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ABSTRACT 

We investigate explicitly the large coupling limit of the renormaliz- 

able interactions of particles of spin l/2 and spin 0. This is done with 

a previously formulated theory of strong coupling. The principal result 

of the investigation is the complete decoupling of spin l/2 particles from 

those of spin 0 in the large coupling regime. The applications of our 

findings to semiclassical models of quark confinement and to Bjorken 

scaling are discussed. 
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INTRODUCTION 

This paper is a continuation of a previous work (hereafter referred to as A) 

on the behavior of renormalizable quantum field theory in the large coupling 

limit. The subject of the present discussion will be the renormalizable inter- 

actions of spin zero and spin l/2 particles, with an eye toward models of quark 

confinement and Bjorken scaling. Before taking up these matters, let us, in the 

interest of continuity, begin by reviewing briefly the connection of the discussion 

here with that of A. 

In A, we formulated a general theory of the large coupling limit of renor- 

malizable quantum field theory. The formulation was based upon Feynman’s 

path space’ approach to quantum field theory. It (the formulation) is related to 

but significantly different from the formal approach of Hori3 to the strong coup- 

ling limit of quasi- “trilinear” interactions, i. e . , interactions of the form $*$x, 

etc. (For a detailed comparison of our approach with that of Hori, see Appendix 

1.) 

What we showed in A is that the connected Green’s functions of renormalizable 

quantum field theory have discussible limits as the coupling tends to infinity. 

The problem of regularization was also treated in detail and a procedure was 

introduced which permits the interpretation of the large coupling limit in com- 

plete analogy with the familiar small coupling limit. This was illustrated 

explicitly in the case of the scalar field with quartic self-coupling. This theory 

of the scalar field with quartic self-coupling will be interpreted by itself in more 

detail in a later work. 5 In what follows, as we have stated above, we shall 

consider the renormalizable interactions of this scalar field and its pseudoscalar 

analogue with fermions. 



A motivation for considering such interactions is the rather recent4 work 

on the behavior of such interactions in the so-called semiclassical approxima- 

tion. More, precisely, it has been argued that, in this approximation, 

Lagrangian field theories of the type 

(l-1) 

where C$ is a scalar field and $ is one of spin l/2, have, for G, H>> 1, a bound 

state of $ surrounded by a meson cloud and that the rest energy of this state is 

much less than the rest energy of a free + quantum, that is to say, much less 

than Gf, presuming spontaneously broken symmetry. This result has been put 

forward as a model of quark confinement. 

In the following section, we shall show that upon application of our approach 

to strong coupling to the theory (1.1)) one obtains the rather remarkable result 

that, as G, H ---too, the spin l/2 field decouples completely from the field of spin 

zero and behaves as a free fermion! The meson field then interacts with itself 

according to a renormalizable effective generating functional for its connected 

vertices. We shall exhibit this functional explicitly. The detailed interpretation 

of this meson system will be taken up elsewhere. 5 

We shall, therefore,find that the semiclassical solutions of Ref. 4 are not 

characteristic of strict quantum field theory. The problem of quark confinement 

thus remains at large in the strict theory of fields. This problem will also 

be taken up elsewhere. 

The decoupling result can also be established for pseudoscalar mesons $‘, 

interacting with $ via iGJ*/5@$). This is shown in Section III. Hence, it appears 

that this decoupling is a general feature of Yukawa-type interactions. 

Although quite amazing, our result gives a natural picture of Bjorken scaling 

in quantum field theory, presuming large effective couplings at large momentum 
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transfer . This picture is in complete agreement with our previous work6 on the 

partial differential equations of renormalizable field theory, where we found that 

Bjorken scaling was quite consistent with a theory of strong interactions for 

which the origin of coupling constant space is not attractive7 at large momentum 

transfer. 

II. INTERACTIONS BETWEEN SCALARS AND FERMIONS 

We consider here the theories of the type (1.1) 

Li?= i ;‘c19i?c$ - H(@2-f2)2 + $$a-G@)+ (2-l) 

We shall show that in the limit G, H >> 1, this theory becomes one in which $ is 

a free noninteracting fermion of mass IGf I. In order to establish this result, 

we shall use the methods developed in A. 

