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ABSTRACT 

It is argued that the study of the production of a pair of particles 

with large invariant mass can provide information on the dynamics of 

hadronic constituents in a similar way to the study of large transverse 

momentum reactions. A general framework for the analysis and 

interpretation of these reactions is developed in terms of hadron- 

irreducible subprocesses and the constituent interchange model. 

Counting rules are developed that predict the energy and mass depend- 

ence of the cross section. In particular, the production of a massive 

lepton pair or hadron pair in reactions with photon or hadron beams 

is discussed. A particularly interesting process that is discussed 

involves the production of a massive hadron pair in electron-positron 

annihilation. Its importance in measuring properties of generalized 

structure functions is emphasized. 
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1. INTRODUCTION 

The recent discovery’ of very narrow large-mass resonances has generated 

considerable interest in the theory of the production of lepton pairs at very high 

mass in hadron-hadron collisions. In a superficially quite different vein, recent 

experimental and theoretical developments in large transverse momentum 

single particle processes’ has, as its next logical extension, the correlated 

production of a pair of hadrons with large invariant mass (each of which has a 

large P,). I, In this paper, we shall present a unified treatment of these processes 

using the physical picture and assumptions of the constituent interchange model. 

We shall develop dimensional counting-type rules that completely characterize 

the mass and energy dependence of the cross sections. 

The best known theoretical description of large mass lepton pair production 

is the Drell-Yan model, 3 which utilizes the annihilation of two point-like consti- 

tuents into a heavy photon as a basic process. However, an upper bound derived 

for this model by Einhorn and Savit showed that it was much too small to fit the 

data4 The discovery of the G(3.1) and its subtraction from the cross section 

improved this situation considerably, but it still appears that the Drell-Yan 

prediction for the lepton pair continuum could be low by perhaps an order of 

magnitude. There is however considerable uncertainty in interpreting the data, 

so that the real discrepancy may be smaller. 5 One possibility, briefly dis- 

cussed in a SLAC workshop, 6 is that there are important basic processes in 

addition to the one assumed by Drell-Yan. Several different basic processes 

will be explicitly discussed here, and the characterization of a general process 

will be given. If the results of the analysis of the large transverse production 

of a single particle are any guide, several basic processes may well be important, 

even ones that are nonleading when compared to the Drell-Yan process. 
7 
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In this paper we shall use for reasons of simplicity a spinless quark model 

with dimensionless coupling constants. Since we are primarily interested in the 

scaling behavior and not the angular distributions, this should be permissible. 

With this model, we shall discuss first the production of a large mass lepton 

pair in hadron-hadron collisions, and a quark counting formula will be given for 

the general case. Then the production of a large mass hadron pair will be dis- 

cussed in a simplified model motivated by the large transverse momentum 

models. This result will be applied to the production of a massive hadron pair 

in electron-positron collisions, e+e- -. H1H2X. The discussion will stress the 

important threshold and crossing properties that can be determined by meas- 

uring this type of process and its crossed analogne, H1H2 - 1’1~x. Finally,the 

possible effect of the CIM selection rules for allowed interactions between con- 

stituents will be discussed and the importance of experimental information on 

this point will be stressed. 

The derivations of our results will be simplistic and naive in the extreme- 

and hence probably useful. We shall calculate the lowest order diagrams in a 

renormalizable theory with scalar quarks and assume that the logarithmic 

corrections do not accumulate in higher order so as to modify our essentially 

dimensional results. Our experience with the analysis of large pT reactions is 

support for this point of view. We shall not explicitly discuss the production of 

narrow resonances, such as the @Is, but they could be included by using the 

methods and basic processes developed here together with a model of such 

resonances. 8 

Let us now turn to a derivation of the lepton pair mass distribution for a 

general hard scattering model. 



-4- 

11. DECOMPOSITION OF LEPTON PAIR PRODUCTION 

In this section, a probabilistic formula for the production of a large mass 

lepton pair will be derived. This result is similar to the formulation used to 

describe high transverse momentum processes in hard scattering and parton 

models. 2 The reaction AB --L Q’Q-X is decomposed as illustrated in Fig. 1. 

The final fragmentation states of the projectile A are denoted by (Aa) = (a), and 

similarly for B, (BI?) = (p) . For simplicity, these will be treated as one particle 

states of a given mass, but an integration over a mass spectrum reflecting their :. 

true multiparticle character is implied. 

The cross section is written as 

do -= 
d4Q 

J I M(AB + Q+Q-X) I2 dp s4(Q-Q+-Q-)/Zh(s, A’, B2) , (2-l) 

where 

hz(s, t,U) = s2+ t2+u2 - z(st+su-l-tu) , 

and 

dp= n d4p 
2 6(+)(pf - rnf) (27r)3 c?~(P~+P~-Q-ZP~) 

i (27r)3 

d4Q+ d4Q- 6+(Q+’ -m) 6 (Q -m2) , 2 + -2 

Gw6 

where the pi label the final state hadron momenta. The matrix element is 

written as an incoherent sum over contributing intermediate states 

lM(AB --L Q’a-X) I ’ = aFd $i(pi) #i(pt) I M(ab --L Q’n-d) I ’ , 
, 

where 

(2.2) 
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and eA is the vertex function describing the breakup A - a+ o, where a is 

off-shell. 

