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ABSTRACT 

We reply to the comments by Nash about our approach to the 

partial differential equations of renormalizable quantum field 

theory. By a simple example, the lack of content of his remarks 

is made more manifest, 
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In his paper’ on our approach2 to the partial differential equations of 

quantum field theory, Nash has completely misrepresented the violation of 

dimensional analysis D For, in Eq. (8) of Ref. 2, the physical mass parameter 

in the argument of the 6 -function in that equation is mcs t certainly mea- 

sured in terms of the intrinsic scale p. (If this were not so, the operator 

k&+/J -&would not be a dimensional analysis operator, as it would not con- 
w 

tain all of the fundamental scales in the respective Green’s functions. ) There- _ 

fore, in this Eq, (8) of Ref, 2, for example, the argument of the e-function, 

A2(Xpj)’ - m2, satisfies 

(1% +P $)(A2(cpj)2 
-m2) = 2 (A2(Zpj)2-m2) (1) 

since m2 must be quadratic in /.J. In the more general case where there are 

several intrinsic mass parameters { pj} , the arguments of the respective 6- 

functions would satisfy the analogous relation 

(A +$ + Xp. a)(h2(Qj)2-m2) = 2(A2(Zpj)2-m2) , 
j J*j 

(2) 

since, again, m2 must be a quadratic function of { pj 1 D Thus, the term RI’@) 

in Eq. (11) of Ref, 2 arises because the Green’s functions can be singular at 

threshold so that (referring to Eqs, (7), (8), and (11) of this reference (2)) 

WY+ ~)~(‘Pj/~)’ (h”(~j)2 -m2) =P(hPj/~)6(A2~j)2-m2)(P & + A $1 

(A2(Zpj)2-m2) 

= 26(h2(Cpj)2-m2)(h2(Xpj)2-m2)p(hpj/~) 

= 2~~26(A2(Zpj)2-m2) , (3) 

where 
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-2 pp E 
(h2(Zpj) 2 Z2) - 0 

(h2(~j)2~m2)p(hPj/~~ 

We have shown in footnote 6 of our Ref. 2 that in general this last limit is not 

zero to finite orders in perturbation theory., (We shall return to this point be- 

low. ) Nowhere in Ref., 2 is it intended that a violation of dimensional analysis 

occurs simply because the respective physical mass thresholds m2 are not 

functions of h and the intrinsic scales { p j} D Nash’s Eqs. (12) and (18), the 

basis of his remarks, are therefore completely incorrect descriptions of the 

terms RI’@) which we introduced in Ref, 2. These remarks by Nash are 

therefore without a foundation, 

As we stated above, we have established the nontriviality of the limit (4) 

in finite orders of perturbation theory in footnote 6 of Ref, 2 in the case of 

quantum electrodynamics, In a recent work, 3 we have explicitly discussed 

this limit in perturbation theory in general field theories as well as in non- 

perturbative situations. Again, the limit can easily be verified to be meaning- 

ful by explicit calculation in the general calculable case. For a complete dis- 

cussion, we refer the reader to Ref, 3. Here, in order to illustrate why it is 

sufficient for our purposes to establish the nontriviality of (4) in calculable 

situations, let us consider a rather simple example. 

Namely, consider the theory of the massless scalar field with the quartic 

self-coupling -go4/4! D It has been shown by Callan’ and Symanzik’ that the 

1PI Green% functions {I’ @) } of this theory satisfy 

QJ $ + P & - nY)r(“)@Pjsg,‘J) = O (5) 

to each order in renormalized perturbation theory. Here, p is the normaliza- 

tion point, and p and y have their usual meanings. 495 In particular, the six- 

point 1PI function must satisfy this Eq, (5) to each order in perturbation theory, 
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Let’s work to order g3* Then, to this order, 

-ST) = 0 + otg4, p w 

P F6) = 0 + ws4) 
and 

yr@) = 0 + o(g5) 

@a) 

VW 

(6~ ) 

so that indeed (5) is true to this order, as .it should be, 

On the other hand, in applications, it is desired to solve (5) for I’ (6) as a 

function of the external scale A. It has been customary, therefore, to convert 

the operator in (5) to an operator involving this scale h by using dimensional 

analysis D Since the function rt6) has engineering dimension 4-6 = -2, it has 

become a common practice to attempt to apply Euler’s theorem to conclude 

4 (p -$ + h $)r(6) 2 -2rt6) (7) 

so that (5) would become the analogue of Nash”s Eq. (4): 

- 6y - 2)l+)(Ap.,g /A) 2 0 . 
J ’ (8) 

Eq. (8) would then be the desired equation for the dependence on the external 

scale A. 

Our central observation in Ref. 2 is that because the limit (4) above is 

nonzero in general, Eq. (7) is not true so that Eq. (8) must be modified. In- 

deed, since we are working to order g3, let’s now check to see if the limit (4) 

is nonzero to this order. The relevant contribution to I’ 63) is the one-loop 

graph shown in Fig, 1. It’s sufficient to study Imr (6) , since the operators in 

(7) and (8) are real, By explicit calculation6 we find, for example, if h 2 2,h2t2, r 

Disc l?@) = 
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Thus, to order g3, the limit in (4) is 

$2 =- p2g3 r 
I c log LJs2(sZ-4r2)-s2+2r2)/ 

16 7r,i l-4rL/sL 
2 1 

)I 
I 

(lOa) 

and 

16 
-- 

J 
-- 

log s2(s2-4r2)-s2+2r2,)/ s2(s2-4r2)+s2-2r2) 
I (lob) - 

so that Eq. (7) above is not true to finite orders in perturbation theory. In this 

simple example, our violation Rr in) of dimensional analysis is 

hRr(6) = 

in agreement with Eq. (13) of Ref. 2. Combining (11) with (5) yields 

(11) 

(-A J& + p $ - 6~ - 2)Imr@) = 
- 2 ’ js2(s2-4r )-s2+2r2 , (12j 

1 JsTZ4r2)+s2-2r2 

which is now the correct equation to order g3. 

Our new dimensional analysis violating term RF @I (see Eq. (11) of Ref. 2) 

has therefore been shown to be present to finite orders in perturbation theory 

by explicit calculation in the simple example treated here. To repeat, the 

general calculable case is discussed in Refs. 2 and 3, 

To each order in coupling we have correct equations of the type (12) pro- 

vided we include our violation term. These can then be solved with confidence 

that the error made is of higher order than the last term kept and, for asymp- 

totic regions, less significant since, in general, higher orders are more 

singular at threshold and therefore less significant in our3 particular integral 

for equations of the type (12). This is completely analogous to computing p and 

y only to finite order. Nash’s bold speculation about the absence of very 
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singular thresholds when perturbation theory is summed through all orders is 

thus completely irrelevant,, We shall not be concerned further with these re- 

marks by Nash. 

REFERENCES 

1. C. Nash, preceding paper. 

2. B. F, L. Ward, Phys. Rev, Letters 33, 37 (1974); ibid, , 251 (1974). - 

3. . . B F L. Ward, ‘*Differential Dispersive Approach to Large Momentum 

Transfer Processes : I,” SLAC-PUB-1565 (March 1975). 

4. C. G. Callan, Jr. , Phys. Rev, D2, 1541 (1970). - 

5. K. Symanzik, Commun. Math. Phys, 18, 227 (1970). - 

6. We suppress permutations of external momenta. 

FIGURE CAPTION 

1. Order g3 contribution to I’ (6) in scalar field theory, 

Fig. 1 


