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I. Introduction 

In two recent papers 132 we have investigated the asymptotic behavior 

of form factors of two- and three-body bound states for both spin-zero 

and spin-4 constituents. Our main task was to get some ideas about the 

underlying structure of the pion and the nucleon (and hadrons in 

general) by consistently studying the pion and nucleon form factors. 

The latter have been proven to provide a great source of information on 

the nature of the constituents and their dynamics. We found that the 

experimental pion and nucleon form factors are consistently described 

by assigning a quark-antiquark (two-quark) and three-quark structure to 

the pion and the nucleon, respectively, and the quarks interacting via 

a vector-gluon exchange. We consider this giving strong support to the 

quark picture of hadrons. 

Our results may also be considered from a different point of view. 

Suppose we know the constituents ,of any hadrons (as,e.g., in the case 

of the deuteron) and the asymptotic behavior of its form factor. Then, 

we can extract the large momentum transfer (short-distance) behavior of 

the interaction kernel which certainly will help to improve our 

understanding of the dynamics of those particular constituents. 
4 

A further means of probing the constituents of the hadrons (or the core 

region if the constituents are well established) is provided by the 

threshold behavior of the deep inelastic structure functions5 Wl(a) 

and vW2(w) as is also suggested by the Drell-Yan-West 
b 

(DYW) relation. 

Unfortunately, the DYW relation has not been proven for that particular 

kind of underlying structure we are interested in, which demands a 

renewed look at the structure functions being particularly appreciated 

with the advent of new data from SPEAR and DORIS. 

In this paper, the threshold behavior of the structure functions is 

considered for spin-zero and spin-k constituents. The bound states are 

described either by the Bethe-Salpeter (BS) equation for spin-zero 

constituents or, in case of spin-b constituents, by the Blankenbecler- 



Sugar (BLS) approximation. The validity of the BLS approximation in 

the high momentum transfer limit has been discussed in ref.2 and we 

like to point out that, in our approach, the two methods are completely 

equivalent. In fact, we need only the high momentum transfer behavior 

of the interaction kernel and it makes no difference starting from an 

ansatz of the BS or of the BLS kernel. 

In case of spin-4 constituents we consider the exchange of scalar, 

pseudoscalar and of vector gluons. As in ref. 2, we find a difference 

between the vector interaction and the-scalar and pseudoscalar 
7 

interaction respectively, contrary to the dymensional counting rules. 

The DYW relation is always satisfied in our models being in contradic- 
Y 

tion with the recent results of Ezawa. 
8 

The paper is organized as follows. Section II deals with spin-zero 

constituents and the BS equation. Section III is devoted to the case 

of spin-h constituents and the BLS equation. Each section is divided 

into two subsections a) and b) dealing with the two- and three-particle 

case, respectively. Table I collects all the results of refs. 1,2 and 

those of the present paper. 

II.BS equation for spin-zero constituents. 

IIa.Two-body. 

In the BS model for the bound states of two spin-zero constituents, the 

structure functions are given by (see fig. 1): 

W 
PV 

= id4A s+((~-A)~-l) S+((A+q)2-l) ' GPv 
(A2-1>2 

(11.1) 

where all the masses are equal to 1, G lJv = 1 +p(k) 1 2Wp+q,,) Wy+q 
V > 

and the vertex function + satisfies the BS equation (see fig.2) 

$(k) = /d4k' V(k,k') Gl(kp+k') G,(kp-k') $p(k') (11.2) 
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In the infinite momentum frame of the "pion" defined by 

p, 
= (P+ $#A ,p) , 

-+ 
P-t, , we choose q = (v, qL,O) (v = 

P p*q) and 

we parametrize the loop variable in the standard way writing 

&Q-J@ 
A = (xP+ 4xp . We are interested in the limits 

;2 + m and w = E fixed of the structure function vW2 = L W = A p' 00 
v z--w 
p2 33 l 

We obtain 

VW = d2x, 
2 w2(1-w) i 

P-too -+2 (AL+~2-~+1)2 
$,(k)j2 

a 
(11.3) 

where k2 = ' l-w (-A;--J-&+Q . For an interaction which behaves as 

Wk,k') 
(k-k'); + ~0 

((k-k')2)-e , 0> 0 , the large momentum transfer 

limit of the vertex function is given by' 6 (k) 
k2=, co 

(k')-@ ; 

therefore, the threshold behavior of the structure function (II.3) reads 

VW = 2 (l-J+28 
w-t1 . 