Namely, we first represent, after convention, the generating functional Z 

for the connected Green’s functions of (2.1) as 

iZ e ZZ ~~+~$@ exp ild4x[9+J@+$+qn] (2.2) 

where J and 6 and n are the respective sources of $, $, and $. As usual, we 

find it convenient to shift $ to $+f to obtain 

- 4HQ3 + J($+f) + J($+f) + $[ija-G($+~)]$J+ $+$ri) . (2.2) 

The principal idea of A is to exploit the fact that Z has an expansion in 

negative powers of its couplings which should be meaningful as they (the couplings) 

become large. This exploitation is to be effected by isolating an appropriate set 

of expansion operators for the large coupling limit. Recall that for the small 
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coupling limit, the expansion operators are the obvious: 

W4, 4Hf+3, G&G . 

For large coupling, the situation is not so transparent. 

Following the discussion in A, we shall rewrite (2.3) with the aid of the 

following identities: 

exp i 

- - 
+W1-+) + ($1-W + 

- - 
wl+#p 1 (2.4a) 

-8Hf2~2 - 4Hfq3+i(++f) - G$$(++fj) 

z exp i ’ /d4x[+ ($cl&l - Sf2Hq2) 

- 4HfKi+ J(Kl+f) - G&b(~~+f) 

+ +l-@) + 7r22(K2-@) 1 (2.4b) 

exp -i /d4x H$4 z 1 gao exp i/-d4x [u2+2JH uG2] . 

Equation (2.3) is thus the same as 

exp iZ z 
J 

9)~ka~~~~nl~~1~a28K29)~~~l~~l~h~j 

(2.4c) 

1 
+Z /.Ll ( 

d K dpK1 - Sf2He2) - 4Hf~; + 02+2JHc$~ 

+ J(Kl+f) - G$ljl(K2+f) + X&K1 -@) + “2(K24)l * (2.5) 
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The appropriate expansion operators for G, H - m may now be isolated by 

the shifts 

(2.7) 

(2.8) 

+ J(Kl+f) - G$$(/c2+f) + 7iiK1 + 7C2K2 + g2 

2 
Xh +~$Ic+~+- - 

(75+7r22) 1 G(K2+f) 8 JH (a-2f2 JH ) ’ 

The integral over 9+6!3$ can now be done. We find (see Appendix II) 

J 4 

/g&J 6j exp -i /d4x G(K2+f)$$ f exp + e log G4(,2+f)4 (2.9) 

where k is the measure of each set in an appropriate uniform covering of 

spacetime and is absorbed in any systematic renormalization of the theory. This 

point about renormalization has been discussed in A and will be demonstrated 

more explicitly elsewhere. 5 We need not be concerned with it for our purposes 

here. 
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Upon introducing (2.9) into (2.8) and expanding in powers of l/G and l/JH 

we find 

exp [ i /d4x [i kPKldPK1 - 8f2H@2) - 4fHKi 

+ J(Kl+f) f c2 + 2 <H c$ “-& log G4(K2+f)4 

+ ($l+il)h 1 + i C”j(Pj-K2(Xj)) 

+ iCpQduQ-nltYQ)-~2tyQ)) 

+ iIZt~(v~-*Q))} /n, flEo ' , (2.10) 

Effecting the integrals over ~~ and r2, we see that at the m-th order in l/G and 

n-th osder in l/$H we have the ratio 

gK2g7r2 eq i -Ci’Y.~2(X.)-CP~Q~2~Q) 

R= J C?$K~ i8n2 exp i 
J [ 

d4x 7r2Kg -&log G4(K2+fP-4fHKi 1 
exp -i4fHpi/(Ax)2 , (2.11) 
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almost everywhere. (See Appendix III.) The RHS of this last equation is inde- 

pendent of {xji and (czji. This permits the remaining integrals over (~~1 and 

b i j 
to be done trivially. There results 

co 

expiZ= C 
n, m=O i&f ET&,“; i / 

dx. 

