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ABSTRACT 

We formulate a general theory of the strong coupling 

limit of renormalizable interacting quantum fields. For 

definiteness, our ideas are explicitly illustrated in the 

case of the scalar field with quartic self-coupling, the 

usual testing ground for new ideas in field theory. More 

precisely, the generating functional for connected Green's 

functions is explicitly constructed for this latter theory 

in the limit of large coupling. The problem of regulariza- 

tion is treated in detail. For purposes of illustration, 

the first two orders in the large coupling limit of the 

Fourier transform of the connected two point function are 

computed. It is found that the Fourier transform for 4- 

momentum p approaches its large-(p 
2 

) limit essentially expo- 

nentially. The applicability of our approach to all renor- 

malizable theories is thereby made more manifest. 
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1. INTRODUCTION 

This is the first of what will presmumably be a series of reports on the be- 

havior of renormalizable quantum field theory in the limit of large coupling. 

The motivation for these reports is the obvious, the empirical observation of 

many strongly coupled particles in nature. 

In this first report, we shall give a general formulation of the Green’s 

functions of renormalizable field theory in the limit of large coupling. The sub- 

sequent works1 will deal with various interesting realistic applications and ad- 

ditional technical details. 

We shall, however, illustrate our ideas here in the case of scalar field 

theory with quartic self-coupling, the simplest of renormalizable situations. 

This we do in the interest of completeness and clarity. Indeed, this theory 

would appear to embody already all of the additional complexities of large cou- 

pling in comparison with weak coupling. Thus, we shall be able to illustrate all 

of the necessary machinery for handling these complexities. 

This first report is intended to be pedagogic. It is organized as follows: In 

Section II, we give our general theory of large coupling. In Section III, we il- 

lustrate our ideas in the case of scalar field theory. Appendix II contains a 

comparison of the regularization procedure used in Section III with the more 

conventional regularizations. And Section IV contains some concluding remarks. 

(The remaining appendices contain relevant technical details.) '_ 



II. STRONG COUPLING THEORY 

In this section we shall formulate the strong coupling limit of the Green?8 

functions of renormalizable interacting field theory, We shall do this by the use of 

Feynman path integrals. 2 The analogous discussion in terms of the Tomonaga- 

Schwinger 394 approach is not attempted. The physical equivalence between 

these two approaches to field theory is certainly. well accepted by now. 

The path integral provides a very convenient representation of the connected 

Green’s functions of a theory, for the generating functional Z of these functions 

is just 

eiZtiJit) = Jo Eli) exp i/d4x [9{ 4,) + F Jiii] (2.1) 

where 9( 9i) is the Lagrangian and { Jit are external sources. The Lagrangian 

9has the form 

(2.2) 

where . . . includes other possible (renormalizable) terms involving other kinds 

of fields such as those of spin l/2, for example. The constants {g) are here 

referred to as couplings. Tlie matrFx ?I 
13 IS uoually regarded as the mass matrix. 

As is well known, we have 

Thus it is sufficient for our purposes to learn the large coupling behavior of Z, 

for then from (2.3) we shall readily obtain the same limit of all connected 

Green’s functions . 
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To determine the behavior of Z, it is instructive to recall that, for small 

couplings, Z and its functional derivatives have a Taylor series expansion 

Z = zgnGn . (2.4) 
n=o 

The notation g” is symbolic when there are more than one coupling. Thus, we 

ask, !‘If we know that 

f(x) = C anxn 
nzo 

for x - 0 , (2.5) 

what can be said about f(x) for x - WV One can clearly distinguish three cases: . 

I. ,f(x) has no limit as x - 00 . 

II. If(x) I - L < 00 but 

X---W 

f(x) # nFo x-“b, as x - 00 . 

III. If(x) I - L < a and 
X--Q 

f(x) = c x”bn as x - 00 . 
n>O 

An example of class I is ex. Class II is exemplified by tanh x. And, as an 

example of class III we note x/(1+x). The following claim is easily established. 

Claim: The functional derivatives of Z belong to class III. ’ 

Proof: The proof is elementary. Wfi t be the set of couplings which are 

large. Scale all fields by an appropriate factor so that only nonpositive powers 

of (fit appear in the resulting action integral, I*, in (2.1). The effect of such 

scalings on g( $1 is to multiply it by an unknown J independent function of (fit. 

Such a multiplication clearly has no effect on the J-dependent part of the log- 

arithm of the RHS of (2.1). Thus, the connected Green’s functions may also be 

obtained as 
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6”iZ fP 
5Ji 

l1 n 
(x ). . .6Ji (x,) = 5J. ‘x ). ..63. 

