

directions of the particles, and are characterized by having the z-compo- 

nent of the angular momentum +l and -1 , 

Jz I=> = I=> (50) 
and 

Jzl=> = - I=> o (51) 

The other states , I= > and I 2 > , do not contribute to the coefficients B, 

C, and D in the limit mE/E2 - 0. These spin antiparallel combinations 

contribute only to the square of space-like photon exchange diagram in the 

e++e- - e- + e+ reaction. 

Let us consider two transversely polarized states denoted by ITT > and 

I rl> which represent respectively a state with spin of both particles in the 

x direction and a state with spin of one particle in the x direction and the 

other in the -x direction. It is easy to show that 

and 

ITT> = -L (I=>+ I=>)+... 
i& 

ITl> = - l (IZ> - I=>)+... , 
& 

(52) 

(53) 
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where “- . . ” represents the states I = > and I= > which do not contribute 

to the polarization dependent part of the cross section. We next apply the 

rotation operator R = exp (-z Jz) on both sides of (52 ). This yields 

R I rl> = ITT>, which implies that in Eq. (49) we have 

From this we obtain B = - $C+D)p2 sin28 and the desired result follows 

immediately. 

The functional form t2cos 2# has the properties that it is symmetric 

with respect to reflections in both the yz and xz planes. Integration of this 

term with respect to $ gives zero. Hence the cross section for unpolarized 

beams can be obtained from that for an arbitrarily polarized beam by 

simply taking the + average of the latter, 

5. In the parton model one assumes that a pair of on-the-mass-shell partons 

are first produced by a photon far above the threshold. These high energy 

partons then decay into pions. When x is large the pion must be emitted al- 

most parallel to the parent parton due to energy momentum conservation. 

Hence our z’ axis must almost coincide with the direction of motion of the 

parent parton when x is large and thus W1 > > Woe Since there is no evi- 

dence of spin l/2 particles accompanying each large x event, the parton 

pair must annihilate each other in the final states. As far as the author 

knows there is no calculation which demonstrates that the states Jz, =-f 1 

are actually favored over the state Jz, = 0 when partons annihilate each 

other into multipions (n > 3). - (The direction of an energetic pion is defined 

as the z’ axis. ) 
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Fig. 1 

The coordinate system used to describe the polarization and the angular 

distribution, The incident electron is moving in the direction Gz, the magi 

netic field is pointing toward gx, and F is the momentum of the detected 

particle whose direction is chosen as z’ axis when dealing with the hadronic 

matrix element. 