(11.4) 

The same interaction gives Nq2) = (n2> 
-1-0 

for the asymptotic 
q2 -f m 

behavior of the form factor so that the DYW relation is satisfied. 

IIb. Three-body 

In the three-body case, we simply have (see fig. 3) 

W u l/d4A d4B 6+((A+q)2-1) 6+(B2-1) &+((P-A-B)~-~) ' G PV (&1)2 i.l" > 
(11.5) 

where G TV = I+p(W) I2 (2A +q > (2A +q > 
?J i-I v v and $p(A,B) satisfies the BS 



5 

equation for a three-body bound state (see fig.4). The definition of 

p,q and A is the same as in the two-body case and we take for B the 

natural parametrization B = (y(l-x)P+ 
B2+%z B2+zi 

ky(l-x)P ,L Y(l--x)P- 4y(l-x)p > - 

From Eq.(II.5) we obtain 

21 fJ2(1-u) id2i;, ;dy /d2& 
. . Y(l--Y) I$ I2 

VW 
2 0 (I;:(y~(l-~)-y)-I;:o?-2~~~~~wy-y(l-y)(l-w)~-~)~ . 

(11.6) e 

As in refs. 1 and 2, we assume a three-body interaction K being 

describedby two-body interactiomonly, i.e., K = V1+ V2f V3 , where 

Vi is,the two-body interaction between particles j and k having the 

(previously assumed) asymptotic behavior Vj (k,k') 
(k-k')=2- 00 

((k-k')2)-4. 

This interaction and any iteration of it gives rise to disconnected 

kernelsas it is a difficult task to extract the asymptotic behavior 

of the vertex function directly from the BS equation. More convenient 

is to consider the (once iterated) relativistic Faddeev (RF) equation 

as has been fully described in ref.1 (see fig.5). We must consider 

the external variables on the mass-shell,as follows'from Eq.(II.5))and 

in the limits -+2 v-+m,q +m,u-+l. A In this limit (of high momentum 

transfer 1 the asymptotic behavior of the BS vertex function can be 

extracted from ref.1 reading 

(11.7) 

where F is a function which falls off in il, Y , and %A rapidly 
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enough to insure the convergence of the integrals in Eq.(II.6). Hence 

we obtain 

VW = 
2 (1-w)3+40 

w-+1 a 
(11.8) 

For the same interaction the form factor falls off as 

F(q2> 
-2-29 

q2 z 00 
(q2> ) so that the DYW relation is satisfied even 

in this case. 

III. BLS eauation for snin-& constituents 

IIIa. Two-body 

As we already pointed out in a previous paper,' the case of two spin-4 

constituents could be worked out in the framework of the BS equation, 

but it is a very elaborate problem to handle the spin structure in the 

three-particle case as the vertex function consists of 16 invariant 

functions. The BLS equation, on the contrary, allows a complete solution 

of the problem and, in addition, it looks more reliable as far as the 

asymptotic behavior is concerned. In fact, it overcomes the problem 

of the validity of the Wick rotationJand we can rigorously apply the 

Weinberg theorem. 9 The validity of the BLS approximation in the limit Of 

high momentum transfer has been discussed in ref.Z(and we do not repeat 

here those arguments) In the case of spin-zero constituents,the BLS and 

the BS approaches give the same results for the asymptotic behavior of 

the form factors' and for the threshold behavior of the structure 

functions. The latter can be easily derived from the following 
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discussion of the more interesting case of spin-4 constituents. 

For a bound state of two spin-4 particles, the structure functions are 

(still)given by Eq.(II.l) where, now, 

G 
!JV 

= Trl$p(k)(y.A-l) WY(l) 
~ (Y. @+4--l) (l)y;l)(ybA-l)(l)$p(k) 

x (y*(p-A)-l)(')} . (111.1) 

The BS vertex function is described by Eq.(II.2))where Gi(P)=(y*P-l) -1 

and 

V(k,k') = rib; T(')(u) h,k') . (111.2) 

Here, we shall consider r 
(u) 

being equal to 1, y5 or y and 
?J 

V(k,k') 
(k-k')2: 03 

((k-k')2)-1-A , A>0 (111.3) 
. 