Defining finite momentum frame variables as 

PB= P+G,G 
( T’ 4+B2) 4p 

cu’+kt a”+k; 
+ 4(lWXa)P , -ra, (lWxa)’ - 4(1-xa)P ’ 

then the phase space factor achieves the form 

/ 

d4p -%+(p:-a”)= J$@ & . 
Gw3 

Defining the probability distribution function in xa and ra as 

X a 

2(2?$3(1-xa) 

where 

pz = rnf + xa 
k;+a2 

x -1-x ’ a 1 

(2.3) 

and introducing the cross section for the basic subprocess ab - Q’Q-d, one can 

write 

$-(AB-Q+Q-X) = c 
dQ ab, d 

Jd", d2ka dy, d2kb Ga,A(Xa,k&,,B(X&) 

’ ‘it’ 4 dc 

xa$ h(s, A’, B2) 
- (ab - Q’Q-d) 
d4Q 

. (2.4) 
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If the distribution functions damp the off-shell behavior sufficiently rapidly, 

and if s is sufficiently large, then 

and the cross section formula considerably simplifies with,the basic subprocess 

being effectively on-shell. 

Finally, the cross.section for the production of a lepton pair with (mass)‘= 

Q2 can be achieved by integrating over -& and x 
Q’ 

The final result is 

z (AB 
dQ2 

- Q+Q-W = c /ba% Ga,~(xa) Gb,B(“b) 
ab,d 

d; s’= xaxb s,Q2 (2.5) 

which will be used in our later discussions. 

The general behavior of the distribution functions have been discussed 

elsewhere. 2 The results that will be needed here are 

G a,A(x) - x-@(O) 

- (l-x) ga/A 

x- 0 

X-J 1 

where 

ga/A = - Zn(Aa) - 1 , 

and n(Aa) is the minimum number of elementary fields in the state (A$. In the 

next section, the limiting behavior of the basic processes will be discussed. This 

behavior, in the limit Q2 -+ s, will be parametrized by terms of the form 

(E= l-7, T =Q’/s) 

Q 
4 da 

2 (s, Q2) = s-~(Q’)-~ cf u. o (2.6) 
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The general cross section arising from this basic process is then 

Q 
4dC7 -= 

dQ2 
a,(&‘) -m J cMy G a,A(x) Gj,,B(3T) (1- 6,’ (q s)-n ‘(W-T) 

E (Q2)-N~HZo(~) 

where N= n-km, and if 

then 

and 

G a,A(x) m $ (l-xpa’A) 

Gb/B(x) cc ; (1~x)@b) 

H = f + g(a/A) f g(b/B) -I 

(2.7) 

2 

2 (E)E(r n 
0 7 J O 0 

’ $wdz wf(l-W) g(b/B) z%@/B)+f ~l-z+WA) 
(T+wz)l+@‘B) (T+wzE)l+n+f 

which is finite at T= 0 and 1, and is slowly varying for 0 <T-C 1. 
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III. BASIC MECHANISMS FOR MASSIVE LEPTON PAIR PRODUCTION 

In this section we study the various mechanisms which may be responsible 

for massive lepton pair production. We start by evaluating Q4dg/dQ2 for the 

subprocess (a+b) - (Q+Q-) d (cf. Fig. 1) and later we shall substitute this, 

together with the appropriate structure functions for the initial state hadrons, 

into Eq. (2.5) to obtain the full differential cross section. 

It is convenient to begin by performing the integrations over the lepton 

momenta Q’ , Q-; the remaining integrations can then be viewed as corresponding i 

to the cross section for producing a heavy photon of mass M. In all of the 

processes to be considered below, the photon-quark interaction is labeled as in 

Fig. 2, and the integral over the lepton variables is of the type 

I= c I d4Q+ d4Q- *+(Q+‘-m’) 6+(Q”-m2) s4(Q++Q--Q) 
spins 

x lii(Q-) (&it) v(Q+) I2 (3-l) 

The lepton masses m can be neglected with respect to Q2, and the integral 

and spin sum can be evaluated 

I =; ,h2(Q2,q2,k2) . (3.2) 

We are now ready to calculate the cross section for the various relevant 

subprocesses. 

A. q+q-y 

This is the familiar Drell-Yan process (see Fig. 3a). Using Eq. (3.2) we 

see that 

4do 
Q- 

dQ2 
= f A(Q2, p;, 4) s(s-Q2) (3.3) 
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where s = (pa+pb)‘. As stated in Section II, the assumption is made that the 

structure functions strongly damp the off-shell behavior of a and b so that we 

can neglect pz, 4 with respect to Q2, and obtain 

Q 
4dl7 -= 

dQ2 
; a(l-Q2/s) . (3.4) 

B. q+q-q+q+y 

This is the simplest process of the bremsstrahlung class of models, in 

which the massive photon is emitted off a heavy timelike quark (see Fig. 3b). 

Whether such quark-quark scattering terms exist in nature (or at least at 

present energies), is questionable since they would give a p ;” behavior for the 

inclusive pion distribution and a s -8 behavior of the fixed angle pp cross section, 

neither of which is observed. Nevertheless we calculate its behavior. Again 

we neglect pz, pi with respect to Q2, and also set the final state quark masses 

&) equal to zero eventually. Then 

d4kl d4k2 d4Q? 

[tQ+~l)2 -EL’]’ 
64(pa+p&-k2-Qt) . 

