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Abstract The threshold behavior of the structure function vw2 is

evaluated for two- and three-body bound states described by the

Blankeﬁbecler—Sugar wave funtions. In our approach this 1s completely

equivalent to a fully relativistic Bethe-Salpeter treatment., For spin-

zero constituents and a two-body interaction which behaves as (qz)—e
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at large momentum transfer, we obtain (l-w) and (1-w) for the

two- and three- body bound state, respectively. For spin-% constituents

and the interaction V = F( ; v r(#) with V(q,k) = ((Q'k)z)—lfA
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I. Introduction

In two recent papersl’ we have investigated the asymptotic behavior

of form factors of two- and three-body bound states for both spin-zero
and spin—% constituents. Our main task was to get some ideas about the
underlying structure of the ﬁion and the nucleon (and hadrons in
general) by consistently studying the pion and nucleon form factors.
The latter have been proven to provide a great source of information on
the nature of the constituents and their dynamics. We found that the
experimental pion and nucleon form factors3 are consistently described
by assigning a quark—-antiquark (two-quark) and three-quark structure to
the pion and the nucleon, respectively, and the quarks interacting via
a vector-gluon exchange. We consider this giving strong support to the

quark picture of hadrons.

OQur results may also be considered from a different point of view.
Suppose‘we know the constituents of any hadrons (as,e.g., in the case
of the deuteron) and the asymptotic behavior of its form factor. Then,
we can extract the large momentum transfer (short-distance) behavior of
the interaction kernel which certainly will help ﬁo improve our

understanding of the dynamics of those particular constituents.

A further means of probing the constituents of the hadrons (or the core
region if the constituents are well established) is provided by the
threshold behavior of the deep inelastic structure functions5 Wl(w)

and vwz(w) as 1s also suggested by the Drell—Yan—Westb (DYW) relation.
Unfortunately, the DYW relation has not been proven for that particular
kind of underlying structure we are interested in, which demands a
renewed look at the structure functions being particularly appreciated

with the advent of new data from SPEAR and DORIS.

In this paper, the threshold behavior of the structure functions 1s
considered for spin-zero and spin-% constituents. The bound states are
described either by the Bethe-Salpeter (BS) equation for spin-zero

constituents or, in case of spin-% constituents, by the Blankenbecler-—



Sugar (BLS) approximation. The validity of the BLS approximation in

the high momentum transfer limit has been discussed in ref.2 and we
like to point out that, in our approach, the two methods are completely
equivalent. In fact, we need only the high momentum transfer behavior
of the interaction kernel and it makes no difference starting from an

ansatz of the BS or of the BLS kernel.

In case of spin-% constituents we consider the exchange of scalar,
pseudoscalar and of vector gluons. As in ref. 2, we find a difference
between the vector interaction and the “scalar and pseudoscalar
interaction respectively, contrary to the dymensional counting rules.
The DYW relation is always satisfied in our models being in contradic-

tion with the recent results of Ezawa.

The paper is organized as follows. Section II deals with spin-zero
constituents and the BS equation. Section III is devoted to the case

of spin-% constituents and the BLS equation. Each section is divided
into two subsections a) and b) dealing with the two- and three-particle
case, respectively. Table I collects all the results of refs. 1,2 and

those of the present paper.

I1.BS equation for spin-zero constituents.

ITa.Two-body.

In the BS model for the bound states of two spin-zero constituents, the

structure functions are given by (see fig. 1):

W~ b st (p-a)2-1) st((arq)2-1) —— ¢ (11.1)

158Y] (A2—1)2 uv

U
and the vertex function ¢ satisfies the BS equation (see fig.2)

— 2
where all the masses are equal to 1, G = |¢p(k)] (ZAu+qu)(2Av+qv)

¢p<k> = [fd%k" V(k,k") G, (kp+k") G, (4p~k") ¢p<k') (11.2)



In the infinite momentum frame of the '"pion'" defined by

m? NE.
PU - (P+ -2_5,0‘ ,P) y P > , We choose q = (‘P", q.l. ,O) (v = poq) and
we parametrize the loop variable in the standard way writing
e R R e T ] d in the limi
A= (x p v A ’f wP ) . We are interested in the limits
2

;f > o and w = %t- fixed of the structure function vwz = iz-woo =
=Yy . We obtain

p2 33

a2k

W = w2 (1~w) S = FROIE (11.3)

2 X242 2 P Y

P> (Aptws-w+l)
L .
where k2 = il_ (-£2~42-%w+%) . For an interaction which behaves as
~w
-6
Vik,k") = ((k-k")?) ~ , 6> 0 , the large momentum transfer
(k—k')z > © )

. . . . . ., -8

limit of the vertex function is given by1 ¢ (k) = (k%) ;

kz-)-oo
therefore, the threshold behavior of the structure function (II.3) reads

W o (1—u))1+26 (I1.4)

w > 1 .

