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ABSTRACT 

We show that in Reggeon field theory the intercept of the Pomeron 

must be less than or equal to one. The mechanism responsible is an 

instability of the Reggeon vacuum when the bare intercept exceeds a 

critical value. At that critical value alone is the vacuum singularity at 

J=l when t=O . 
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Reggeon field theories1 provide a constructive procedure for evaluating the 

importance of Reggeon cut corrections to a basic Regge pole exchange. When 

the intercept o(O) of the renormalized (P) singularity is precisely one, then 

multiple g exchange modifies the large energy behavior of scattering amplitudes 

only by powers of log s; however, since all P exchanges are important, one 

must systematically sum all contributions. The use of the renormalization 

group for the Reggeon field theories is a powerful device for this. 2,3 Assuming 

that a(O)=l, one finds scaling laws for multi-g vertex functions. Total cross 

sections behave as 

(TT(S) - (log s)-? , (1) 

where y, the anomalous dimension of the ,P field @(y, T), has been estimated 2-5 

tobe l/4(-751/2. 

Unitarity in the t-channel is built into Reggeon field theory. It is an impor- 

tant matter to determine whether the constraints of s-channel unitarity are 

obeyed as well. Some s-channel requirements are rather simple to state: the 

Froissart bound, for example, requires o(O) < 1, and -y < 2 when cr(O)=l. For - 

the case a!(O)=l, all numerical estimates of -y are less than two, and a general 

argument for this has been given by Cardy and Sugar in their study of lattice 

versions of the field theory. 6 The more stringent requirement o!(O) ( 1 is not 

an obvious feature of the theory. One must inquire whether o(O) ( 1 for all values 

of the intercept Q! 0 of the basic or unrenormalized Pomeron. Clearly, if there 

are no Reggeon interactions, then when Q! becomes larger than one, every P 0 

and multi-P exchange violates the Froissart bound. To restore it takes a special 

arrangement of the multi-P couplings to particles as occurs, for example, in 

the eikonal formalism. In this paper we show that Reggeon interactions force 
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a(0) < 1 whatever o. may be. Of course, more detailed tests of s-channel 

unitarity must be passed, but this is certainly crucial. 

We study the Reggeon field theory appropriate to the very high energy be- 

havior of processes involving ,P exchange. The ,P field $(c, 7) is defined on a 

D dimensional impact parameter space, ?, and a one dimensional time 

(rapidity) space, T . These variables are conjugate to the Reggeon momentum 

< (momentum transfer is -c2) and energy E=l-J. The action for the theory is: 

(2) 

where E = cu;T2+ A0 , (Ao= l-oo) is the bare trajectory, and r. is the (real) bare 

triple g coupling; no = Ao-AoC; AoC is the value of A0 at which cr(O)=l. The zero 

of the inverse g propagator at T2=0 gives the renormalized intercept in terms 

of A= l-a(O) as iI’ (ly ‘) @=a, +O) ~0. 

The quantity no is like a mass term in conventional field theory. We are 

concerned with the behavior of this theory when no becomes negative. As was 

pointed out by Abarbanel, * the passage through no=0 can bring about a situation 

where the field develops a non-zero vacuum expectation value and the Y’massYf, 

A, remains positive. This is what occurs in Reggeon field theory as we now 

show. 

Our tool is the effective action I? which generates the one Reggeon irre- 

ducible, proper vertex functions I? tn9 m) . It is a functional of the c-number 
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fields $(?, r), $+(f;, 7) and has the expansion; 
9 

dDxldTx . ..dDymdr 
, 1 ym 

4-v-n) - x il? F (x1,7xl,..., m’7-ym ) $6-1, TX 1. * - $+Gjm, 7 * 
1 Y ) m 

They satisfy the equations 

The vacuum expectation values of @ and c$+ are denoted by v and w, respectively. 

= 0 . (4) 
+=v, g=w 

We wish to construct I’, as well as we can, and search for v and w. From 

translational invariance we know that v and w are independent of z and T, so we 

take 9 and $+ to be constants. Factoring out a delta function, the effective 

action becomes 

r+,q+= 5 1 II 1 m, n=l n’ma 
iIT@, m)(O, 0) (+b~)~(#+-w)~ . (5) 

The I’(n’m) are vertex functions for the displaced field operators +v, $+-w, 

evaluated at Ei=Ti=O. 

The heart of our argument resides in the zero loop (or classical) approxi- 

mation to r . 

(6) 

The vacuum expectation values v and w are determined by (4) as solutions to 

ir 

770V - + (2vw + v2) = 0 , (7) 
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and 
ir 

rlOW 
+(ti+w2)=o . 

These have the solutions 

(8) 

I. 

ma. 

v=w=o , 

v=o , w=-2n0/iro , 

II. 

IIIb. 

v=w=-2g0/3ir 0 ’ 

v=-2no/iro , w=o . 
(9) 

For no>0 only the solution with v=w=O is stable when quantum fluctuations 

are taken into account. For no<0 the stable solutions are IIIa and IIIb. The 

instability of the other solutions can most easily be seen by studying the pertur- 

bation expansion for the I’ 6% m) . One finds that the functional integrals which 

give the individual terms in the perturbation series are not well defined and the 

Feynman diagrams have unphysical singularities. In the zero loop approxima- 

tion 

8% A=-- = 7jo+iro(v+w) = 
r10 (y-0) 

-r(#?o<O) 

so A always remains 20 or owl. 