11: l +I 
(xn) , (2.6) 

But, since I* has only terms with coefficients which are either independent of 

coupling or small, it may clearly be expanded in an ordinary Taylor series in 

its small5coefficients. This gives an expansion of type III for the respective 

Green’s functions, since these small coefficients are just negative powers of 

( t fi . This completes the proof. Q.E.D. 

Hence, the connected Green’s functions of quantum field theory possess 

discussible limits as the coupling tends to 00. It is not apparent that we are 

restricted to renormalizable interactions. However, only in this latter case do 

we expect to obtain a finite theory in the large coupling limit, for in this case 

the usual power counting assures that the only infinities which may occur in the 

evaluation of the Green’s functions will at worst be interpretable as renormal- 

izations to a finite number of parameters. However, we do not have a proof 

that we do not obtain a finite theory in the large coupling limit of unrenormali- 

zable interactions. We shall now illustrate the ideas of this section in the case 

of the scalar field with quartic self-coupling. 
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III. SCALAR FIELD THEORY 

We consider here the behavior of the Green’s functions of scalar field 

theory in the limit of large coupling. We shall first construct explicitly the 

unrenormalized functions. After having done this, we shall then illustrate a 

regularization procedure for the respective functions. The ideas in the pre- 

ceding section will thereby be explicitly illustrated. 

A. Unrenormalized Green’s Functions 

The Lagrangian (plus source term) is 

g= f (8p~uihu - m$-(f) - gdgz + Jvu (3.1) 

where J is at present an arbitrary function and the subscripts u and b indicate 

“unrenormalized” and “bare”, respectively. The generating functional Z for 

connected functions is hence 

e=(J) = 
J 9 cp exp i #cp -m2q 2, - g,p4 + Jv 1 (3.3) 

where we have dropped the subscripts u and b, for we shall discuss the ques- 

tion of renormalization in detail below. We wish to implement the results of 

the previous section. Some insight must be exercised in doing this, for other- 

wise one will produce the usual Taylor series in g, a series presumably only 

valid for g -I 0. 

In order to proceed, we have found the following physical equivalences 

helpful (see Appendix I): 

exp-i d4xbq s 2n z Jgcexp i/d4x [a2 + 2$b r.~“c] (3.3a) 

exp i 
/ 

d4x F(v) = s SB$%r exp i / d4x [F(p) + r(p--c~fl , (3.3b) 

where F is essentially arbitrary. By “physical equivalence” we. mean that the 

two sides of these equations are equal up to, perhaps, an unimportant constant 

r 
: i, 



factor. In view of these relations, we have the physical equivalence 

iZ e 5 - m2K2) 

+ JK + ‘IT(K-cp) + o2 + 2Jg(g2cr 1 , (3.4) 
By Fubini’s theorem these integrals may be done in any order in which 

they exist. Hence, doing the K integral gives 

eiz z C~MB$&J exp J (J+a)(x)AF (x-y)(J+r)(v)-r q+a2+2Jg ,F~, 1 
(3.5) 

where AF is Feynman’s solution of 

(Ox+ m2)AF = - 6(x-y) . I . (3.8) 

We next eliminate the 7~ field. This will be done in two steps. First, we 

remove the explicit coupling of v and T by the shift 

lr 
v-v +- 

%ka 
. (3-V 

There results 

e i% = 
/ 1 

+ 77 jPj) - iC(pj7r(xj)+ojcr(xj))+ ifi4x [- &/d4~(J+~)(x)AF(x-y)(J+s)gr) 
j 

In making this last step, we have used 

lr2 
-F 

= / d?7 r7 2 ‘&JJf $ exp [icz @-a)+ip(n -r)J . 

(3.8) 

(3.9) 

We next effect the 7r integral as follows : First, recall 
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/ 

4 
n(xj) = fi4(rl&) cosk*xj + n2(k) sink*xj) 

cm 

where 

sl(k) + in2(k) = I d4x e+ik*xr(x) . 

(3.10a) 

(3. lob) 

Hence, the shift T - n-J gives 

[gx exP @& [-(;;;T@$(-k’ - 5 pjrl@) cosk*xj - 5 pj"2(k) sink*xj] 

I exp iJe4t[ IJ: pj(Jl(k) cosk*xj + J2(k) sinkxj)l+ k2_,2 [(y pj cosk*xj)’ 

+ (C p. sink*xj)2 
j ’ 1 ; 1 

(k2-m2) n 

2. i,j ’ J 
c p.p. cosk*(xi-xj) . (3.11) .. 