62 
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We may next sum easily over all orders in l/Gf, obtaining 

J J co 
.( f 

pQ/Ax+f-iE jd&) -Yi,“” 

abQ)) - 4fH @/(Ax)2} . (2.13) 

Finally, we may effect the integrals over el, ql, h and x by the usual shifts: 

We first shift 

$1 - $1 - ,& ‘F tx-Y) @+I) (Y) 
(2.14) 

$1 - ;il - /dy(;lf~ (Y) S&Y-X) 9 

where L!$, is Feynman’s solution of 

i$ S,(x-y) = 6(x-y) . (2.15) 

This gives 

KF E j~$,$B$,~A%% exp i 
I [ 

d4x $li&6l + (i+x)$, + $l(q+h) + $ 1 
E CBASBX exp ijd4x [-/ d4y(;i+% 6) % (X-Y) h+N b) + $ 1 - (2.16) 

From the simple shifts 

A --+A9 > x - x-77 (2.17) 
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we then obtain 

d4k = /- 
I’ CBACBX exp i- 
Gw4 

~& A(k) + (x(-k) A(k) -+k) Vk) - x(-k)71 oi) 

+ t(-k) ?l(k))/Gf] > (2.18) 

where we have passed into momentum space 

i-j(x) = 
(2704 

eTikex y(k) . 

Therefore, the substitutions 

(2.20) 

x(k) - x(k) + $(&-i&$ 

allow us to write 

(2.21) 
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The fundamental result of this communication is thus 

+ J(Kl-l-f)+ a2+21rH(7+2+~1~1 + i ~pQ@Q-~l(yQ)) 1 Q 

+ i c< (V a(yQ))-i4fH J>P~/(A~)~ 
QQQ Q ’ 

. (2.22) 

From (2.22)) it is obvious that the large coupling limit of the theory (2.1) 

consists of a free fermion of mass Gf and a system of mesons interacting renor- 

malizably in a manner which corresponds to an effective generating functional 

ZeffQ given by 

* ew iz&(J) = Ii?0 5 (-$J il -Ld4Y~ [:,@Q 4 ‘ii?! (pQ12+f-i, j 

/ 
co 

/ 
co 

.--co dvQ -co @Q 

( 
vQ-2f2&3+ie 

) 
27r I gK1 %T1ga g$ 

exp i 
i [( 

/ d4x L 2 $Kl#K1-8f2 HC2) + J(/cl+f) + a2 + 2JHOo2 + TYKE] 

+ icP~@~- 1 Q T & )) f ic!jQ(vQ4(yQ))- 4ifHCpi'(k)2 
I 



+ +- c pQpQ, k2 cos km (yQ-yQ,) + > (2.23) 
Q,Q’ GM4 

where in making this last step we have used the results of A. The sole effect of 

$$+ in the presence of ($2-f2)2 is to modify this last interaction to the form 

(2.23). Equation (2.23) should be compared’with the result (3.21) of A for the 

theory 

g?= 1 2 (ap9a% -m2e2) - id4 . 
To repeat, the fermion is free in the large coupling limit of (2.1). 

III. INTERACTIONS OF PSEUDOSCALARS AND FERMIONS 

We turn next to theories of the type 

(2.24) 

(3.1) 

Again, we shall be able to establish the complete decoupling of zl, from $ as 

H,G-,m. 

Our starting point is still the path integral expression for the generating 

functional for connected Green’s functions 

We shall proceed here in precise analogy with the discussion in Section II. 
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Namely, from the analogues of the identities (2.4) we obtain 

exp iZ 2 J 
expi 

+ Jfcl + ?l(i?-mpl + %I,- zci) + $-$)h 

+ $1’1 + ;7$, -iG$Y5#K2 + T2(K2-$) + Tl(K1-$‘) 1 . (3.3) 

From the shifts 
71 +x 

c#l-G-l- l 2 
4&(-1;/4&) 

4) + 7) + iy5h/GK2 (3.4) 

we obtain 

r 
1-mi$2) + o2 + 2&a$1~ 

+ JK~ + $,(i&-m )$ 
$1 

+ &6, + $1X -t qlv + ‘!#J, 

bli- 754 
2 

-iGz,!y5#K2 + T2K2 + 7rlK1 - 

ijiygh 
- - 

8JH(g-m:/4JH) GK2 1 . (3.5) 

It can be shown3 that 

/ 
I 

4 
%,bg$ exp ild4x (-iG$Y5+ 2) E exp f -$$- log G4,i . (3.6) 
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(See Appendix II. ) Hence, following the arguments leading from (2.10) to (2.13) 

we obtain 

expiZE C 
m,n 

Jdaj lita /d4yQ LNQ pt IiFQ ~ s;:JHj 

P.-i: 
J Q- + 

gxgK1 gK2 %T, %T,= g@’ 

