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ABSTRACT 

Recently I proposed that the forces between quarks of two of the 

colors in the colored-quark model are of shorter range than forces in- 

volving quarks of the third color, and showed that if this color-sym- 

metry breaking mechanism is strong, the favored baryon SU(6) rep- 

resentations and parities are 56+ and E-, - in agreement with experi- 

mental indications. In this paper it is shown that this prediction also 

results if the symmetry breaking is small, in which case the sign of 

the symmetry breaking is irrelevant. I discuss a possible experi- 

mental way to test the validity of the mechanism and measure the ap- 

proximate size of the symmetry breaking. A useful list of ortho- 

normal quark-model wave functions of specific energies and sym- 

metries is given, 
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1. INTRODUCTION 

The existing data on baryon resonances suggest that the even- and odd- 

parity baryons correspond exclusively to the SU(6) represe’ntations 56 and 70, - 

respectively. 1 This contradicts the one-triplet quark model with Bose statis- 

tics and harmonieoscillator forces (symmetric quark model) for all but the two 

lowest energy levels. 2 For example, the symmetric quark model predicts 

even-parity resonances corresponding to the representations 56, 70, and 20 - 

at the second excited level. 

I call the “color-symmetric” quark model the model with three triplets of 

quarks, with color SU(3) symmetry as well as the usual SU(3) symmetry, Fermi 

statistics, harmonic-oscillator forces, and the identification of observed 

hadrons with color singlets., This model predicts the same hadron spectrum as 

the symmetric quark model, However, there is no experimental evidence that 

the proposed color symmetry is exact or nearly exact. One would expect color- 

symmetry breaking to lead to octet admixtures in the predominantly singlet 

states identified with the hadrons. However, the unobserved, predominantly 

octet states may still be either at very high masses or nonexistent, It has been 

shown in a recent paper that large color-symmetry breaking can lead to a pre- 

dicted baryon spectrum of the SU(6) representations and parities 56+ and 70-, 

in agreement with experimental indications, 3 The main purpose of the present 

paper is to show that this result also follows if the color-symmetry breaking is 

weak. In Set, IV I discuss briefly the possibility of measuring the size of the 

symmetry breaking. 

Since I am concerned with representations predicted in the color-symmetric 

quark model that have not been observed, I neglect mass differences between 

states of the same SU(6) x O(3) representation [where O(3) refers to the quark 
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orbital motion]. Exact SU(6) symmetry is assumed. 

It is helpful to review some basic facts concerning hadron spectra in the 

color Lsymme tric quark model. The quark-antiquark states that constitute the 

mesons correspond to the SU(6) representations 35 and 1. These both are ob- 

served in the same mass region. Consequently, if SU(6) symmetry breaking is 

neglected, it is reasonable to consider the 35 and rmeson states to be degen- - 

crate. This implies that the force in the cross channel not only is SU(6) sym- 

metric, but transforms as an SU(6) singlet. 
* 

When one considers the three-quark baryon states, the statistics of the 

quarks comes into play. The lowest orbital state is completely symmetric. If 

this state is a pure color singlet, and so is totally antisymmetric in the color 

indices , Fermi statistics requires that the SU(6) wave function must correspond 

to the symmetric 56 representation, in agreement with experiment. Similar - 

reasoning implies that the first excited orbital state corresponds to the mixed- 

symmetry SU(6) representation 70. - 

Of course it is possible that the quark-quark potential contains a piece that 

does not transform as an SU(6) singlet. This would affect the relative masses 

of different predicted three-quark states 0 However, it: is observed experimen- 

tally that the 70-fold representation corresponding to the first excited quark- 

model states lies approximately midway between the 56-fold ground state and its 

first Regge recurrence, as expected in the color-symmetric quark model. This 

supports the evidence from the meson spectrum that the potential is an SU(6) 

singlet. Therefore I make the usual assumption that the potential depends only 

on color and orbital quantum numbers, so that it is an SU(6) singlet. The pre- 

dicted baryon representation structure depends on the symmetry of the orbital 

and color wave functions. 
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If color symmetry is broken, the wave function is no longer completely an- 

tisymmetric in the color indices. Because of the requirement of Fermi statis- 

tics this affects the symmetry of the rest of the wave function and hence influ- 

ences the predictions concerning which SU(6) representations occur. 