We now have 

” e = f $f fi [b4xj 212 T 2] exp [iz(ojBj + q jpj + pj JNj)) 
n=O l j=l iI 

(k2-m2)pipj cos k l Qci-xj)]/iEkp C&T exp ij-d4x [u2+2Jg C&T 

- c a(x-xj)aju(x)] (3.12) 
j 

. 

We must next study the remaining functional integral in this last equation: 

Itiaj t9 {“j 1) f + 2<g(p20-- C aj6(x-xj)u(x) (3.13) . 
j 1 

A simple shift removes the CT field: 

(3.14) 



I . / :' 
-g- . 

This last integral over cp is clearly delicate. In order to extract its physical 

content, it is sufficient to study it relative to its value at (ai] = 0: We there- 

fore need to determine 

We proceed as follows : First, recall 

/ 

(3.15) 

(3.16) 

whe=ae{yi} Y ma correspond to a covering of space-time of uniform measure 

AX, i.e. , each yi is at the center of one and only ‘one of the sets in this 

covering, except perhaps at 00, and each set in the covering has measure AX. 

Whenever we may take ( xj tc{yj} , (3.15) is readily evaluated as (see Appendix III) 

dyj exp i (-g AX ~4 +Jg ajvf) 

R= for AX 1 0, 
00 

d’pj kxp i (-g qo;) Ax 

. . 

, presuming xi # xj for i # j. We call this the normal case. \ 

In the exceptional case that an xj cannot appear in ( yi ) , it must corre- 

spond to a boundary value at t = + 00. Our only constraint is that cp - out in field 

. . 
ast--+oo. But, in and outlields are well-behaved functions of x. Hence, from 

the regions near t = + 00 , we get, for example, if all xj are at the boundary, 

R= exp ( i& C aj[P2txj)) . (3.18) 
1 

Finally, when(xjtc{ yjt but two xj coincide, another exceptional case, 

we get, for xi = x. ’ 
JO 

and bisaj > + (cti - uj ,01. + CY~)/,D , where i # j 
0 0 Jo. 0’ 
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r~-;rr .,-. .::*I’ 

(3.19) 

with the analogous expression for x1 =x2 =x3, etc. Any other exceptional case 

can be seen to be at most a combination of the two types of cases -rep;esented by 

(3.18) and (3.19), possibly several times. 

Now, how shall we weight these contributions ? Well, the region where R 

is given by (3.18) is of size 

relative toflJd4x .; the analogous estimate holds for the similar exceptional cases. 
iI J 

The region where R is given by (3.19) and the analogous’expressions is of size 

AX$ d4xjo 

,3Jrizq- i 0 

relative to TT $d%cj. It might therefore appear quite simple to resolve this 
j 

weighting problem. However, R occurs in (3.12) multiplied by the factor 

exp i 

: 

tk2 -m2)pipj COS k l (XiyXj) - i C cyi(yj’(xi-xj) (3.20) 
Lj . 

This factor (3.20) involves several infinite expressions. We should not, there- 

fore, expect to be able to decide what to do until we “renormalizeff these in- 

finities. 

of course, these infinities should have been expected, since our field theory 

is not finite, so that the products of operators at short distances are in general 

too singular in their unrenormalized form. We can already make the following 
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observation, however: from the structure of (3.20) it is clear that any sys- 

tematic procedure which renders the normal case (R given by (3.17)) finite 

renders the exceptional cases neg- 

ligible. Hence, we may write 

exp i (0LjP-j + pjrl j + Pj Jo iJ$ c (k2-m2)pipj cos k l 

i,j 

txiwx j ) 

1c - .q 
Lj 

cYicvj6 (Xi^Xj) 1 . 
(3.21) 

This is an explicit (formal) representation of the large coupling limit of the un- 

renormalized connected Green’s functions of scalar field theory with quartic 

self-coupling. 

We shall therefore have a complete theory of the strong coupling limit of 

the Lagrangian (3.1) provided we can consistently interpret the infinities in the ex- 

pression (3.21). We shall next turn to this issue. 

B. Regularization 

We shall now discuss a method for interpreting the infinities in (3.21). 

Let us first recall, again, that,since this theory is renormalizable, there can 

be at most a finite number of parameters. These parameters depend, in gen- 

eral, on the cutoff, i. e. , on AX. The objective is to show that these param- 

eters can be chosen so that the dependence on AX disappears. 