+JK~+G 
2 + Z&W@2 

- & log G4(K2-iz)4 + ?T~K~ + =ZK2 

+ x2), + ijlx + Q-j + ij$, + f&h + XT-j1 1 
+ C~j(Pj-Kz(Xj)) ’ C PQ@Q-“~(YQ) - T2(YQ)) 

+ i CSQ(VQ~OT,)) ‘(&j l 
(3.7) 

1 1 

At the m-thorder in l/G and the n-th order in l/$H we have the ratio 

(3 
-4 

-4 , almost everywhere . (3.8) 
pQ/Ax - i? 
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Inserting this into (3.7) and summing through all orders in l/G, we find 

-I- CPQ~PQ-X~~YQ)) + C~QPQ-~(YQ)) 
I 

. 

The integrals over (A, x) can now be effected by the shifts 

ii---- ‘Gijly5 . 

We find 

E exp -i / 
4 - - 

d x 4$13/51Cll . 

(3.9) 

(3.10) 

(3.11) 
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Introducing (3.11) into (3.9)) we have 

exp i{/d4X[$~pK18PK1-m~$2) + JK~+ a2+ 2&l a$2 + alK1] 

+ C PQGUQ-~~(YQ )) +CSQPQ~(Y,)) 
1 

- (3.12) 

Taking the limit E 1 0 in the first factor we see that the fermion functional is 

just that of a free spin l/2 particle. Furthermore, the integrals over Kl, rl, 

o and C#I may be done in the same way that they were effected in Eq. (2.23). We 

therefore have 

/ 
co co 

-* dvQ / -CO d(Q 

vQ-mi/4 $I 2n 
> 

Vl/4) > 

~QVQ + PQ@Q+ J&Q))} - i 2 
Q, Q’=l 

~QEQ$(YQ-YQT) 

; 2 PQPQI 4 k2 COS k* (YQ-YQI> +- * 
Q, Q’=l (274 1 (3.13) 
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Again, the spin l/2 particle completely decouples from the meson and 

behaves as a free particle. This is the desired result. 

IV. DISCUSSION 

The detailed discussion of the effective meson systems was not presented 

here in the interest of clarity. These systems will be discussed in detail in one 

of the later works, with an eye toward a better understanding of the so-called 

1 ‘kid1 f 8 mode solution of the respective classical equations in the context of the 

strict theory of quantum fields. 

The results above, which were obtained by use of the path-space approach 

to quantum field theory, suggest that in the operator approach there exists a 

canonical transformation of the field variables which, at least for large couplings, 

makes the decoupling of spin l/2 and spin 0 fields manifest. We have not been 

able to find such a transformation. 

The question naturally arises as to the validity of the decoupling result for 

small values of coupling. This question can not be answered on the basis of the 

work above, because our expansions in inverse powers of coupling are only valid 

as asymptotic expansions when the couplings are large. Just how large is 

lllargelf is unknown to us. 

The lack of a “bag” state in the Yukawa model is in agreement with the work 

of Sawyer’ in two Minkowsky dimensions, where he has found that, in a certain 

approximation, the quantum corrections to the vacuum essentially undo the 

lowering in energy of the one fermion “bagt state relative to the free fermion 

state. 

Finally, we should remark that the other large confinement project, that of 

Chodos et al. , 10 is knownll to be intimately related to the approach of Ref. 4. -- 

Indeed, most aspects of the model of Ref. 10 can be shown 11 to be obtainable 
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as a certain variant of the approach of Ref. 4. From this fact it follows that 

our decoupling result would tend to indicate that the model of Ref. 10 is not 

stable against strict second quantization. Of course, a mol-e complete treatment 

of this model would involve considering it directly in the path space approach. 

We have not attempted to do this. 
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APPENDIX I: COMPARISON WITH THE APPROACH OF HORI 

In this appendix we should like to examine more closely the relationship 

between our approach to strong interactions and that of Hori. We have already 

pointed out the essential difference between the two approaches in (A). Here, 

we shall make this point of difference more explicit. 

