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ABSTRACT 

We show that using the Dirac equation to calculate quark bound 
c 

states can give.rise to significantly different eigenspectra than those 

obtained by using the same potential in the Schrcedinger equation, even 

when < v2/c2 > is small. The origin of this effect is identified and 

discussed. 
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The discovery’ of the new particles $(3. l), Z/I’ (3.7) and possible 7,V(4.15) 

has brought renewed vigor to attempts to understand hadron spectroscopy by 

means of effective quark- (anti-) quark interaction potentials. 2,3 As suggested 

by Appelquist and Politzer, 2 the structure of such a potential may be obtained 

from a field theoretic starting point by examining the properties of the p-function 

In particular, the conjecture of “infra-red slavery” leads to a potential that 

confines quarks. Since quarks are fermions, one might naturally expect to use 

this potential in Dirac equations for the quarks. Due to well known difficulties, 4 

it is usually preferable to go to the nonrelativistic limit where one obtains a 

reduced mass Schroedinger equation for the two-body system with the same 

potential. This approach is usually justified a posteriori by showing that 

<v2/c2> << 1. However, in the case of quark-confining potentials, and for states 

far from the two-constituent threshold, we shall show below that satisfying this 

condition is not sufficient to guarantee that the eigenvalues so obtained are 

accurate up to corrections of order <v2/c2> . Using previously suggested 

potentials3 in the Dirac equation, we find significantly different (- 10%) eigen- 

spectra which do not match the mass splittings of the observed states. Differ- 

ences from experimentally observed mass splittings are -4Ou/o (smaller), versus 

the few percent accuracy suggested by the Schrcedinger calculations. 

Conceptually, the problem of describing mesons as quark-antiquark bound 

states starts with a set of coupled Dirac equations for the interacting quark 

operator fields. Then, as an approximation, these are simplified by taking the 

one-quark (antiquark) matrix elements and by replacing all source terms with 

an effective, static potential. (This is the potential inferred from the p-function. 1 

This procedure gives the Dirac wave function equation for a particle in a static 

potential. The usual next approximation involves replacing the Dirac equation 
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by a reduced mass Schrcedinger equation. However, by using the Dirac equation 

itself, one takes naturally into account some of the corrections to the simple 

nonrelativistic Schrcedinger equation; for example, spin-orbit couplings, which 

have been added by hand in some of the Schraedinger calculations. 5 

Following the example of positronium, we have solved numerically a 

reduced mass Dirac equation, using some of the potentials current in the 

literature. 3 (If we do the calculation 

separately introducing the (full mass) 

very similar results are obtained.4) 

in the .spirit of the shell model, i. e. , 

quark and antiquark into a fixed potential, 

The results are given in Table I, where 

the mass of the nth radially excited state is given by 

m n=2mc+(En-%) (1) 

where mc is the (charm) quark mass, and En is the n th radial excitation eigen- 

value obtained by solving the Dirac equation with a reduced mass mc/2. 

Thevalues in Table I differ from the results obtained by previous calcula- 

tions3 using the same potentials in the Schroedinger equation (as shown in 

Table II) by more than the relativistically induced spin orbit coupling corrections 

estimated6 by -C v2/c2 > - l-4%. Especially important are the much reduced 

(-40%) mass splittings, which are considerably smaller than those observed 

for #‘-?c, and z/?‘-#‘. We shall now show that these discrepancies arise from a 

combination of the large values that a confining potential must attain in order to 

confine the quarks and the technique of nonrelativistic reduction. 

For a central, scalar potential, V(r), the Dirac equation can be rewritten 

as a second order differential equation for the “largel’ component (g(r)) of the 
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fermion radial wave function7 

The spinor wave function’is defined as 

j3 
g(r) Y .  U t  $4 

JQA 
zcI@, 6 N = 

i 1 

if(r) Y j3 
Jo (e, rP) 

B 

I (3) 

with QA= I K 1 - O(- K) = j f l/2, QB = 1 K 1 -O(K), I K I = j + l/2. The l’smalll’ compo- 

nent, f(r) , is determined from g(r) by 

f(r) = E+m-tV dr ‘. [s++sJ (4) 

Note that K(K+~) =iA(QA+l), and that m - m/2 for the reduced mass case. 

By comparison, the Schrcedinger equation for the radial wave function R(r) 

is 

[& (-:$+y) - (Es& -VschlR(r) =O . (5) 

(Again, m - m/2 for the reduced mass case.) Equations (2) and (5) do yield 

very similar eigenspectra if: 

4 <v2/c2> << 1 so that the r.h.s. of Eq. (2) is small (dV/(mdr) -CC V), 

and 

b) the following equation is satisfied, where Esch z E-m: 

E2 - (m+V)2 = 2m(Esch-Vsch) . (6) 

If 

E sch e m and IV1 << m (7) 
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over a sufficiently large range of r where the wave function is appreciable, then 

Eqs. (6) and (7) imply 

over that range of r, and Eqs. (2) and (5) are indeed equivalent to a good 

approximation. 