The basic procedure for the calculation is given in Sec. II and the results 

are listed in Sec. III. The orbital wave functions for the lowest baryon levels 

are listed in terms of relative coordinates in the Appendix. These are needed 

in the calculation, and may be useful as well to other calculations involving 

modifications of the color-symmetric quark model for baryons. 
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II. PROCEDURE 

The baryons are nonrelativistic, three-quark states. The quark binding 

forces are transmitted by the exchange of an octet of vector gluons coupled to 

the color indices of the quarks. 4 For calculational purposes, the radial de- 

pendence of the quark-quark potential is taken to be that of a harmonic oscilla- 

tor. The possible effect of deviations from this assumption is discussed in 

Sec. IV. 

The colors are labeled r, w, and b (for red, white, and blue), and the 

Hamiltonian is assumed invariant to the SU(2) of the colors red and white. 

Thus the color-symmetry breaking is taken to be analogous to the observed 

breaking of ordinary SU(3). The breaking of ordinary SU(3) is neglected. 

The gluon-exchange potential is a sum of two-body potentials V = V 
ai3 

+ 

y?a! + VycY’ where CY , p, and y are the three quarks in the baryon, It is as- 

sumed that V 
PY 

is the sum of a short-range part Vs and a long-range part Vf, 

i.e. , 

3 8 
V 

PY 
= 2 Jr Jr Us(rpv) + Z Jr Jr Un(rclv ) , 

i=l i=4 
(1) 

where r 
PV 

= I%- TV I, Jr is the i’th Hermitean generator of SU(3), operating 

in the color space of the quark p, and Jl, J2, and J3 are the generators of the 

rw SU(2) subgroup of color SU(3). The configuration-space potentials Us and II1 

are decreasing functions of r 
PV 

; they would be positive if Yukawa potentials 

were used. Exact color symmetry corresponds to Us = U1. A simple possible 

cause of range difference between Us and Ua is mass splitting of the vector- 

gluon octet transmitting the forces, if the three gluons coupled as the generators 

of the rw SU(2) subgroup are heavier than the other gluons. 3 
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1 also allow the mass of the blue quark Mb to be different from Mm, the 

common mass of the red and white quarks. The kinetic energy operator for the 

quark p is 

T = 
l-l -B2/2Mp j< , 

MP = M (6 rw pr + 3pw’ + Mb6pb l 

(2) 

(3) 

In Rl it was assumed that the breaking of color symmetry is so large that 

the red and white quarks in a baryon are very tightly bound, so that there are no 

orbital excitations in the relative red-white coordinate. The excited baryons 

then correspond to orbital excitations of the blue quark around the red-white 

center-of mass. The baryons have a simple quark-diquark structure. 

However, there is no reason to believe that the color-symmetry breaking is 

so large. I take the alternate view in this paper. It is assumed that the color- 

symmetry breaking is small enough to be treated by second-order perturbation 

theory. The unperturbed states are color singlets, Since the perturbation is 

symmetric in the red-white interchange, the perturbed states are singlets in the 

rw SU(2). Thus I need not consider color decuplet states, only singlets 

tets. 

and oc- 

In order to apply perturbation theory, I rewrite the potential of Eq. (1) in 

the form 

V =v -l-V’ 
PV O,PV PV ’ 

8 
vo,pv =X JPJvU(r ) 

* - i=l ’ l o/Au ’ 

3 8 
V’ = 2 PV J’J” 

i=l 
i i -; 2 

i=l 
J; Ji” 1 wrpv 1 

(4) 

(5) 
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where U. and U’ are given by 

uO = $J1+$Js , (6) 

U' = us - ua .' (7) 

The total unperturbed potential V 
O,aP 

+v 
O,PY 

4-V 
O,Ya! 

transforms as a 

color singlet and the perturbing potential V’ + V’ 
QP pa 

+ V’ transforms as a 
YfJ 8 

color octet state. This may be shown by making use of the equation, Z Jr Jr 
i=l 

= & [ C(t) - C@) A C (v )] , where C(i) is the eigenvalue of the SU(3) quadratic 

Casimir operator for the representation i, and t is the pv representation. 6 

In a similar fashion, the kinetic energy operator of Eq. (2) may be sep- 

arated into unperturbed and perturbed parts, 

T 
v = To,p + T; , 

such that the unperturbed kinetic energy To a! + T 
O>P + To,Y 

transforms as a 
, 

color singlet and to first order in the quark mass difference the perturbed ki- 

netic energy TL + T’ + T;’ transforms as a color octet. 
P 

The exact definition of 

To,P 
and Th will be given later. 