. 6(c)(k;-~2) 6+(k;+‘) S+(Q12-Q2) 9 h2((Ql+kl)‘, Q,‘,p’) . 

(3.5) 

It is now convenient to introduce 1 in the form 

I = /d4q 64(Q+kl-q) . 

The kI integration in (3.5) can now be written as 

I = J d4k, 6(k;+‘) 6((q-kl)’ -Q2) 

(3.6) 

=- 2” (1 - Q2/q2) . (3.7) 
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where we have neglected p2. Note that 

A2(q2, Q2, ~1’) z q4(1 - Q2/q2~2 , (3.8) 

and as q2 approaches its kinematic limit, the right hand side of (3.8) vanishes. 

Because of this factor, (1 -Q2/q2)‘, models of the bremsstrahlung type will 

always have two more powers of E than naively expected from phase space. 

Substituting (3.6)) (3.7)) and (3.8) into (3.5) we have 

d”(-& J” 
dQ2 ” 

d k2d4q 64@a+pb -k2 -4) -/.L’ (1-Q2/q2)3 . > 

(3.9) 

Again it is convenient to introduce a factor of unity, this time in the form 

l= J dM2 s(q’-M2) . 

The k2 integration is now given by 

= 
/ d4k2 d4q 64(pa+pb - k2 -9) 6+(q2- M2) 6+(k; - P’) 

=; (1 - M’/s,) , 

and thus 

Q 4&.(B)=& Js 
dQ2 Q2 

dM’(l -Q2/M2)3 (1- M’/s) . 

Changing variables of integration from M2 to z by the transformation 

M2 = Q2 +ESZ, E = 1 - Q2/s , 

we find 

-3 
Q d!z z3(1-2) [(l-e) + EZ] . 

(3.10) 

(3.11) 

(3.12) 

(3. 13) 

(3.14) 

Both similarities and differences can now be seen in comparison with the 

large pL case. Since here we do not need to worry about “balancingtl the large 
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Q2, every quark or particle in the final state can be thought of as a “spectator. ‘I 

Thus we expect three powers of E on the right hand side of (3.14) from the two 

final state quarks, and indeed we do get these, together with two extra factors 

of E from the right hand side of (3.8). Notice also that the l/Q2 (or l/s) 

behavior is the same as in the Drell-Yan case. 

c. q-n -) q-y 

This is the simplest example of a process with more than 2 initial state 

quarks (Fig. 39. This process also clearly has an annihilation type graph with 

a Drell-Yan basic process. Since it was computed in (A), only the bremsstrah- 

lung graph will be computed here. For this process (under the usual assumptions) 

we have 

d4k d4Q, 6+(k2-p2) s+(Q,2-Q2) ti4(pa+pb -k-Q’) 

1 - +f A2(s,Q2,p2) , 
S2 

or 

Q 7r2 2 4-$(C) =-g 5 E3 . ( 1 (3.15) 

We see that the E behavior is as expected-one power of E from the single 

spectator and an additional two from the spin sum and integration over the 

lepton variables. There is now a factor l/s in the right hand side of (3.15) 

which was not present in process (A) or (D); it will become clear below that 

every time we increase the number of quark fields in the initial state of the sub- 

process by one, Q4 dc/dQ’ gains an additional factor of l/s. 
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D. q+M-+q+q+q+y 

The cross section for this process (see Fig. 3d) is given by 

c7J 
d 

(3.16) 

where 

1 
Jd= d!z dx z3(1-z)3 x(1-x) b-a]-" [1- ax]-l . 

Again the E and s behavior are as expected. i. 

D. g+ (2q) -c q+q+q+y 

This reaction (see Fig. 3e) can be calculated by similar methods to those 

used to evaluate the above processes, and one finds that 

Q -CX e ’ 

where 

(3.17) 

Je=g2/1 dz dw dv ~~(1-2)~ w~v~-Ez(~-wv)]-~ [l-es]-l[x-ez(x+w(l-x) -wv~-~, 
0 

and x is the fraction of the momentum of the diquark system carried by one of 

its quarks. Both the E and s behavior are as expected from the previous 

discussion. 

F. M-I-= -y 

This mechanism using physical intermediate states has been proposed by 

Chu and Koplik. 9 They treated the heavy photon in analogy to the p-meson and 

showed that such a mechanism is not inconsistent with the data of Christianson 

etal.f4 -- when the $ contribution is subtracted out. For this process (see 
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Fig. 3f), we find 

Q 6(1 - Q2/s) . (3.18) 

This again complies with our expected s and E behavior. 

G. (2q)+(2q) --, q+q+q+q+y 

As a final example we present the process (2q) + (2q) 14q+y for which 

Fig. 3g gives one of the contributions. For this diagram we find 

Q g 
(3.19) 

where 

Jg =I 

1 dz dw dvdu z4(1-z) 3 ( 1-w)v log (1-EZvul 
, 

0 [1-Ez13 [l-Ezw][x-Ezv]2 [xy-mvu12 E 

and x and y are the momentum fractions present in the two incident diquark sys- 

tems. The other diagrams for (2q) + (2q) - 4q+ y give a similar behavior. 