This is clearly the case in the picture suggested by Appelquist and Politzer’ 

for the lowest state Z/J, where Esch = E-mreduced - . 1 GeV, mreduced - .8 GeV 

and IVI 5 . 1 GeV in the region of the (Bohr) radius of the so-called ground state 

of charmonium. 8 However, when 

E-m> m and IVI Lrn (9) 

for an appreciable interval of r where the wave function is appreciable, then it 

is no longer clear that the eigenspectra of Eqs. (2) and (5) should be very 

similar. Furthermore, the conditions in Eq. (9) are necessarily satisfied when 

the potential acts to confine quarks. The reasoning is as follows: the confine- 

ment is achieved by exponential damping of the quark wave function outside the 

classical radius of the state (turning point). Aside from possible nodes, there 

is no reason for the wave function to become very small before this point, and 

in fact, it is typically not small. As V - E -m near a turning point, and 

E -m > m holds for excited states far from the two quark threshold (as is the XI 

case here), it follows that Eqs. (9) do apply over a finite range of r where the 

\\‘ave function is nonnegligible. : 

To demonstrate that this is indeed the origin of the differences between the 

results given in Tables I and II, 9 we have solved Eq. (6) for V using each Vsch 

in turn to obtain 

(E-m)2 + m2 + 2mVsch . (10) 



-6- 

We then solved the Dirac equation as before, using this energy dependent 

potential, and obtained the results listed in Table III. (Note that the results are 

not exactly comparable to Table II as they are calculated in a specific spin state 

(j=l) which th e S h c rcedinger equation can not distinguish from other spin states.) 

The appearance of an energy-dependent effective potential may not be so 

unreasonable as it first seems, as the effective coupling constant in the under- 

lying field theory depends on energy as well as on three-momenta: 

G& P(im 2 t = fn(s/s,) . (11) 

If we denote the three-dimensional Fourier transform of g(t) by g(r, E), a con- 

ceivable approximate expression for the “effective potential” is 

By assuming a specific form for the function p (in Eq. (11)) which is in agree- 

ment with asymptotic freedom, one may obtain a potential which behaves as 

l/r Qn(r) at small distances and as rp (p > 0) for large quark-quark (antiquark) 

separations. 

However, in order to use this potential directly in the Schrcedinger equation 

one must now not only conjecture that Eq. (12) occurs, but also that this gives 

rise to the specific energy dependence of the potential in Eq. (10). We are not 

trying here to cast doubt on the possibility that confinement potentials may be 

generated by the so-called “i&a-red slavery” mechanism. Rather, we are 

suggesting that such potentials, guessed from the p-function, should be applied, 

if at all, 11 in the Dirac equation, resulting usually in more complicated and 

energy dependent potentials in the reduced mass Schrcedinger equation version 

of these problems. 12 
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Note that this procedure does not have too large an effect on the absolute 

scale of masses for the resulting bound states, 13 but does have a very large 

effect on the mass differences between various excitations. The latter is a 

most striking feature of the difference between using the usual (guessed) poten- 

tials in Eq. (2) or in Eq. (5). 

These smaller mass differences are also more in agreement with some 

calculations l4 we have done using the MIT bag model 10 : we were unable to find 

a consistent and reasonable set of parameters which gave both an overall mass 

scale of -3 GeV and mass differences of > .4 GeV between excited states. 

Along this line, we also note that Vinciarelli 15 has claimed, within the frame- 

work of field theory bag models, that the bound state mass differences are 

M .2 GeV, for quarks of mass -l- 2 GeV. 

We would like to acknowledge several discussions on this subject with 

T. Appelquist, S. Brodsky, J. Rosner, and S.-H. H. Tye. 
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4. Spurious states appear corresponding to center-of-mass motion of the 

bound particles. 
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for a Linear Quark Containment Potential, I1 PRINT-75-0114, U. of Pittsburgh 

preprint (Feb. 1975). 

6. See especially the first paper in Ref. 3. 

7. We use the notation.of Advanced Quantum Mechanics, by J. J. Sakurai 

(Addison-Wesley, Reading, Mass., 1967); pp. 122-125. 

8. Whileitistruethat IV]-m as r--, 0 in the picture of Ref. 2, the volume 

3 in which this occurs is small-of order r , so that there is little effect on 

the eigenvalue near the two particle threshold. However, if the binding 

were stronger, so as to concentrate most of the wave function at small r 

(e. g. , for a deeply bound ground state), then this analysis suggests that 

solving Eq. (5) might give a poor estimate of the true eigenvalue. 