Specifically, we already pointed out in A that the main difference in the two 

approaches lies in the isolation of small parts of the Lagrangian as the coupling 

tends to m. We isolate this small part in a manner which permits the usual 

“free” part of the Lagrangian to be integrated out completely. Hori, on the 

other hand, uses the *‘free!* Lagrangian as his expansion operator. The question 

naturally arises as to the detailed numerical relation between his work and ours. 

We investigate this issue here by considering a simple theory of trilinear 

type, 

(AI. 1) 

Hori has examined this theory with his method for g - 00 and found, for example, 

that 

~0 IT*@(x)@*(y)) WC = +/g2. m2/g2) . (AI- 2) 

We shall show here that in our approach (AI. 2) does not hold true. 

Our starting point is again 

exp iZ = g+ a@* ax exp i J;@ + c$*Jl -i- J2x 1 . w* 3) 
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In the by-now familiar way, we use identities of the type (2.4) to rewrite (AI. 3) 

as 

expi 

+ n,(K,-X) + n3(K3-X) 1 . 
The shifts 

Ti e*--+* -grc 
3 

r2+ =3 
X “X- 

2mE 

allow us to write, as g, m2 +mwithm~,$g-0, 

-g$*@K 3 +J*K +K*J +J K +‘I~*K 11 11 22 11 +T~K;+T K +T K 22 33 

+ 

w. 4) 

w. 5) 
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co 1 1 i nl n2 nl n2 
= c 

i --- - 

(U ) 

n I7 
n!n! g nl,n2=0 1 2 2mi j=l Q=l 

-g$*@K 
3 

+J*K 4-J K*+J K +T*K +K*71. 11 11 22 11 11 

ldpjdijj(P~~~) fiajd'j /dyjdhi ldcll$ilebli’32 JdPmd’Q n ( a 

Ye 

) 

(27r)2 27T (2719~ Q gEQ+a 

expi EQvQ] + 1' (Aj ")'j + aj(Pj+Re Jl(X$) 
j 

+ G~(P~+I~ Jo))+ 2 ;i (k2-mt) ai’Yj COS k* (xiBxj) 
, 

(k2-mi) zpj cos km (xi-xj) 

PQ~Q~ COS k* (YQ-YQ,) (AI. 6) 
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where a 1 0 has been introduced to define the ratio 

(AI. 7) 

for, the result (AI. 6) has been divided by the denominator of this last expression. 

This denominator diverges for a 1 0. Hence, we have divided exp iZ by too 

“large” a factor when a=O. This fact presents no special problem, since such a 

division as that implied by (AI. 7) is without physical significance. The quantity 

a would simply be absorbed into any systematic definition of the theory. This 

is not necessary for our present purposes. 

To order l/g we have 

Jl(x)+Q!Im JI(x) + $ 

where G’(x) is the inverse of Feymnan’s function 

(AI. 9) 

Let the charged field $ be represented by 
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where $l and $2 are hermitean. Then, it follows from (AI.8) that 

T1=O= J2 

[ 

-1 
*F u2&piap+&p+--4-(02+(r2) +O- 

I i 

1 

‘I gm2/ 

a2 exp i p(a!+) +p(a!-b) [I 

++A$O) (a2+G2)]I 
P, i=o 

1 +o- 

( 1 gm; 

=~260+01 , 
gE 

( i gm; 
(AI. 10) 

which disagrees with Hori’s result (AI. 2). The result (AI. 10) diverges as E 1 0, 

implying that e itself must be involved in the definition of the parameters of the 

strict theory. However, this does not concern us here. 

The origin of the difference in numerical results between our work and that 

of Hori is clearly the role of the gradient terms. In our approach, no assump- 

tion is made about the size of these operators. In Hori’s approach, the operators 

are presumed small. Since our formulation can be put in complete analogy with 
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the small coupling limit, we feel our approach is indeed a reliable approach. 

The result (AI. 10) would then tend to cast doubt on Hori’s method of handling 

the “free” Lagrangian, i. e. , handling gradients. In any elvent, we shall not be 

concerned further with this approach of Hori. 



- 25 - 

APPENDIX II: YUKAWA FUNCTIONALS 

In this appendix, we shall establish Eq. (2.9). Equation (3.6) can be 

derived by completely similar reasoning. We do this in the interest of complete- 

ness, since the result is essentially well-known3 to some. 