The formula (3.21) contains the expressions 

q(xi-xj) z / 
d4k - 

(4 
(k2-m2) cos k l (xi-xj) (3.22a) 

and 
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1 
I -ik 
1 

6(xi-xj) = J d4ke 
l (xi-xj ) 

G4 
. (3.22b) 

These expressions diverge for x.%.. We choose to cut them off in such a 
1 J 

manner that 

AxIS(O)l = 1 (3.23) 

as it should. This means (from (3.22b) ) that an .appropriate expression for the 

regularization of 6(x) is that suggested by continuation to n dimensions:6 

4 x2/4h2 

6(x) = lim G’(x) = lim e (3.24a) 
AI0 A. 10 Gm4J7 

with 

. (3.24b) 

The distribution (3.22a) is then readily interpreted by 

(3.25) 

With these regularizations in mind, we introduce \ 

v;(x) = 

Vi(x) = 

26) 

(3.27) 

We then obtain, upon resealing 
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Pj - j a&-y&l 

9 
- 117 j/h(2hh)2 

xj 
- 2m Ax. , 

R J 

(3.28) 

pjh(2G)2J(2xjmRh))+ icpipjv 2(xi-xj) - x lC 

i,j i,j 
cyj vo(xi-xj) (3.29) 1 

where we have defined 

v (x.-x.) = e 

-i(xi-xj)2mi 

01 3 P- i 

v (x.-x.) = e 
-i(xi-xj) ‘< 

2 1 3 
2i + m2 (x.-x )2 RI j 

_ h2m2 
F i \ 

(3.30) 

and mR may be identified with an appropriate mass parameter (cutoff param- 

eter). 

The factor 

(2AmR)4(AX)1’4 Is’(O) lW114 

A2(2AJnjl 

in (3.29) is, by (3.24b), equal to 4m4Rn. Further, clearly without loss of 

physical content, we may absorb the factor h(2AJ7r)2 multiplying J(2mRhxj) 

into the wave function renormalization constant for the field cp. This factor may 
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thus be omitted with this understanding. 

The only remaining dependence on A is therefore through the mRh in the 

argument of the source J and the A2m2 in v2(x). In fact, for sources J such 

that 

J(s) = aV3J(x) (3.31) 

the only dependence on A is through A2m2, if the factor A(2h&r)2 is not absorbed 

into the wave function renormalization constant. It should be intuitively clear 

from this last fact that our theory is finite for an appropriate definition of a 

finite number of parameters. We shall not restrict, initially, our attention to such 

sources as (3.31), however. We therefore record our basic result, for the moment ,as 

exp i [x k jPj + q jpj + pjJ(“~Xj)] + i C PiPjV z(Xi-Xj) 
j i,j 

a.cy. v (x-x.) 
iJ 01 J , (3.32) 

where we have made a wave function renormalization as we discusse;l above. 

This last expression clearly corresponds to a theory independent of A pro- 

vided we define 

z1 E 2)cmR and Z 25 h2m2 m , (3.33) 

z1 and zm being parameters determined by normalization conditions. 

Further, upon comparing (3. l’i’), (3.18), and (3.19) in connection with 

(3.29), it becomes clear that we were justified in neglecting the latter excep- 

tional cases for R above and writing (3.21). It appears therefore that the 

formal expression (3.21) does indeed correspond to a finite calculable 
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representation of the large coupling limit of the Lagrangian (3.1). The 

result (3.32) gives this finite representation more explicitly. 

C. Explicit Calculability 

We are asserting that (3.32) is calculable, mainly on the basis of the 

calculability of the corresponding theory for small coupling, i.e., (AII.ll) 

is known to be calculable. The representation (3.29), however, allows us 

to evaluate entirely unrenormalized quantities to see explicitly whether 

(3.32) is calculable. We consider as an example one of the basic vertices in 

the theory - the connected two point function: 

- @\T(~J(Y~)'P(Y~)) lo,, = aJ(y62f;J(y > \ ' 
01 6*a 

= c tn I 

1 2 J=O F antn n=l 8J(y1):J(y2) J=o 

n=O 
(3.34) 

where we have defined 

a =l 
0 , a3 co Q) 

1 n 
s s s 

a =- 
n 1 = n. j=l 

[j+ d4xj n$ i dTj 7; + -3-s 
-03 j 

( 1 

i 
l/4 

W4)Jrrolj 

13 eXPi[j~l(QjBj + Pjr\j + 4h3~pj~(*9pj)) 

++ “c PiPj v*q-Xj) 

i,j=l 

ln -- 
4 c cricrj vo(xi - xj) 3 (3.35) 

i,j=l 

for nzl, and 
t = -il& . (3.36) 
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In (3,34), the subscript c denotes the connected part. In (3.35), the +ia prescrip- 

tion on @. 
J 

results from the requirement that the coefficient of cp2(xj) in 

(3.12) have a small positive imaginary part; thus, here, a 1 0. 