The baryon states are color singlets to zero’th order. Since the perturbing 

Hamiltonian transforms as an octet state there is no first-order contribution to 

the energy. The energy correction to lowest order is .the second order term 

2 IHJ, Iz/(E, - Ej). Only octet intermediate states j will contribute. 
j 

Since the octet unperturbed states are of high mass compared to singlet 

states, the second-order energy contributions to the hadron states are negative. 

Therefore, the favored SU(6) representations for a particular oscillator level 

are those with the largest second-order energy contributions. 

I list here some needed properties of functions of mixed symmetry. All 

permutations of the three variables (Y , /3, and y may be obtained from products 
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metry, there are two components 

erties, 7 

(@) Ah, @p = AA,+ , 

(a@) Ap’@ = -Ap,@ , 
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(cry). If a function A(o@y) is of mixed sym- 

Ah aP and Ap ’ op with the permutation prop- 

The symmetry properties of quadratic combinations are needed also. If A 

and B are functions of mixed symmetry in three variables, and C is bilinear in 

A and B, the symmetry properties of C are 

CS = APBP + AhBh , c” = AhBP-APBh , 
(9) 

CA = APBP -AhBh , cp = AhBP+APBh , 

where the superscripts s and a denote totally symmetric and totally antisymmet- 

ric functions. If A is of mixed symmetry and B is antisymmetric, 

CA = APJ--ja , Cp = - AhBa 0 (10) 

That part of the wave function having to do with ordinary SU(3), spin, and 

orbital angular momentum is denoted by 43. The total wave function $ is anti- 

symmetric in the three quarks a!, p, and y, so for a color singlet Cp is corn_ 

pletely symmetric. For a color singlet state n, en may be written qn = 
1 

0 

4 

g P 
.X ~pcr,P,rb@~(o$y), where the superscript of @ denotes the symmetry; r, 

w, and b are the color indices; the sum is over the six permutations of Q!, p, 

and y; and the signature fat tor T P is one for even permutations and minus one 

for odd permutations. Since 9’ is completely symmetric, the quark indices of 

$J may be replaced with color indices, i.e. , 

(11) 
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A color octet wave function qj is of mixed color symmetry, so it follows 

from Fermi statistics and the combination rules of Eqs. (9) and (10) that $j is of 

mixed symmetry. The only states j for which H! may be nonzero (with n a 
Jn 

color singlet) are composed of one red, one white, and one blue quark. It is 

convenient to write the color-octet states in terms of C$ A,m and $p7rw rather 

than in terms of @ A,@ and c@~‘@. Since #i and H’ are both invariant to trans- 

posing the red and white quarks, there is no contribution to H! 
Jn 

from $p’rw. 

The contributing color-octet wave functions may be written, 

P 
(12) 

If the $3’” in this equation is written in terms of $ A,@ and @p’crp, one can 

see that the color wave function is a pure octet. 

I consider next the matrix elements of V’ =V’ The opera- 
3 8 @ 

+ Viy + V$oO 

tors Z JF Jr and E Jr Jr of Eq. (5) are diagonal in the representation of 
i=l i=l 

color wave functions symmetric and antisymmetric in p and v e The color- 

singlet, unperturbed wave functions $n are antisymmetric in each pair of quarks. 

Therefore, only the eigenvalues corresponding to antisymmetric pairs are con- 

tained in VI 
In’ 

By using Eqs. (11) and (12) one may write, 

In this equation VIj includes the appropriate eigenvalue for the state antisym- 

metric in i and j. If V’ from Eq, (5) is substituted into Eq. (13), the result is6 

A convenient set of variables is 

(14) 

R’ = + TN) + Mb% 1 /@Mm + Mb, ’ 
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h’ = (Fr + Fw - 2Fb)/& , (15) 

gis the center-of-mass coordinate. It is easy to show that rand Fhave the 

mixed-symmetry properties defined in Eq. (8), corresponding to the labels ‘. 

h,rw and p,rw. 