We are now in a position to state our general rules for the subprocess 

a+b --) 1+1--t nfq which follow essentially from dimensional analysis. They can 

be summarized in the form 

Q (3.20) 

where ni is the number of quark fields in a+ b. y is defined to be (-1) when the 

massive photon results from the annihilation of 2 nearly on-shell constituents, 

such as in the Drell-Yan process, and is defined to be (+ 1) when the photon is 

bremsstrahlunged off a massive timelike quark. 
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IV. THE EXCLUSIVE-INCLUSIVE CONNECTION 

In Section III we considered basic mechanisms for the production of massive 

lepton pairs in which, apart from the lepton pair, a certain number of free on- 

shell quarks are produced. In this section we study the consequences of re- 

quiring some or all of the final state quarks to bind into hadrons. Before pre- 

senting some simple examples we would like to recall the analogous results in 

the case of the production of particles at large transverse momentum. The 

smooth connection between the simple particle inclusive and exclusive cross 

sections was discussed by Bjorken and Kogut. 10 

The cross section (inclusive and exclusive) for the production of particles 

at large transverse momentum can be characterized as a sum of terms each of 

which is a product of a power of E and a power of l/p: . Each such term arises 

from a particular subprocess. E here is defined to be (l- 4pT/s). The power 

of E, F say, for a particular subprocess is given by the expression 

F = 2ns - 1 , 

where ns is the number of quarks not participating in the central subprocess. 

The power of (l/p: ) is given simply by the Brodsky-Farrar counting rules: 11 

for each additional quark participating in the central subprocess (whether this 

quark is an initial or final state leg), there is an extra power of l/p:. It is 

found that each time the number of spectators is decreased by one, and hence 

the power of E is decreased by two, the power of l/p: is also increased by two. 

Thus each lost factor of E is “compensated” for by an extra factor of l/p: . 

Below it will be shown that a similar, but different,connection exists for 

the production of a massive lepton pair (see discussion after Eq. (3.14)). We 

start by presenting a few simple examples. 
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A. q+q - (2q)+y 

The (2q) system has a fixed mass m and consists of two on-shell quarks 

(Fig. 4a). Although this example is quite unphysical, it demonstrates the 

consequences of fixing the mass of a number (in this case 2) quarks. For this 

process we have 

sQ4 du 

dQ2 dm2 
cc j- d4kld4k2 d4Q1 6+(k;-p2) 6+(k;-p2) tj+(Q12-Q2) 

“4(kl+k2+Q’-P) x Q12, cl”) l 

(4-l) 

This integral can be performed by the techniques introduced in Section III and 

gives the following result: 

Q4 da 
dQ2dm2 

a $l’dz z[l-E+z~i)-~ , (4.2) 

where 

El = - ,’ k& - m)2 - Q2] 

and, as before, E = 1- Q2/s . For sufficiently small m2, E’ is approximately 

equal to E . We can integrate the right hand side of (4.2) over m2 to obtain 

(3.14), a result which can be understood naively by noting that the range of the 

m2 integration is e2 s. 

From Eq. (4.2) it can be seen that fixing the mass of the final state two 

quark system has reduced the powers of E by 2 (from 5 to 3)) so that for the 

purpose of counting these powers, the di-quark pair can be treated as one 

particle. The price that is paid for this reduction in powers of E is a factor of 

l/s which is present in (4.2) but not in (3.14). As will be shown below this 

result can be generalized as follows: each time the number of hadrons (whether 
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quarks or bound systems) in the final state is reduced by one due to additional 

binding (keeping the number of quark fields constant), the power of E is reduced 

by two and the power of l/s is increased by one. 

We now turn to a more physical example. 1 

After carrying out the loop integration (see Fig, 4b), ‘the amplitude for this 

process is proportional to (modulo factors of logs, which in the spirit of dimen- 

sional counting we neglect) giT(Q-)y * kv(1+)/Q2. Squaring this amplitude and 

integrating over the appropriate phase space we obtain 

Q (4.3) 

This result is in agreement with the behavior expected from the discussion given 

after example A. 

c. q+(2q) - (3q)+y 

The (3q) system has a fixed mass m and consists of three on-shell quarks. 

A typical diagram for this process is shown in Fig. 4c. This diagram can be 

evaluated by the techniques of Section III and gives the result (to leading order 

in E and l/s) 

Q4 do amc . 2 3 

dQ2dm2 s3 
(4.4) 

The other diagram of the same order for this process gives the same behavior. 

Again this result is in agreement with the discussion presented after example A. 

As a final example we present the following. 
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D. q+(2q)- B+y 

The baryon state (B) has a fixed mass m. A typical diagram for this 

process is shown in Fig. 4d. One finds for this diagram 

Q 
4Q -a 

dQ2 

g2h2 e3 

S3 
, (4.5) 

again as expected. The baryon wave function is characterized by the constant 
9 

h which has dimensions of mass*. 

By considering examples similar to those presented above, it is seen that I. 

the formula (3.20) can be simply generalized when certain sets of the final 

particles bind. It simply gains an additional factor of 

(g2,e2Q2r(nbnd-1) , 
(4.6) 

where nbnd is the number of quarks in each of the bound states. The examples 

in Section III all corresponded to nbnd = 1 so that this factor was unity. In the 

next section we shall use Eqs. (3.20) and (4.6) together with the convolution 

formula (2.5) to classify hadronic and photonic production of massive lepton 

pairs. 
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V. CHARACTERIZATION OF CROSS SECTIONS 

In this section, a general cross section formula giving the E and Q2 be- 

havior for any given basic process will be exhibited. It will then be used to 

give a characterization of the cross sections for different incident beams on 

nucleon targets, These characterization formulae are meant to be used as a 

guide to possible behaviors of the cross sections - the dominant terms in a 

certain kinematic regime must be determined by experiment. If the results on 

large transverse momentum reactions are used as a guide, several different 

basic processes are probably important. 