Introducing the vertex functions 

$'(k) = G;(hP+$) G;(&P-i$ $p(k) 
8 

we obtain for G 
00 

in the infinite momentum frame 

G00 = 
P-tQ) 

x2P2 1 /$ps/2 
rs J 

(111.4) 

(111.5) 
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whose leading contribution stems from the region where both particles 

are on mass-shell (which justifies our definition (111.4)). Hence, we 

have 

VW d2L 
2 

= w2(1-w) / 
(Z~+~~-o+l)~ l 

(111.6) 

For the threshold behavior we need the high momentum transfer limit 

of the BS functions 4;' or, equivalently,' the behavior of the 

related BLS functions Xrps(which havebeen introduced in ref.21 satis- 

fying the coupled integral equations 

= 4~r J-d3i: Vrs'r's'(&Q (1+(&P&)2)5 + (l+(hP-i;)')+ 

(1+(&P+;& (1+(&P-C>+ 

'x (((l+(~p+~)Q + (l+(~P-Z)2)$2-P2-si-l xp""'(Q 
) (111.7) 

where 

V rv'sr(q,k) = -r , 
wl(-iP+fi) Gi(hP-;;) V(G,k) wf’(bP+iI) w;‘(kP-i;) . (111.8) 

The potential V is defined by Eq.(III.Z) and 

q= ( h{(l+(&P+G)2)' -(l+(kP-<)2)'] , G ) . We write Eq.(III.T) in the 

infinite momentum frame parametrization>and we invert the limit x+1 

and the integration over 3 d k in the region of integration A where this 

procedure is allowed. For the scalar and pseudoscalar interaction we get 



iy(~~-~~)2+(1-y)(l+~~)-y(l-y)(l+~:)}~ 
X 

4 Y (1-y) h+A(it;+l-sy(l-y)) 
X;S,5)Gl,y) + lim A;..... 

x-+ 1 

(111.9) 
. 

ion and B “A con tains the regions y = 1 and ci, = m . This equat 

separate analysis on the high-:: limit suggests 

px++* 
(111.10) 

which 'is confirmed by concistency, i.e. , inserting Eq.(III.lO) in 

the integral over 
%. in Eq.(III.9).For the Y interaction we obtain 

!J 

(lmx)k+* 

(;;i+l++* 
i,/dy d2;, 

c&(l-*y)qk 
X 

y4(lBy13/2+A c&Y) + lim 
4 

I . . . . . 
&+l-sy (l-y) > x-+1 11 

(111.11) 

giving the correct asymptotic behavior 

(111.12) 

Roughly speaking, if we insert this behavior in the integral over 
5 

in Eq.(III.ll), we are left with the integral I dY 

(1-yj312 
over the 
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region Y'l. This gives a singularity of the order (l-x)+ which 

is cancelled by a factor (lax++* inherent in the integral. From 

Eq&(III,6), (111.10) and (111.12) we finally obtain 

. 

*w(ls5) z (l-(&)2+2* , vw;p) = (l&+2* (111.13) 
2 

w-f 1 w-t1 

for the l/y 
5 

and y interactions, respectively. The asymptotic 
u 

behaviors (111.10) and (111.12) can also be read off from our previous 

analysis. 2 
The corresponding form factors have the asymptotic behavior2 

E&5) (s2) 
-3/2-A F(!J) II (q2> 

-1-A 

q2 f co 
, (111.14) 

q2 -f 05 3 

so that the DYW relation is satisfied for all three interactions. The 

recent work by Ezawa 8 
agrees with our l/Y, result for the structure 

functions and with our y result for the form 
u 

* 

IIIb. Three-body 

Following the line of sect. IIIa we introduce a new set 4 rst of BS 

functions connected with the BS vertex function + bY 

factors. 

(111.15) 

The structure functions W are 
iJ* 

given by Eq.(II.5), where 

G 
I-l* 

now takes account of the spin structure of the constituents 
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(cf. Eq.(III.l)). In the infinite momentum frame we obtain for GO0 

(similar as in the two-particle case) 

Goo = x2P2 1 I'$rst/2 
P-too rst . 

(111.16) 

Hence, the structure function VW 
2 

reads 

VW = 
2 P+w 

w2(1-w) Jd2dlA ady id2& 

y(l-Y), 1 1m2 
rst 

X (111.17) 
I~l(y2(1-w)-y)-~~o-2~~.~LOy-y(1-y)(1-W)2-W}2 . 