The total kinetic energy operator T, expressed in these variables, is 

T =-;Ii” + Mb)-%; + CL $‘I;+;%lh -‘-$ +&V2 1 rwp 0 (16) 

The quark masses may be written in terms of the average mass MO and the 

mass difference M’ , i. e. , 

Mrw = Mo++M’ , Mb = MO-$ 2 M’ 0 

I expand the mass terms in Eq. (16) to first order in MP/MO. The singlet or un- 

perturbed part of T is given by 

To = - $li2,‘Mo)(+~ + V; + V’) o (17) 

The matrix element T? 
P 

of the octet part of T is 

T! 
P 

= -: li2(M’/6M;)<$‘rw, (V;- V’)+;> o (18) 

I take the configuration&pace dependence of the potentials of Eq. (1) to be of 

the harmonic-oscillator type, and define an average force constant k. and a 

force-constant difference k’ by the equations 

Us(r) = - $ko + gr)r2 , v,(r) = - &co - s1)r2 . 

The minus signs are included since Us and Ua are defined to be decreasing with 

increasing distance. 

For a color singlet state n, the matrix element V. nn is ko(A2 + p2), where , 
the components of V. are defined by Eq. (4). The octet-singlet matrix elements 
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of the perturbing potential, Eq. (14), may be written 

(19) 

For simplicity I assume that the symmetry-breaking parameters in T’ and 

Vt are related by the equation 

W/MO) = - t9/WWk0). (20) 

With this assumption the ratio of the A2 and L$ terms (or of the p2 and V’ terms) 

in H’ is the same as in H 0” 
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III. CALCULATION AND RESULTS 

It was shown in Sec. II that the contributing matrix elements of the per- 

turbing Hamiltonian are given by the sum of Eqs. (18) and (19), where j and n 

are color octet and singlet states. It is convenient to write $ in terms of direct 

products UB, where U is an SU(6) [spin and ordinary SU(3)] wave function, and 

B depends on the relative orbital coordinates ffand g I denote states of the 

symmetric and antisymmetric SU(6) representations 56 and 20 by Us and Ua, - 

and the two components of a mixed-symmetry 70 state by - $Tnd Up0 The pos- 

sible symmetries of the orbital wave functions B are determined by the combi- 

nation rules, Eqs. (9) and (10). If U corresponds to the 56 or 20, @i and $3 - - 

must be of the types, 

56 case: - $I: = IJsBt , $; = “B; 0 

20 case: Gsn = UaBz , - $3 = UaB; 0 (22) 

All mixed components are of one of the types h, rw or p ,rw , but the rw indices 

have been suppressed. If the SU(6) representation is 70, there is only one type 

of color-singlet state $I:, but there are three types of color-octet states, cor- 

responding to the three possible types of symmetry of B. 

70 case: $z = - (l/d-% (U’Bf: + $B;) , (23) 

es’ = $Bs , 
j J 

q$’ = U’B;, 

@Th = (l/&)(UpBjp - tiB> . 

Pa) 

Wb ) 

WC ) 

The first superscript of Cp is the symmetry of B, and m denotes mixed symmetry, 

The perturbation H’ is SU(6) symmetric and so does not mix SU(6) repre- 

sentations D The matrix elements of H’ in the 56 and 20 cases are of the forms, - - 



I 

- 13 - 

$6 
jn 

= <B;, H’B;> , 

H’20 
jn 

= <“p, H’B~> . , 

In the case of the 70 representation, the three possible types of H! are - Jn 

H! s70 
Jn = (l/lr2)<B;, H’B;> , 

H! a70 
Jn 

= (l/&)<B;, H’B;> , 

H! m70 
In 

= $(<B;, H’B;) - <B;, H’B;)) 9 

(25 ) 

(26) 

PW 

(27b) 

(27~) 

where the first superscript of H’ is the symmetry of the intermediate orbital 

state. 