Collecting together the results derived in Sections II, III, and IV, the gen- 

eral cross section behavior for each basic process can be written in the form 

(valid for small E ): 

4 da 
Q 

- a ey+2nf (ST”“” (&)z(nbnd-l) , 

dQ2 
(5.1) 

where 

nf = n(aA) + neB) + n(d) 

is the total number of final state quark fields present. If there is a composite 

exclusive state arising from the basic process, then nbnd is the number of 

quarks that are bound up in it (nbnd = 2 for meson and 3 for baryon, and if only 

free quarks are present, nbnd = 1). This is then summed over each bound 

state present. The parameter y can be determined by examining the topology of 

the graph - for an annihilation-type graph, y = -1, and for a bremsstrahlung- 

type graph, y = +l. The last factor in this equation, which depends on nbnd, 

simply reflects the fact that if the final quarks bind among themselves, one 

gains in phase space, i.e. fewer powers of E , but loses in powers of Q2, cor- 

responding to the necessary presence of hadronic form factors in this case. 
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Let us first apply this formula to derive a familiar result. If one con- 

siders a pure annihilation process, then it will be possible to derive the time- 

like behavior of hadronic form factors. Inthis stiuationA =B, y=-1, nf =0, 

nbnd = 1, and na = nd = nA = nB. The formula becomes 

K&L N 
wyl) 

Q 
dQ2 

E - e(E) lFB(&2)12 , 

which is the usual dimensional counting result for the form factor. 

Let us now consider the process pp - 1’1~X. Using the previous formulae, 

the general cross section arising from the basic processes A, B, . 0 0 of Sec- 

tion II takes the form (valid for small E and large Q2) 

4 da Q - = cl1 A+FQ4 2 +CE Q 6 -2 

dQ2 - 
-2+D~ Q 

2 -2 +EE Q 

The relative normalization constants A, B, 0 D. also label the basic subprocess. 

Each factor of Q2 on the right-hand side of this equation should be replaced by 

(Q2 + M2), where M2 is a typical hadronic mass, in phenomenological applica- 

tions . If the CIM fits to large transverse momentum data are used as a guide, 

one might expect that the dominant terms are A, C , and E , but only experiment 

can decide in this new regime. Finally, note that if the final three quarks in 

basic process E bind to form a baryon or baryonic resonance, which should be * 

important at lower energies and small E , the above E term is multiplied by the 

factor (E~&~)-~. 

Now consider the process 7rp - Q+Q-X. Using the same notation as above 

(the values of A,B, .00 should be different of course for each type of beam par- 

ticle), the cross section becomes 
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4 do Q - = c5 4 2 -2 

dQ2 
A -I- (F + F1e4)Q-4 + (C + Cl’ )E Q +EG~Q-~+ .00 

(5.3) 
where the F and C terms have no bremsstrahlung from the incoming beam 

meson and F1 and Cl involve a radiated qG pair. Again the E term is multi- 

plied by (E~Q~)-~ if the final quarks bind to form a baryon, 

The final hadronic process that will be explicitly characterized is the re- 

action pp - a??-X. In our standard notation, the cross section is characterized 

by the terms 

(5.4) 

where the F term arises from the unusual basic process (qq) + (64) -. y - a+~?-. 
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VI. EFFECTIVE POWER ANALYSIS 

It has proven very useful in analyzing data on large transverse momentum 

processes to extract the effective power behaviors in E and pT. 2 lo It should 

also prove helpful to make an analogous type of analysis in the case of large 

mass production. The results of such an analysis should be very sensitive to 

trends in the data and to the dominant basic process and should allow a simple 

comparison with different theories, The effective powers here are defined as 

(compare Eq. (2.7)) 

H eff Z 

N eff E 
, 

6 1) 

(6.2) 

where the Q2 derivative is taken at fixed E , and the E derivative (which is 

equivalent to an energy derivative) is taken at fixed Q2. By taking differences 

of cross sections between beam particle and antiparticle, it may be possible to 

isolate quasielastic peaks, which show up as a maximum in E at fixed Q2, or a 

vanishing of H’eff For more details, see Ref. 2, 

These effective powers are very useful in determining the dominant basic 

subprocesses, since, according to Eq. (5. l), each such process predicts 

H eff - H z y + 2nf - 2X(nbnd - 1) 

and 

N eff N N = na+nb-2+Z(nbnd-1) 0 (6.3) 



- 22 - 

VII. PHOTOPRODUCTION OF A MASSIVE LEPTON PAIR 

In this section we derive the dimensional counting rules for the photo- 

production of a massive lepton pair. The vector dominance model (VDM) in 

which the incoming photon couples to a virtual vec,tor meson which then scatters 

off the target nucleon provides only a subset of the processes present in the 

constituent interchange model. A sample set of diagrams which contribute to 

the photoproduction of a heavy lepton pair is presented in Fig, 5. Eq. (2.5) 

still applies where G a/A(Xa) is now the photon structure function, and do/dQ2 
:. 

for the central process is calculated as in the case of two initial state hadrons. 