In the limit of high momenta we are allowed2 to substitute the BLS 

functions )! 
rst for the BS functions 4~ lrSt (cf. ref. 2). The Faddeev 

(i>rst rst 
components x defined by x = x 

(1)rst + X(2)rst + X(3)rst 

satisfy the coupled equations as schematically represented in fig. 5 

(i)rst&(i),-fk(i)) = i lJd3;(j)'d3;(j)' ,rst,r's't'(g(i),,(i);q(j)(,k(j)') 
'P,M j=l 

ij 

x ,;W ‘,iP’) xp M (j)r's't'(f;(j)l,~(j)') 
, 

i=1,2,3 (&.18) 

Here, M denotes the spin component and q , 

variableslused in refs. 1 and 2)defined, e.g., 

g(i) are the c.m. 
-+-f-t 

+(l) = 2A-B-C 
by q 2 
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p = ( 2,3(1+3+ - l/3(1+;+ - 1/3(1+ZQ , G(l) ) 3 

i;(l) = ( 1,2((1+$2>4 - (1+?2)QY) ) . 

Furthermore, we have written,e.g., 

rst,r's't' 
v13 = G;(i) ry; w;'(2) tip $2; w;'(;') G?(Z) d3)(") 

V 

e - - 
x (y-(B+c-~')+l) I(~)(~) wt '$1) ((&A’)2)-1-* ((&$)2)-1-A 

x ((ii+C-iiy-l)-l ) (111.18) 

(see ref. 2 for a better description) where A , B etc. are defined 

through q(') , i(') given before. Finally, the propagator E is 

given by 

(1+12+ + (l+i;2+ + (1+& 
= 

(1+&k (l+itQ (1+?)4 

(111.19) 

We consider Ec~.(II1.17) in the infinite momentum frame using the 

previous parametrization. In order to find the asymptotic behavior of 

the vertex function we proceed as in the two-body case by separating 

the integration into two regions A and Qh . Region A is understood 

to be that region allowing the inversion of the limit x -+ 1 and the 

integration, whereas s1 A 
contains the region x' = 1 , j$ z co and 

i5; ~00, For the scalar and the y 
5 

interaction, Eq.(III.17) then reads 
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13 

(i)rst ~ 
x(l,5) 

(1-x)2+2A ( /I 
x=1 

dx'2+2A . . ..( x;;);;t + x:;);;' ) + 
* (l-x') , , 

(111.19) 
.> 

where we have explicitely written the crucial dependence on (l-x) and 

(l-x') only. The behavior suggested by Eq.(III.19) (and being 

confirmed by consistency) is given by 

(111.20) 

For the vector interaction the integral equation reads 

(i)rst 
xh) = 

(1-x)3+2A i ;I dx' (i)rst 
x-l (l-x' )4+2* 

l ---( x(u) 
(j)rst ) + 

+ x(u) 

+ j-j dx’ 
(1-x')4+2* 

----( X~t~‘“” + xiiirSt ) 1 + lim /1.... 
x -+.l 3 

(111.21) 

In this case the correct asymptotic behavior is 

rst 
X@) x 1 1 (1-x) 

1+2A (III.22) 

following the same arguments as in the two-body case.Altogether we have 
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vw(1>5) = 5+4G 
2 

(l-w) , *w(u) Y 
2 

(1-Ol)3+4A (111.23) 
w+l w+-1 

for the scalar/pseudoscalar and the vector interaction, respectively. 

This is to be compared with the asymptotic behavior of the form factors2 

F1 
(l,5+q2) = 

q2 + m 
(q2)-3-2A , FCU) 2 l(4) = 

q2 -+ co 
(q2) -2-2A 

l (111.24) 

Hence, the DYW relation is satisfied for both interactions. The three- 

body calculation of ref. 8 agrees with our results for both the 

structure function and the form factors in case of the y u 
coupling. 

We like to thank S.D.Drell for his warm hospitality at SLAC where this 

work has been done. 
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Figure Captions 

Fig.1 The structure functions in the ladder approximation for a two- 

body bound state. 

Fig.2 The BS equation for the vertex function of a two-body bound state. 

Fig.3 The structure function in the ladder approximation for a three- 

body bound state. 

Fig.4 The BS equation for the vertex function of a three-body bound 

state. 

Fig.5 The (once iterated) relativistic Faddeev equation for the vertex 

function of a three-body bound state. The wavy lines represent 

the two-body BS T-matrix. 

Table Captions 

Table 1 The asymptotic behavior of form factors and structure functions 

for two-body (T) and three-body (p) bound states and for the 

different models considered in refs. 1, 2 and in the present 

paper. 
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