In order to compute the matrix elements of H’ one can express the orbital 

wave functions B in the representation of the rectilinear harmonic-oscillator 

excitations, i. e, , in terms of the quantum numbers N(@) and N(hi), where i 

denotes x, y , and z. The total oscillator level N is given by N = N(p) + N(A), 

where N(p) = N(px) + N(py) + N(p,), etc, The unperturbed energy E. is equal to 

l%~(N+3), where U) = (2kO/Mo)‘. Because of the assumption of Eq. ;(20), H* is 

diagonal in the N(pi) - N(hi) representation. The diagonal matrix elements are 

<Njl” IH’ INP) = bN,s ;(k’,‘ko)fi(o [N(p) - N(A)] , (28) 

where 6 Nls is the product of 6’s for all six N(pi) and N(hi) 0 

In order to compute the H! 
Jn 

for a quarkimodel level N and orbital angular 

momentum L, one needs the orbital wave functions classified by their sym- 

metries. I will consider all states up to and including N = 3, and the L = N = 4 

states. The relevant wave functions have been obtained from the results of Karl 

and Obryk, and are listed in the Appendix. 7 
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The unperturbed energies of all states of a given N are equal. The de- 

generacy is broken by the second-order perturbation term 2 IH;, 12/(En-Ej). 
j 

The intermediate states j are color octets, so En-Ej is negative. I assume that 

color-octet states of the same N are degenerate. Since the perturbation con- 

nects only singlet and octet states of the same N, the eenergy denominator 

(En-Ej) is the same for all states of the same quark-model level. The energet- 

ically favored states of a particular N are those with the largest factor ZIHin 12. 
j 

The sum includes all relevant states of the proper symmetry, and in the case of 

the representation 70, the different symmetry possibilities shown in Eqs. (27a)- - 

(27~). 

The relevant ZIH;, I2 may be computed by using Eqs. (25) through (28) and 
j 

the list of orbital wave functions in the Appendix. In making these calculations 

one may use the fact that all the following polynomials D satisfy the normaliza- 

tion condition of the Appendix: 

J-2 YP YP 2Yh YP “*YpTyYy, 2YhYPYP ++’ ++‘3 ““YZY; YTYT, + + +’ 3 

, and 2Yh Yh Yp Yp + -I- + +’ 

I define the operator A = N(p) - N(h), whose eigenvalues are N(p) - N(h) in 

the Nbi) - N(L) representation, It is seen from Eq. (28) that HI is propor- 
Jn 

tional to A. 
Jn’ 

so that the quantity Z lAjn I2 is a measure of the amount by which 
j 

the color-symmetry breaking lowers the energy of the state n, The values of A 

and IA I2 = A2 for the states under consideration are listed in Table I. 

The notation is similar to that of Eqs. (25) to (27~). The numerical super- 

script of A is the SU(6) representation, which is of the same symmetry as the 

orbital wave function of the singlet state n. In the cases of the representations 

56 and 20, the intermediate state must be of mixed orbital symmetry, while in - 



- 15 - 

the 70 case, the orbital symmetry of the intermediate state is given as the first - 

superscript. Subscripts are given only for those N and L for which there are 

two orbital states of mixed symmetry. In these cases the states are denoted by 

a! and ,B, as in the Appendix. The two subscripts of A refer to the intermediate 

and initial states , respectively . For a particular state n, if there are none or 

only one intermediate state that may contribute, only A2 is given. The A2 in- 

clude the sum over intermediate states, and (Az)2 denotes 2(A7°)2. 
j Jo 

It is seen from the results of Table I that when there are two states of in- 

termediate orbital symmetry for a particular N and L, the states CY and p are 

the proper ones to diagonalize H to second order, i.e. , H’ H! is zero for all 
W JP 

states j. 

The results concerning which representations are favored are essentially 

the same as when the color-symmetry breaking is large. 3 WhenN=2 (L=2or 

0) and when N = 4, the representation 56- is favored, and when N = 3 (L = 3 or l), 

the representation 70 is favored. When there are two states of the 70 of the - - 

same N and L, the energy correction is small for one of them. 
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IV. CONCLUSIONS 

Color-symmetry breaking removes the degeneracy of the color-symmetric 

quark model. It is assumed here that the symmetry breaking is sufficiently 

great so that the comparatively unfavored states do not appear in the same 

mass region as the favored states. The type of deviation considered is essen- 

tially one in which the forces between red and white quarks are of range differ- 

ent from that of forces involving blue quarks. 