The E and Q2 behavior of the cross section for these diagrams is 

4 do Q- dQ2 tyN -+ Q’QX) = e4(a + be4 4 -2 +CE Q +dQ -6 +ec Q 2 -4 + 

+ feQ -2 +gcQ -4 + . ..) , (7-l) 

where the lower case letters label both the normalization and subprocess in 

Fig. 5. If we characterize the cross section in the usual way by 

4 da Q - a E~(Q~)-~ , 
dQ2 

(7.2) 

then the value of N is still given by Eq, (5. l), since it does not depend on the 

initial state particles. The power of E , H, is however slightly different from 

that in Eq. (5.1) because of the point-like coupling in the photon structure func- 

tion. It is now given by 

H = 2nL +ni” + y (7.3) 

em where n S is the number of spectator quarks arising from a point electro- 

magnetic coupling, and nf: is the number of spectator quarks arising through 

hadronic couplings 0 This distinction arises due to the spin structure of the pho- 

ton, and is discussed in detail in reference 12. 
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Of the processes represented in Fig. 5, only (g) and (h) are present in the 

VDM. However, analogous processes to (a)-(e) all exist in the vector domi- 

nance picture. The quark or antiquark is now not taken directly from the photon 

but from the vector meson which is coupled to the photon. The Q2 and E be- 

havior of these terms is exactly the same as that found in meson-proton scat- 

tering. If the results of the CIM fit to large pT photoprocesses are used as a 

guide, the process labeled by e is expected to be important at medium energies. 

It can be thought of as proton scattering from a photon target, Phenomenologi- 

tally it may be difficult to distinguish the VMD processes from the non-VMD 

processes, since they differ only by a single power of E. Hence one has to be 

careful about drawing any conclusions about VN - Q+!J-X from yN - Q+Q-X. 
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VIII. PRODUCTION OF A HADRONIC-PAIR WITH LARGE INVARIANT MASS 

In this section we generalize our discussion to the production of a hadronic 

pair at large invariant mass. Experiments which are set up to measure the in- 

variant mass distribution of lepton pairs in hadronic collisions can also measure 

many purely hadronic events in which two of the final state hadrons are ob- 

served in the detectors, Below we derive a set of dimensional counting rules 

for the differential cross section da/dM2 for such inclusive processes. A study 

of these distributions can thus be used to obtain information about the interac- 

tions of hadronic constituents. The reaction AB - CDX, where the CD system 

has a large invariant mass, is decomposed as in Fig. 6, analogously to the 

lepton pair case. We are not considering those pairs that have a large mass 

due just to rapidity differences but to those in which a large pT is involved. 

In addition to this mechanism, in which the large mass pair has its origins 

in a large pT basic reaction, one could also consider the production and few 

particle decay of a massive fireball. A fireball in our language is a massive 

coherent state composed of several constituents. There are additional processes 

which could produce a hadron pair with a large invariant mass, and which can- 

not be decomposed as in Fig. 6; however, all these processes involve (at least) 

off shell propagators, so that away from the resonance region, they are ex- 

pected to be small if the hadronic structure functions sharply damp the off-shell 

behavior of the constituents. Their behavior can be calculated in a similar way 

to those discussed below. 

Under the usual assumption that the structure functions of A and B strongly 

damp the off-shell and transverse momentum dependences of a and b respec- 

tively, an analogous equation to (2.5) can be derived, which reads 
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A (AB - CDX) = 
dQ2 

c jdxadXbGa,A(~a)Gb,B(xb) k2(ab - CDe; S%X~X~S ,Q2) 
ab,e dQ 

(8.1) 
It now remains to calculate the basic process do/dQ2(ab - CDe). We have 

s* (ab 
dQ2 

- cde) cc / IMab - cd ] 2 &‘;d &‘~)dpcdPDdPrdPq 

(8.2) 

We shall work in the rest frame of the (a + b) system, and neglect particle 
: 

masses, so that pa = (P, 0, P), pb = (P, 0, -P), and P =Js/Z. “Finite mo- 

mentum frame” variables are now introduced in terms of which 

ie 
PC 

F -- = w+4xp, zxp 4xp) 

-2 

pr = 
(z-1)7+ k] 

tz-l)xP + [4(z-1prp ) 
(8.3) 

i 

42 -+2 

pD = YPf&,97YP-&p 
) 

i 

-2 -2 
pq = (w-1)yP + F;;;Cpt J , (w-lK+E (w-l&P - \yw-:;gpp I ) 

In these variables, one has the simple formulae 

P,” = i?2/(z-1) 

and 

pd = T2/(w-1) 

(8.4) 

This choice of frame aids in decoupling the final state integrations. 