-1-6

The same interaction gives F(q?) = (q2) for the asymptotic

q? >

behavior of the form factor so that the DYW relation is satisfied.

IIb. Three-body

In the three-body case, we simply have (see fig. 3)

W= ffd%A d%B ST ((A+q)2-1) & (B2-1) 8 ((p-A-B)2-1) —— G
uv 5 Hv
(A”"l)z )

(1I1.5)

h = A,B)|? isfi
where Guv |¢p( . )l (ZAu+qU) (ZAv+qv) and ¢p(A,B) satisfies the BS



equation for a three-body bound state (see fig.4). The definition of

P»q and A 1s the same as in the two-body case and we take for B the

2

e >
o B2+B2 > B2+B}
natural parametrization B = (y(l-x)P+ Z;?I:iYE sBy, y(1-x)P- Z;zifiyg
From Eq.(II.5) we obtain
2

1 y(1=y) [¢_|
VW, 2 w?(l-w) fd?K, fdy fd2B, P

0

> - > >
(Ai(yz(l-w)—y)‘ﬁfw—2A1?Bswy—y(l-y)(l-w)z—w)z

. (1I1.6)

As in refs. 1 and 2, we assume a three-body interaction K being
described by two-body interactiomgonly, i.e., K = V1+ V2+ V3 , where

Vi is the two-body interaction between particles j and k having the

. * . _e
(previously assumed) asymptotic behavior V,(k,k') = ((k-k")?) .
(k=k')2> =

This interaction and any iteration of it gives rise to disconnected
kernels}so it is a difficult task to extract the asymptotic behavior
of the vertex function directly from the BS equation. More convenient
is to consider the (once iterated) relativistic Faddeev (RF) equation
as  has been fully described in ref.l (see fig.S): We must consider
the external variables on the mass—shell)as followséfrom Eq.(II.S),and
in the limits v » = , af +® , @ -1 . In this limit {of high momentum
transfea the asymptotic behavior of the BS vertex function can be

extracted from ref.l reading

' (a8 = (=) 2 P& Ly B , (11.7)

where F 4s a function which falls off in '21, y , and %L rapidly



enough to insure the convergence of the integrals in Eq.(II.6). Hence

we obtain

v, (1-1) 748 (1I.8)

i

For the same interaction the form factor falls off as

-2-29

F(q?) = (g%) so that the DYW relation is satisfied even

q% > =

in this case.

III. BLS equation for spin-% constituents

IIla. Two-body

As we already pointed out in a previous paper,2 the case of two spin-j
constituents could be worked out in the framework of the BS equation,
but it is a very elaborate problem to handle the spin structure in the
three-particle case as the vertex function consists of 16 invariant
functions. The BLS equation, on the contrary, allows a complete solution
of the problem and, in addition, it looks more reliable as far as the
asymptotic behavior 1is concerned. In fact, it overcomes the problem
of the validity of the Wick rotation)and we can rigorously apply the
Weinberg theorem.9 The validity of the BLS approximation in the limit of
high momentum transfer has been discussed in ref.2(énd we do not repeat
here those argumenté> In the case of spin-zero constituents,the BLS and

the BS approaches give the same results for the asymptotic behavior of

2 " .
the form factors® ,nq for the threshold behavior of the structure

functions. The latter can be easily derived from the following



discussion of the more interesting case of spin-% constituents.

For a bound state of two spin-% particles, the structure functions are

(still) given by Eq.(II.1) where, now,

(1)

. LW (i)

, = Trle 0 (r-a-1) Py (v a1y Dy (D

¢_(k)
P

x (v (p-8)-1) Py (III.1)

-

The BS vertex function is described by Eq.(II.Z))Where Gi(p)=(\(‘p—1)_1

and

Vie,k'y = 1) 0D 50y

111.2)
() - (
Here, we shall consider P(U) being equal to 1, Yy Or Yu and
- ' B 1y~ 1A
Vik,k") = ((k=-k')4) s, A >0 (111.3)
(k-k )2+ = .
Introducing the vertex functions
$TS(k) = @i(4P+k) wi(LP-K) ¢ (k) (1I1.4)
p 1 2 p )
we obtain for GOO in the infinite momentum frame
rs
Gy = X2 [o,717 (I1I1.5)

P> rs )



whose leading contribution stems from the region where both particles

are on mass—shell (which justifies our definition (II1I.4)). Hence, we

have
2% _
W, w2 (l~-w) S ~ d"As N 16752 (III.6)
(Afrw?-w+1)2 rs P
For the

threshold behavior we need the high momentum transfer limit
. TS . 2 .

of the BS functions ¢p or, equivalently, the behavior of the

related BLS functions x;S(which havebeen introduced in ref.2) satis-

fying the coupled integral equations

% -’

Sy = br £a%t vEST'S (g gy LGP T ¢ (e (5p-E) )
3 l/ l/

’ (1+(4p+k)2) ? (1+(5P-K)2)?