In Rl it was shown that if the symmetry-breaking is large and of such sign 

that baryon wave functions consist of a tightly bound red-white diquark, with a 

comparatively loosely bound blue quark, the favored states are of the SU(6) rep- 

resentations and parities 56+ and 70-. This is in agreement with experimental - - 

observation, One of the main conclusions of this paper is that this result re- 

mains the same if the symmetry-breaking is sufficiently weak that one may use 

eigenfunctions of a color-symmetric Hamiltonian as unperturbed wave functions. 

For simplicity it was assumed in Sec. lI that the quark mass-splitting is 

such that only states of the same total harmonic-oscillator level are connected 

by the perturbation, However, some calculations have been done for levels up 

to N = 2, in which this mass-splitting is not included; the results concerning 

which states are favored are not changed. 

Since the symmetry breaking of Sec. II contributes only in second order, 

the effect does not depend on the sign of the perturbation, The results would be 

the same if the red-white force were of relatively long range. However, if this 

were the sign and the symmetry breaking were large, the wave function would 

not be so simple as the quark&quark structure used in Rl. 

The difference between the A2 for the favored and unfavored states in Table 

I is the same order as the size of A2 for the favored states. Clearly, if the 
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symmetry breaking is very weak, the unfavored states (such as the 70 for L = - 

N = 2) should be observed experimentally, It was pointed out in Rl that,for 

strong symmetry breaking, some unfavored 56- and 70+ states should appear - - 

for sufficiently high N. Thus, if color-symmetry breaking is responsible for 

the observed deviations from the predictions of the color-symmetric quark 

model, some 70+ and 56- states should appear for high N. If this occurs, - - 

whether or not such states occur also at low N will be an indication of the 

strength of the symmetry breaking. If the model of Rl is essentially correct, 

one would also expect that states involving orbital excitation of the;red-white di- 

quark should appear at high masses. 

Whether the symmetry breaking is large or small, the predicted energy gap 

between the N = 0 (56) and N = 1 (70) levels is greater than that between the N = - 

1 (70) and N = 2 (56) levels. 8 This prediction is difficult to test experimentally - - 

because of the mass differences between states of the same level. However, if 

one considers only zero-strangeness states of the same Regge sequence, and 

measures in terms of either mass or mass-squared, the N = O-l difference is 

larger than the N = l-2 difference. 9 

There is’ another possible source of degeneracy breaking of such states as 

the N = L = 2, 56 and 70 states of the color-symmetric quark model. The radial - - 

dependence of the two-quark potential may be more nearly Coulomb type than 

oscillator type 0 This would cause the (ls)(ld) state to be lower than the (1~)~ 

state, .where the two orbital angular momenta refer to the p and h coordinates. 

This could break the degeneracy of the color-symmetric model, since the ratio 

of these two states is not the same for all N = 2 states. On the other hand, it is 

reasonable to assume that the two-quark radial dependence is the same as that 

between a quark and an antiquark in a meson, No such deviation from oscillator 
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dependence is observable in the meson spectrum, since many N = 0, 1, and 2 

states are nearly exchange degenerate, i.e. , lie close to a linear Regge trajec- 

tory. Therefore, it is not reasonable to assume that deviation from oscillator 

dependence makes a large effect on the baryon spectrum either. 

I would like to thank the Stanford Linear Accelerator Center for its hospi- 

tality and the SLAC staff for its help in the preparation of this paper. 
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APPENDIX 

This Appendix contains a list of all the orbital wave functions B for the 

harmonic oscillator levels up to and including N = 3, and for the N = L = 4 

states. The B are related to polynomials D of order N in rand Fby the equation 

&N+3 3 -3 
B=@ r) D exp 

I- 
-+(A2 + P2)/S 1 , q = @/MOW o 

Since h2 + p2 is invariant to all permutations of the three quarks, the symmetry 

properties of D are those of B. The list is given in Table II; Dk L corresponds , 
to the quark-model level N, ‘orbital angular momentum L, symmetry i , and 

maximum value of the z component of L. If there are two states of the same N, 

L, and symmetry, they are distinguished by a third subscript, Q! or p. The 

functions Y:‘p and Ytyp are defined by Y: = - (l/fi)(Ax + ih,), Yt =A=, etc. 