The starting point is the familiar dynamical principle of Schwinger. 
12 

Namely, the functional3 

satisfies 

(AIL 1) 

In order to take advantage of (MI. l), we observe that the shifts 

(AIL 2) 

allow us to write 

Then, defining 

(AIL 3) 

(AIL 4) 
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and substituting (AIL 3) into (AIL 1) we find 

exp i / d4xfn/gb, 1 4 

3 /-d4x P) exp i Jd4xijg/ge . (AII.5) 

This gives 

~=,r/d4x~ . 

Furthermore, explicitly, we also have 

ar 
gag= J d4x C$ 2 I’ . 

0 
(AII. 7) 

Equations (AII. 6) and (AIL 7) immediately give (2.9): 

r = exp / * logg4cp4 . (A-= 8) 

It should be pointed out that the result (3.6), which is implied by the result 

(AIL 8), disagrees with the analogous result of Hori3 insofar as the sign of the 

argument of the exponential is concerned. 
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APPENDIX III: EVALUATION OF MEASURE ZERO CONTRIBUTIONS 

In establishing the results in Sections II and III, we have ignored contribu- 

tions from measure zero sets. Here, we shall show that this is legitimate. 

It’s sufficient to consider the situation at order l/G and l/$H. We have 

from (2.10) 

+ 2& Q2- -& log G4(,2+f)4 + nlKl+~2K2+ 

+ if+,+ $1’7 + x($l+?-$) + t$l+17p + w-54X)) 
3 

+ po-+Y) - T2(YN + ww} ( _ * 
a,J7,=0 

(AHI. 1) 
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In evaluating @III. 1) we used the result (2.11) almost everywhere. The rele- 

vant exceptional case is that region where x=y. This region contributes 

8G& &j,(y) &j&y) p+f-i’ 2T -03 

J %r2 ~~~ exp i -4HfK;- & log G4(,,+f)4 1 - QK2(Y)-p7T220T) 

/ 
g+lggJ$lC2Jh9X exp i 

I [ 
dx $li&jl++jQl+ $lq + X(+1+111) + ($1+17lP 1 . WI. 2) 

The ratio (2.11) becomes 

co co 

J/ d.rr2W dK2tY) VP i r2(Y) K2(Y) -4kHfK;tY) 
--co -co 

- i 1% G4tu20,)+f)4 - aK,(Y) - p7r2tY) 1 / 
Co 03 

I/ da2ty) dK20i) exp i AX 7r2(y) K~~Y) 
-co -cfJ E 

- 4Hf AxK;(y) - i log G4(K2(y)+fj4] 

= @/Ax+q4Ax 2?T 

f427r 
x exp 

( 
-i ap/Ax - i4 Hf P~/(A~)~) 

= + exp[-i @p/Ax - i4Hfp3/(Ax)2] . (ADI. 3) 
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Thus, (AIII. 2) is equivalent to 

Ax 1 62 
co 

-- 
8Gf JH J ml(Y) 6il(Yl --03 

J -Dt) dv I-, d5 .3/4 

y-2f2$H+ic 

2n 21 (Ax&” 

-it2 6(0)+$p2&$O)+JdxJf - 4Hfp3/(&Q2 

This should be compared to 

I -03 dv I_, e 2i3’4 (a~) 1’4) JZ 
v-2f2 ,/?H+ iE 2n w/4) 

p@+J(y)) -i $6(O) -I- ; p2~.(0) -I- /dx Jf 4 Hf p3/(Ax)2 

(AIII. 5) 
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Evaluation of the functional derivatives gives us 

J 

co 

40 (p/Awf)3 
-I& 

--co 
f3 

/ 

co 
dv -co 

v-2f2 &I 

exp i - $ E26(0) + + p2k+O) +/dx J(x)f - 4Hf p3,'(Ax)2 1 
(AICI. 6) 

to be compared with 

I 
03 

-m dv 
v-2f2JH 

exp i C OJ+ p@+JW - $ t2 6(O) + + p2A-$0) +Jd4xJf - 4 Hfp3/(AQ2 1 . 
(AIII.7) 

Thus, it can easily be seen that the former contribution (AICI. 6) is negligible 

compared with the latter @III. 7) as Ax - 0. 
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