Now, it is not supposed to matter how specifically the limit J -) 0 is 

taken in the functional derivative. That is to say, for any reasonably be- 

haved functional S = s d4x F(J(x)) where F is an ordinary function, 

6S -I ~J(Y) J =o = ;Fo 
s d4x [ F(J(x) + 76(x-y)) - F(J(x)) 

7 

'J = 0 

= F’(J(y)) 1 (3.37) 
J=O 

appears to be independent of the manner in which J -) 0. Here, prime denotes 

differentiation with respect to argument. Hence, let us now restrict our 

attention to sources satisfying (3.31) in the neighborhood of J = 0. Then, 

as % was arbitrary, we identify it with m 
P' 

the physical mass, without loss 

of physical content! 

The lowest order contribution to -iiF (y,-y2) G -(O\T(~~(y~)[p(y~))\0)~ 

is then 

(y,-Y*) = t 
6*al 

SJ(y1)SJ(y2) -oD -03 

1 
l/4 

expi[c$ + T$I -t $p2(2+izm) -cy2/4i] 

i W/4)Jrrcr 

s d4x [(ip - 2~3)b(x-yl)(ip +)6(x-y2)] . 
2m 

P P 

(3.38) 
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The integral over d4x is straightforward. The integration over dg is also 

straightforward, giving (Here, 0(s) = 1 for s > 0 and e(s) = 0 for s < 0.) 

“AL 
s B + is exp(icrf3) = 8(-a) (-3-d 

l (3.39) 

-CO 

Thus, the subsequent integration over da, gives 

(-ki) 
-00 

O5 dre-r/4 

= *, .3/4 s 

=-&ydrr -314 
exp C-r) 

0 

+p . 
i-r (3.40) 

Finally, the integrations over dp and dTJ give 

7 d7 v2 y zrr p iLQ 2exp{i[vp + p2(1 + ism/2)13 
-02 -CO 

03 
= 

s -m 
2exp{i[v(p -y) +f32(l+izm~WIy=0 

=-- dp 6(p-y)p2 exp[ip2(l+izm/2)l! 
y=O 

= -2 . (3.41) 

On introducing (3.40) and (3.41) into (3.38) we obtain 

b2al 

(yl-y2) = t &J(yl)sJ(y,) J=. I -l 
i 

1,4 
r(1/4) 

) (zap 1T > (+j)2(i)2(-2) 
2m 

P 

x 6(Y1- Y,) 
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i 3’4 2 
l-r 6(Yl’Y2) 

= 

GSimE ’ 

(3.42) 

To compute the order l/g contribution to -GF(yl -y,), we need the 

order t term in exp(-iZ)\J=O times -GiI{yl -y,), plus 

2 
t2 6a2 

I ~J(YI)~J(Y~) J = 0 ’ 
(3,43) 

as usual. 

Turning first to exp(-iZ)\J=O we have 

exp(-iz) I, = o = 1 - tal lJ = o + 0(1/g) 

dB w& 
s B + is -03 21-r 

1 

i 1’4 r (1’4)Jrrcr 
exp{i[c$ + pT\ + $p2(2 + iz,) 

- L-y2/4i]]+O(1/g) 

. m4((kj4g4(0)) 

= IL + 2 il’4 r(l,4) 

) +0(1/g) 
-Co 

= 1 +Lm4( 
(2d4S4(O> 

JZ ' i1'4 r(1/4) 

a2 2 
x (-- 

aY2 
exp[iF (2 + iz,>]\ > 

y=O 
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(2~r)~s~(O) m4 (2 + iz,) 
= l- 

mg ill4 
-I- 0(1/g) . 

(3.44) 

Here, (2~)~6:(0) c VT is the total volume of space(V) - time(T) and (3.40) 

has been used. From (3.44)wehave the contribution 

-i 1'2 2 

-iiclIa)(y 
F 

-y ) = - 
VT m4 (2 -I izm) 

12 mg ill4 
(-ii:') (yl- Y,>> = 

q-rm (2 +izm)6(yl-y2)VT 

4g 

(3.45) 

to the order l/g term in -iAF(yl -y2). 