Under the assumption that ec and zjD suppress the off-shell and large 

transverse momentum behavior of c and d, the energy and momentum conser- 

vation equations can be written, 
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zF+ wF= 0 

zx-kwy =l 

and 
(8.5) 

-2 zr -+;c2 =s . X 

Using these relations it can be shown that 

Q2 =@,+pD)2 c s/wz. (8.6) 

The integration over x, y, r’: and ris now just the usual 2-body phase 

space, and after this is performed we are left with 

Q 4 * (ab -CDe) = s2 
dQ2 

dw dz zz c,c ($) w GD,d($ 0 $ (ab - cd)S(wz-s/Q2), 

where the fractional momentum distributions for decay are given by 

Equations (8.7) and (8.1) can now be used to write the cross section for the 

process AB - CDX in the form 
\ 

Q 4 *(AB 
dQ2 

- CDX) cc E~(Q~)-~ . (8.8) 

The value of N is given by the dimensional counting rules for do/dt for fixed 

angle scattering, 

N = n(a) + n(b) + n(c) + n(d) - 4 , (8.9) 

where n(a) is the number of quark fields in a, etc. , while H is given by 

H = 2nf - 1 , (8.10) 

where nf is the number of independent particles (quarks or bound systems) in 

the final state excluding those in C and D. 
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As an example, we consider the reaction pp - (x7r)X where the 2n system 

has invariant mass Q. Several diagrams for this process are shown in Fig. 7. 

The differential cross section for this reaction is then given by 

4 do Q - = E11(a+bQ-4+cQ-8+dQ-8+~~~)+ c15(e + . ..) , 
dQ2 

(~~11) 

where the normalization constants a, b, etc. , also label the subprocesses de- 

picted in Fig. 7. There are clearly other potentially relevant subprocesses; 

however, in the absence of data we present explicit expressions only for the 

above sample, If the results of CIM fits to large pT single particle inclusive 

are used as a guide, a should be small and the dominant terms should be b and 

C. The d process may be important at low energies, 

The cross section for the processes pp - (pn)X and pp - @6)X, for ex- 

ample, are expected to be different from the (?m) case, not only because the 

dominant subprocesses may be different, but even if they are the same, the E 

behavior is predicted to be different. It will be very interesting to compare 

such reactions at small E , where our predictions take their simplest form. 

The cross section corresponding to other subprocesses, and also reactions 

with other trigger particles, can be simply calculated by using the above rules. 

In this purely hadronic case, it is very important to compare the cross section 

behavior for differing beam and final state particles, and to analyze the data 

using the effective power analysis described in Section VI to aid in its interpre- 

tation. 
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IX. PRODUCTION OF A PAIR OF HADRONS WITH LARGE INVARIANT MASS 

IN e+e- COLLISIONS 

In this section we present our final example, the inclusive production of a 

pair of hadrons with large invariant mass in e+e- collisions, A detailed study 

of this reaction will be presented elsewhere; 13 here we restrict the discussion 

to the presentation of some examples and simply note that there is no uncer- 

tainty in describing the initial stages of the process in the constituent model. 

This reaction can be thought of as the crossed process to inclusive lepton-pair 

production in hadronic collisions; there is a one-to-one correspondence between 

the diagrams of the two reactions. There is, however, an important practical 

difference in that, whereas in hadronic collisions one is restricted to using a 

nucleon target, in e+e- collisions it is possible, and indeed easier, to have 

both the trigger particles be mesons. Because of the small value of the anti- 

quark distribution function in the proton, it is likely that the Drell-Yan model 

is more important in meson-nucleon collisions (or meson-meson collisions if 

they were possible) than in nucleon-nucleon collisions. Similarly, one expects 

that in e+e- collisions, massive meson pairs, for example, will be produced 

by a “reversed” Drell-Yan process in which the mesons are produced by the 

cascade (see Fig. 8)” 

e+e- - y - 91 + 62 +(M1+x1)+(M2+iE2) . 

It is evident that Eq. (8.7) is still valid, where dc/dt is now given by 

A$ (e+e- 4 qi) - 
h2@, mz, mf) 

s4 

(9.1) 

P-2) 

* Production by means of other mechanis,ms can be calculated by the methods 
of the previous sections and will be discussed in detail in Ref. 13. 



- 29 - 

Assuming that the hadron structure functions “G suppress the off-shell be- 
2 havior of c and d so that h(s, rn:, md) ws, the appropriate cross section is 

given by 

t$,,&jwz ‘kz -2) Y (g*3) 

where Q2 is the mass of the (C+D) system. In terms of e and s this cross 

section is written in the scaling form 

L’ Q4 ii; = EH 

dQ 
P-4) 

where H = 2nf-1 and nf is again the number of final quarks not in the large 

mass system C * +. D. For small values of E , f(Q2/s) is a slowly varying 

function, but in general it can contain explicit factors of (Q2/s) that directly 

reflect the large z behavior of G(l/z). 

Using Eq. (9.2) it is now possible to carry out the usual E and Q2 analyses 

for different trigger particles, and this will be done in Ref. 13. For example, 

if the trigger particles are K’K- , x’*-, or K+r-, f. e: nonexotic, then we have 

Q4 da 7(K+K-, x+x-, or K+8-) =-$ e3 f 
dQ 

(905) 

These processes are represented diagrammatically in Fig. 9a. However, 

when the trigger particles are 7r + *, 7r K+x+, i.e. exotic, as in Fig. 9b, one 

finds the quite different result, 

Q 
Q2 4 dz2 (K+T+) - 7 E7 g($) 0 (9.6) 

If distributions such as these in (9.5) and (9.6) are found to agree with the 

data for small E , then much interesting information about the “G structure 

functions can be obtained by examining various combinations of trigger particles. 
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Thus it seems most likely that massive hadron pair production in e+e- colli- 

sions will provide valuable insight into the nature of quark dynamics. The in- 

formation gamed on the fractional momentum decay distributions is very im- 

portant since it can be independently checked in purely hadronic reactions at 

large pT and since cis related to the ordinary structure functions G by cross- 

ing. 2 Another important feature that can be measured by examining the rela- 

tive angular dependence (nonplanarity) of the particles that make up the mas- 

sive pair is the width of the transverse momentum distribution function 
t. 