1 1 . 1ot
x {((1+(5P+K)2)7 & (1+(4P-K)2)Ty2-p2-}7 L x; $ ®) , (TIL.7)
where

rs,r's' v = !

. . - - ! >
v (@,k) = &) (4P+q) ¥ (5P=q) V(&,K) w) (4P+K) wy (§P-K) | (IIL.8)

The potential V is defined by Eq.(III.2) and

L L .
q = ( %{(1+(%P+a)2)2 —(1+(%P—E)2)2} , E ) . We write Eq.(III1.7) in the
infinite momentum frame parametrization’and we invert the limit x -+ 1

. . 3, . . . . .
and the integration over d'k in the region of integration A where this

procedure is allowed. For the scalar and pseudoscalar interaction we get



L+h
rs 5 . (l-x)z ‘ 27

>
x> 1 (qf+D)

- > - -> L
{y(q =k )2+ (1-y) (kD) -y (1-y) 1+aDFE |
X(l’s)(kLQY) + 1lm f.lro-~-a

X P LA > o
yA(1-y) 2 T (kf+1-sy(1-y)) x » 19

» . —). - -
QA contains the regions y = 1 and k%,: = . This equation and a

-
separate analysis on the high-qf limit suggests

b+
rs - (1-0*
. o ————— I.10
X(l,S)(q*’X) ES— ) (11 )
x> 1 (qp)
_*2 J
4 7 =
which 'is confirmed by concistency, i.e. , inserting Eq.(III.10) in

the integral over Q, in Eq.(III.9).For the Y, interaction we obtain

L+d
o\ 2
AN o [rdy a%k
L = T y d%kg
(W) <> 1 (gi+1)2+A A

> L
{kf+(1-2y)2}*

x 3/2+A

XEE)(Kl,y) +  lim éf .....

[}
Foq T241- -
y2(1-y) (kZ+1-sy(1~y)) x> 1 7A (I11.11)

giving the correct asymptotic behavior

(1—X)A

~ — (111.12)
L

% > 1 (32)2+A

>0 4

qL~>oo

rs

Xew)

Roughly speaking, if we insert this behavior in the integral over

in Eq.(III.11), we are left with the integral f*—éz—§75 over the
(1-y)
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1
region y = 1 . This gives a singularity of the order (1-x) % Ghich
L . .
is cancelled by a factor (1—x)2+A inherent in the integral. From

Eqg(111.6), (II1.10) and (I1I.12) we finally obtain

Wil e ™ W s et (111.13)

w > 1 w1
for the 1/y5 and vy interactions, respectively. The asymptotic
u
behaviors (III.10) and (III.12) can also be read off from our previous

‘ . . 2
analysis.2 The corresponding form factors have the asymptotic behavior

F(1,5) -3/2-A (W) A

.—1_
(q%) , F = (q?) (1II.14)
q? » = q? » o )
so that the DYW relation is satisfied for all three interactions. The
recent work by Ezawa8 agrees with our 1/y5 result for the structure

functions and with our vy result for the form factors.
u

@

I1Ib. Three-body

Following the line of sect. IITa we introduce a new set ¢rst of BS

functions connected with the BS vertex function ¢ by

' r > .8 > _t >

b= 1 W@ w5 a5 o (IT1.15)
rst

The structure functions wuv are given by Eq.(II.5), where

Guv now takes account of the spin structure of the constituents



11

(cf. Eq.(III1.1)). In the infinite momentum frame we obtain for G

00
(similar as in the two-particle case)
t
Goo » 2p2 Z l¢r5 |2 (I1I.16)
P > rst .
Hence, the Structure function vW2 reads
1 o
W, = w2(l-w) fd?R, [dy [d%B,
2 0
P > x .
rst
y(l-y) | e [®
% rst (I11.17)

(83 (y2 (1-w)-y) -BRu-2K,* Bray-y (1-y) (1-w) 2-uw}? .