The h and p components of a function of mixed symmetry are listed together, 

separated by a comma. 

Polynomials of specific symmetries and the appropriate orders in xand F 

are given in Table 3 of Karl and Obryk. 7 These polynomials are not convenient 

for calculations, however, because some of them correspond to mixtures of dif- 

ferent energy levels, they are not all orthogonal, and they are not normalized 

uniformly. Each polynomial D of Table II corresponds to only one energy level 

N, and the corresponding B are all orthogonal and normalized by the condition 

I J d3p d3hlB12 =l . 
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SU(3) is Z$ 
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8. In Rl, where the orbital wave functions are simple, the’amount by which a 

state is favored is proportional to the color-singlet probability of the state, 

This probability is 1, 3, and 3 for N = O@), 1(70), and 2(56) states, re- - 

spec tively . 

9. This effect is present if one compares states of maximum angular momen- 

tum, i.e. , the A +(1232), N (1678), and A or if one compares the 
3 5- 7 

+(1950), 
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states in the nucleon sequence, N +(938), N -(1525), and N 

1 3 5 
+(1685). 
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TABLE I 
VALUES OF A AND A2 FOR LEVELS UP TO N = L = 4 

N =2, L =2: 

(A56)2 =4 

N =2, L =l: 

N =2, L =0: 

(A56)2 =4 

N =3, L =3: 

(A56)2 = 3 

A a70 = 34 
0 2 

N =3, L =2: 

N =3, L =l: 

Azs =a 

A;; =& 

A m70 
aP 

=Am7’ ~0 
Pa 

A s-70 =o 
SP 

N =4, L =4: 

Ays = (12)’ 

A 1: =&3 

A m70 
QP 

=hrn7’ =2 
Pa 

As7’ = 
SP 

0 

(A5”)2 = 0 

(A70)2 = 1 

As7’ 43 

(A20)2 = 0 

A s70 43 

(A2o)2 = 3 

A m70 =2 

(A70)2 = 1 

A56 =(-J 
Ps 

A2’ ~0 
Pa 

(A;)2 = 7 

Aa7’ = 0 
aP 

A56 ~0 
Ps 

arn7' = 0 CYCY 

(Az)2 = 10 

m70 A =0 (A70)2 = 2 

A mm =. (A70)2 = 2 

s70 A = 3t 
0 2 

(A70)2 = 7 

(A56)2 =3 

(A20)2 = 3 

A m70 = -2 
aa! 

Am70 
PP =l 

(A;o)2 = 1 

(A56)2 = 12 

(A;o)2 = 4 
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TABLE II 

ORTHONORMAL POLYNOMIALS D CORRESPONDING TO 
SPECIFIC SYMMETRIES AND OSCILLATOR LEVELS 

N =0 and 1: 

D”o,o =1 

Dh’P =2/i Y: , &Z YT 
131 

N =2: 

$,2 + + + + =YP YP + Yh Yh 

h D2$ =(YzY$ 

N =3: 

a 
D3,3 

= p (yyyty; 
0 

-3YfY:Y:) 

h D3’; =(Y;Y~Y~+Y~Y~Y~), (YTYzYf+YzY;Y;) 

D~~~=~~)~~:Y~-Y~Y~)Y~,(~)~~~Y~-Y:Y~)YA 
f + 

1 
14 2 2 D;,l=g 0 c A (p -h)Yz-ZAfFY+ 1 

- loq) Y: + 2haFYP +] , (-&-)’ [(3p2+A2-10q)Y~2~,;] 

D;‘T p =($)’ [(-p2+q)Y;+cj+Yp], 6)’ [(-h2+4)Yp+cp’kh] 
, , + + + 



I .- ..---.. .--.~-.. 
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TABLE II (cont. ) 

N =4, L =4: 

q4 =z IL (Y~YyY~Y~+Y+AY;Y;Y:+2Y:Y;Y~Y$ 

A 
D4:4P,cl = 3 0 

; l- (Yf:YzYyYf -Y:Y:Y:Y:) s(g + + + + + + (Yp YP + Yh Yh) Yh YP 

(-Yf Yf Yy YZ -Y~Y~Y~Y~+6Y~Y~Y~Y3, 