G(x, k;) for large x. This is an important parameter that allows one to esti- 

mate the nonplanarity in large transverse momentum events. The width at 

large x need not be the same as measured at small x, namely M 300 MeV/c 

and should be much broader if this is to explain the large nonplanarity observed 

at the ISR. 2 
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X. C ONC LUSIONS 

The study of large transverse momentum processes, both exclusive and 

single particle inclusive, has provided considerable insight into the dynamics 

of possible hadronic constituents. The additional, information arising from the 

study of reactions involving large mass production such as those described 

here should be equally valuable, In this paper we have attempted to provide a 

general framework for analyzing massive pair production. The reactions de- 

scribed here include the production of p-pairs by hadron and photon beams 

which generalizes the treatment of Drell-Yan. 3 The production of massive 

hadron pairs by hadron and photon beams was also calculated by assuming that 

the basic interaction involved a large transverse momentum process. Fireball 

(a massive coherent multiquark state in our language) production and decay was 

not included. Finally, the simple yet important reaction involving the produc- 

tion of a massive hadron pair in electron-positron annihilation was described. 

All the theoretical results on lepton pairs in the text are summarized in 

the essentially dimensional counting formula (5.1) which is further generalized 

in Eqs. (7.2) and (7.3). All the results on hadron pairs are summarized in 

Eqs. (8.8) - (8.10) and (9.4). It is important and necessary to determine ex- 

perimentally what the dominant basic processes are for each physical reaction. 

As an example, the CIM rules would not allow a large direct quark-quark inter- 

action, such as qq --) qqy , and it is important to determine whether this rule is 

still valid in the new regime. In fact, the dominant basic processes at large 

transverse momentum seem to have at most two quarks or diquarks in the in- 

itial plus the final state in CIM fits to the data. 

The absolute normalization of the various basic processes is difficult to 

compute a priori. The Drell-Yan process is particularly simple in this regard, 
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However, there are quite stringent bounds that can be set on the normalization 

of the generalized structure functions from sum rules and, more importantly, 

their value must be consistent with the fits to the large transverse momentum 

inclusive data, The normalizations also clearly depend upon assumptions of 
14 internal symmetry- color, for example. Another uncertainty concerns mass 

i_ 
corrections to E. These corrections to pp - (7rr)X and pp - (r?r)X are prob- 

ably of a rather different form and should be important for low energies. For 

example, the inclusive-exclusive connection, that is the small E limit, for 

these two reactions is quite different. 

Several experimental points should be made in light of our results: 

(a) The effective power analyses, the extraction of Heff and Neff directly 

from the data, should be very useful in untangling the physics of large mass 

production. This requires that the mass spectrum be measured at different 

energies so that a fixed E analysis can be performed to extract the Q2 depen- 

dence. 

(b) It is important to check the counting rules by using different incident 

beams as well as different choices for the particles that make up the massive 

pair. The E dependence and hence the Q” behavior at fixed energy should de- 

pend upon the particular type of particle pair chosen, as explained in the text. 

(c) The production of massive hadron pairs in electron-positron annihila- 

tion is a particularly important test of the theory. Unlike the classic Drell- 

Yan process, the effects of the $ resonances can be eliminated by choosing the 

initial energy appropriately. One can avoid the “contamination1 that is present., 

for example, in the data of Christenson et al. 
15 

However, it is clearly very 

interesting to study these processes on resonance as well as off. 
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The general approach described here should prove helpful in correlating 

data from different reactions. The overall consistency of the constituent 

model of hadrons used here requires that there be a simple relation between 

the data on large transverse momentum reactions and massive pair production 

and this can be checked for a large number of initial beams and final detected 

particles. 
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FIGURE CAPTIONS 

1. The general decomposition of inclusive lepton pair production in hadronic 

collisions. The overall process A f B +1+1-X is written in terms of 

hadron-irreducible subprocesses a + b --~?+f-d. 

2. Auxiliary diagram for the calculation of the spin sum and integrations over 

the lepton variables. 

3. A sample set of subprocesses for inclusive lepton pair production, in 

which all of the final state quarks are free. 

4. A sample set of subprocesses for inclusive lepton pair production in which 

the final state quarks are either bound to form a physical particle ((b)-(d)) 

or are required to have a fixed invariant mass ((a)-(c)). 

5. A sample set of diagrams which contribute to the inclusive photoproduction 

of lepton pairs. 

6. The general decomposition of the inclusive production of a pair of hadrons 

with large invariant mass in hadronic collisions. The overall process 

A+B - C + D + X is written in terms of the hadron-irreducible sub- 

processes a + b - c + d - (C + r) + (D -i- q). 

7. A sample set of diagrams which contribute to the production of a pair of 

pions with large invariant mass in pp collisions. 

8. The decomposition discussed in Section IX for the production of a pair of 

hadrons with large invariant mass in e+e- annihilation. 

90 A model for the production of (a) n+?r-, K+K-, K+lr- and (b) n+K+, + - ine e 

annihilation. 
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