. . 2 .
In the limit of high momenta we are allowed to substitute the BLS

. . t .
functions ert for the BS functions ¢rs (cf. ref. 2). The Faddeev

i t rst Drst 2 t (3 t
X(1)rs s X( ) N X( )rs .y Yrs

components defined by ¥ =

satisfy the coupled equations as schematically represented in fig. 5

(Drse > (1) 7()y U T prq30) () grstur's'e! () 1) () L)'

I t~3 W

(q ’ ) =
P,M 5=1 1] ‘
(' G, (Drts'e’ Gy ()]
x @D R@ D) (@37 k)
P,M .
i=1,2,3 (I11.18)
. (1) (1)
Here, M denotes the spin component and ¢ , k are the c.m.
- > >
. >(1 2A-B-C
variables(ﬁsed in refs. 1 and Z)deflned, e.g., by q( ) ==

- - - - .
ﬁ(l) = ggc (¢ 2 P-A-B). The variables q(l) and k(l) are given by
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~ (1)
q

il

22y% Z2y% 228 (D)
( 2/3(1+A%)° - 1/3(1+B%)° - 1/3(1+C%)°* , ¢q )
D L zcadin® - s 1D

f

Furthermore, we have written,e.g.,

rst,r's't' T > '
i = ﬁl(A) r

13

1)

v ) Y1 ¢

-, .8 > (2) s' >, -
A") WZ(B) T(v> v, (B')

x (y-(B+C-B")+1) W) wgv(é') ((A-2")2) 178 ((popry2y I8

x ((B+C-B')2-1) "} , (111.18)

~ ~

(see ref. 2 for a better description) where A , B etc. are defined

“(1) o3 : .
through ¢ ) , k( ) given before. Finally, the propagator & is

given by

To\ % >, & >,k
C(1+A2)% + (14B2)7 + (14C2)° R -1
(1+42)% (1+82)? (14C2)*

(I1I1.19)

We consider Eg.(III.17) in the infinite momentum frame using the
previous parametrization. In order to find the asymptotic behavior of
the vertex function we proceed as in the two-body case by separating
the integration into two regions A and QA . Region A 1is understood
to be that region allowing the inversion of the limit x - 1 and the
integration, whereas QA contains the region x' = 1 , A = » and

N .
By ® » ., For the scalar and the YS interaction, Eq.(III.17) then reads
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(1)rst 24240 dx’ (i) rst (J)rst
X (1-x%) { /] ....(x + X )
(1,5) 1 A (1"X‘)2+2A (1,5) (1,5)
dx' (i)rst (kK)rst .
+ [ ... (X + ¥ )y } + lim i S
e (1,5) (1.3 x> 1 )
(111.19)

where we have explicitely written the crucial dependence on (1-x) and

(1-x') only. The behavior suggested by Eq.(III.19) (and being

confirmed by congistency) is given by

rst
X
(1,5)- N

2+240

~ (1-%) (111.20)
> 1 o

For the vector interaction the integral equation reads

xéigrst = (1—x)3+2A { /s dx' ( X(i)rst . X(j)rst )
N N a5 e ;
. .
N T LT P Chiib ID NS BT PN
(1-x") g ’ x> 18
(1II11.21)
In this case the correct asymptotic behavior is
rst - 1+24
X = (1-x) (111.22)
(1) 1
following the same arguments as in the two-body case.Altogether we have
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A
e AL vw§“) . (1wt (11I.23)
w~> 1 w > 1

for the scalar/pseudoscalar and the vector interaction, respectively.

. . . . 2
This is to be compared with the asymptotic behavior of the form factors

p(1s5) ) 3 (3328 F(u)( -2-24

2 B 2

(111.24)
Hence, the DYW relation is satisfied for both interactions. The three-
body calculation of ref. 8 agrees with our results for both the

structure function and the form factors in case of the vy coupling.

We like to thank S.D.Drell for his warm hospitality at SLAC where this

work has been done.
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Figure Captions

Fig.l The structure functions in the ladder approximation for a two-

body bound state.
Fig.2 The BS equation for the vertex function of a two-body bound state.

Fig.3 The structure function in the ladder approximation for a three-

body bound state.

Fig.4 The BSvequation for the vertex function of a three-body bound

state.

Fig.5 The (once iterated) relativistic Faddeev equation for the vertex
function of a three-body bound state. The wavy lines represent

the two-body BS T-matrix.

Table Captions

Table 1 The asymptotic behavior of form factors and structure functions
for two-body () and three-body (p) bound states and for the
different models considered in refs. 1, 2 and in the present

paper.
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F F1 Vwéﬂ) vwép) Dimensional DYW
" P Counting Relation
spin-zero
Constituents
2.—1-06 -2-28 1+26 3+4
-5 (q) ! (a%) (1-w) (1-w)> "0 YES YES
Vo= (q?)
spin-% .
Constituents Yu . (qz)_l'A (qz)—Z—ZA (1-w) +24 (1_w)3+4A YES YES
- -1-4
V= (q?)
-3/2-4A -3-2A 2424 S5+44A
Ly, {(q?) / (q?) (1-w) (1-w) NO YES
5

Table I
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