There are a host of quantum corrections to the zero loop approximation for 

I?, and we must discuss their effect. We can construct I explicitly near D=4 

using the renormalization group and an expansion in e=4-D. After some algebra 

we find the scaling form for the renormalized I? 10,ll 

r ,nro EN($“2 jei3-r/6 [-dxy[l+; (!n2-l)] 
- 

. 
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Here EN is a normalization point for the renormalized theory, CL!’ and n are the 

renormalized ob and no, d= A and gI= (8~) D/4 
171 

(e/6) 1’2. The scaling vari- 

ables x and y are 

The exponents in Eqs. (11) and (12) will be modified by terms of o’( e2) when 

higher quantum corrections are added. For r]>O the stable solution to Eq. (4) 

is still v=w=O. For 7.~0 there are again two stable solutions. The one which 

arises from taking into account quantum corrections to Solution IIIa of Eq. (9) 

is 

v=o , wv; (%P” I$1 1-c/6 (-2ig;3 x b+ g (Qn Z-l)] , (13) 
--f- 

and the one which follows from Solution IIIb is obtained by interchanging the 

values of v and w. 

In order to study the behavior of the g trajectory function it is necessary to 

write down a renormalization group equation for I? (l’ ‘)(E, k2,n) directly, since 

Eq. (11) will only give us information about I? (” ‘)(O, 0,~). After some addi- 

tional algebra we find 10,ll 

A= l-o(O) ,nFo~N /$-11+r’12 {l-$+(d-1)Qn2]+0(e2)} (14) 
--c 

and 

“k ,11~ OQ’ j$-l-E’24 [1-s (i-2 Qn2)(d-I)+O(e2g . (15) 

Here CY~ is the slope parameter of the renormalized g. Again o(O)<1 for either 

sign of n . Notice that ozk diverges as In I -0 with just the power one would 

expect from the direct calculations with n=O. 2,3 
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Although it may well be that the e-expansion is not rapidly convergent in 

two-dimensions, we believe that the qualitative features of our calculation will 

hold there. First, as long as the theory continues to have an i&a-red stable 

fixed point, then it is possible to derive scaling laws which give the small n 

behavior in terms of critical exponents which are independent of the coupling 

constant. Moreover, as long as the renormalization group functions have the 

analyticily properties indicated by perturbation theory, then it is possible to 

show that the partial wave amplitude will have no singularities to the right of 

J=l for c22 0 (tl0). 10 

We are now in a position to enumerate the possible high energy behaviors 

which can be obtained in Reggeon field theory. The two quantities which set the 

energy scale are no and rt/olb (for D=2). For no=0 and ri/cyb Qn s 2 1 we will 

see the scaling behavior of Refs. 2 and 3 and the total cross section will be given 

by Eq. (1). For ri/ob > lqo I > 0 we will see approximate scaling for 

(ri/ob, Qn s 2 1 > Ino I Qn s, but at energies such that Ino I Qn s 1 1 the high energy 

behavior will be dominated by the renormalized g pole which will be below one. 

Finally for Ino I > ri/ob we will not see the scaling behavior at all. For 

Ino 1 Qn s 2 1 the renormalized pole will again dominate. At “low” energies 

( Ino 1 Qn s, (ri/ob) Qn s < 1) the behavior of the scattering amplitudes will not be 

controlled by the infra-red stable fixed point. It will depend on the strengths of 

the couplings of the z’s to each other and to the external particles. Fortunately, 

perturbation theory is applicable in this domain, so one may hope to describe the 

data in terms of a finite number of parameters. 

Since total cross sections are approximately constant at high energies and 

r. is small ino I must also be small. The question of why nature chooses 

AO * Aoc is outside the scope of Reggeon field theory. It is of course a crucial 

problem for a complete understanding of high energy diffraction scattering. 



I 

-8- 

.- 

ACKNOWLEDGEMENTS 

A discussion with E. Abrahams was key in our thinking. F . Zachariasen 

has repeatedly brought the implications of our results to our attention. Two of 

us (JBB and RLS) thank the University of Washington for hospitality while this 

work was done, and J. R. Fulco for extensive discussions. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

REFERENCES 

A. pedagogical review and evaluation is given by H. D. I. Abarbanel, 

J. B. Bronzan, R. L. Sugar, and A. R. White, Physics Reports, to be 

published. 

A. A. Migdal, A. M. Polyakov, and K. A, Ter-Martirosyan, Zh. Eksp. 

Teor. Fiz. 67, 2009 (1974). 

H. D. I. Abarbanel and J. B. Bronzan, Phys. Rev. D 2, 2397 (1974). 

J. B. Bronzan and J. W. Dash, Phys. Rev. D 10 4208 (1974); -’ 

M. Baker, Nucl. Phys. E, 61 (1974). 

J. Ellis and R. Savit, CERN preprint (March 1975). 

J. Cardy and R. L. Sugar, UC Santa Barbara preprint (April 1975). 

R. L. Sugar and A. R. White, Phys. Rev. D 2, 4074 (1974). 

H. D. I. Abarbanel, Phys. Letters e, 61 (1974). 

E. Abers and B. W. Lee, Physics Reports 9C; Section 16. 

Details of the calculations will be given elsewhere. 

For simplicity we take the renormalized coupling constant equal to its 

fixed point value. An analogous scaling law holds for general values of the 

coupling constant (Ref. 10). 