9. One must always beware of the possibility that such differences arise from 

the numerical techniques used. In addition to the check discussed in the 

text, we have tested our computer program by correctly calculating several 

eigenstates for each of the following: hydrogen atom, ortho- and para- 

positronium, and the MIT bag model (see Ref. 10) treated as a fixed radius, 
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square well potential. Unfortunately, we could not compare our results 

in de’tail with the analytic results of C. L. Critchfield, llHarmonic 

Potentials in Dirac’s Equations, f1 LA-UR-74-18 13, Los Alamos Scientific 

Laboratory preprint (Oct. 1974) due to the choice of quantum numbers and 

range of parameters. However, a good qualitative agreement is apparent. 

10. A. Chodos et al., -- Phys. Rev. D&, 2599 (1974). 

11. One would be on firmer theoretical ground if one searches for these bound 

states by using the Bethe-Salpeter equation, with a scattering kernel 

inferred from the properties of the p-function directly in momentum space. 

This point has been stressed to one of us by T. Appelquist (private commun- 

ication). 

12. Of course, one could always give up trying to link these potentials to an 

underlying field theory and revert to the earlier approach, namely to use 

some guessed potential as an ansatz in the Schrcedinger equation. 

13. A difference in overall mass scale should not be taken too seriously, as it 

depends strongly on mc, whereas the differences of energy eigenvalues 

vary slowly in the neighborhood of a given value of m c. In fact, it can be 

argued that the quark mass term (2m,) in Eq. (2) should really be an 

additional free parameter. This is because there are no asymptotic quark 

states in the underlying field theory (by construction or assumption) and SO 

there is no longer a well-defined connection between the measure of the 

kinetic energy of a quark in the potential and the “free quark mass” (position 

of the pole in the quark propagator). See the second paper in Ref. 3. 

14. These calculations were done with S.-H.H. Tye. 

15. P . Vinciarelli, “Radial Recurrences in Field Theoretical Bag Models (and 

the Spectrum of Charmonium), I1 Ref. TH. 198 l-CERIL’ preprint (Jan. 1975). 
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TABLE I 

Orthocharmonium Radial Eigenspectra Obtained by Numerical Calculation 

Using the Reduced Mass Dirac Equation 

j=l E (GeV) m(GeV) 

(a) Potential of Harrington et al. (Ref. 3), mc = 1. 16 GeV, -- 

v=va= (.21lr -. 120) GeV, [r} = GeV-’ 

n=l 1.21 i .Ol 2.95 f .02 

2 1.59 f .03 3.33 f .04 

3 1.91 f .06 3.65 f .07 

(b) Potential of Eichten et al. (Ref. 3)) mc = 1.6 GeV (kinetic only), a -- 

V = Vb = (-. 200r -’ + .194r) GeV, [r] = GeV-’ 

n=l 1.39 f .Ol 3.10* .02a 

2 1.77 f -01 3.48 f .02 

3 2.04* .Ol 3.75 * .02 

a 2mc = 1.71 GeV is used as a free parameter to fit n=l state. 
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TABLE II 

Orthocharmonium Radial Eigenspectra Obtained by Others 

Using the Reduced Mass Schrcedinger Equation (Ref. 3) 

j=undetermined 
m 

E= -$+E sch(GeV) m(GeV) 

(a) Harrington et al. -- 

n=l 

2 

3 

@) Eichten et al. -- 

1.36 zk .Ol 3.105 f .005a 
1, 

1.95 f -01 3.695 f ,005’ 

2.44i .Ol 4.18 zt .Ol 

n=l 

2 

3 

1.40 * .Ol b 

1.99 .Ol b * 

2.38 xt .Olb 

3.105 + .005a 

3.695 xt .005a 

4.18 i .Ol 

b E. Eichten, private communication. The eigenvalues (Esch) them- 
selves, did not appear in the second paper in Ref. 3. 
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TABLE III 

Orthocharmonium Radial Eigenspectra Obtained by Numerical Calculation 

Using the Reduced Mass Dirac Equation 

with Energy Dependent Potentials (see Eq. (10) j 

j=l E (GeV) m(GeV) 

(a) ‘sch = Va (see Table I) 

n=l 1.38 k .Ol 3.12 zk .02 

2 1.94 + .06 3.68 f .07 

3 2.50 zt .05 4.24 f .06 

@) ‘sch = Vb (see Table I) 

n=l 1.51 rt .Ol 3.095 * .005 a 

2 2.01* .02 3.60 + .03 

3 2.42 zt .Ol 3.93 zt .02 

a Input to determine 2mc in Eq. (1) treated as a free parameter. 