The remaining order l/g contribution to -iiF(yl -y2) is explicitly given 

by 
-iZ;(IIb) 2 62a2 

F ('1 - '2) z t I 6J(y1) 6J(y2) J = o 

= $ (s)2 s d4xl s d4x2 rni -i 2 dt 71 

exp{iCalBl + a2B2 + P1fll + P2712 

+ p1p2V2(x1 - x2) + $(pYf + pi) (2 + iz,) 

1 
- 2 9Q2vo(x1- x2> - '"1 2 + cyz)/4iJ] 
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x (i)zi($) (p16(x1 -Yl) + ~26(~2-y1)) 

P 

x (P~~(x~ -y2) + p26(x2-Y2))I 
. 

(3.46) 

The integrations over c'$, 'Q, 3 and CP,, p2 ] are effected in complete 

analogy with (3.41) and the 'Q- p integration in (3.44). We have 

Sm dql’$ 7 2 y d'12 ‘Vi 7 -Q) (~16(~1-~1) + -02 2 p26(~2 -y1))(pIG(xl-y2) 
-02 

-0D +p26(x2-y2)) 

exp{fCpl”TI1 + p2r12 + p1p2V2(x1 - x2) + $(P: + p3(2 + iz,>lI 

= a4 
2 2 (Y~~(x~-YI) + Y~~(x~-Y~))(Y~~(x~-Y~) 

aylay2 

+ ~26(~2 -Y,)) expEiCylY2V2(x1 -x2) 

+ $(Y: + y,2, (2 + iz,) I]\ 

Y1'Y2=o 

= 2 6cy1 -y2)[6(x1 - y,> + St.3 -Y1)l fi(? + izm)j 

+ [S(X,-Y~)S(X~-Y~) -I- 6k1-~2)6(x2-Y1)1(4i V 2 (X y2)) l 

(3.47) 

The required integrations over {@l, @,] and {crl, a2] are effected with 

the use of (3.39). We have 

co 03 
s df$ s d4 s - w da1 w da 

-CO -a- - -CO 2n s --2( 
3-r -CO 

Rl+ic B2+is 
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= m dcvl * dcv2 
s 

~(-cY~)~(-cI~) (-2rrQ2 

-0-I 2rrsco 2rr s && 
expCi[- $ ~~la~V~(xl- x2) 

-hY; + a$l4i] 3 

= 7 da1 y da2 
0 0 

7Tw2 
exp{it- $ a1cx2Vo(x1 -x2) - (a; -t (Yz)/4il] 

1-12. 
-in(xl- x2)2m2 O" 

m 

l F p s da1 s da2 a1 
n-112 n-112 e -(+!;)I4 

5- cy2 
l-r n=O 2nn! 0 0 

l z 5- &$2 &; + 1'4) e-in(xl - x212< . l-r n= 0 
(3.48) 

On introducing (3.47) and (3.48) into (3.46) we find 

#Ib> 
F 

(yl -y,) = $ (- t) (mi) L 1 L 
i 'I2 r2(1/4> (4mE) 

x (-1) s d4xl l d4x2 {2i(2+izm)6(yl -y,)cG(xl-~1) 

+ 6(x2-yl)] 

+ 4i V2(x1- x2)[6(xl - y1)6(x2 - y2) -I- 6(x1 - ~2)6(x2 - Yl)II 

L "c 
xTr n=O 

q r2(q + 1'4) expt-in(xl- x212mil l 

(3.49) 

Evidently, (3.49) requires 



s d4x e -+I 
3'2 * 2 

-inm 
P P P 

(3.50) 

Using (3.50) we obtain 

.1'2 2 
_in(I'b) (y _ y = " 

F 12 
> 

33 r2(1'4) 
(2 + iz,) C 

P 

i'1'2 rrm2 

-y ) + p {2i + (y 
03 

x 6(~1 2 g 
1-y2)2m2 - ",I C 

P n=O 

x [ 

r(+j + 114) 

lY(1/4) I2 exp[-i(n+l)(yl-y2)2m~~ . (3.51) 

Hence, our result for the order l/g contribution to -iA F (y 1 - Y2) is 

-ii;(") (y 
F 

1 - y,) f -ii('Ia) (y, - y,) -ii('Ib) (y, - y,) 
F F 

i 3'2 3 
7-r (2 + izm) 

= 
2g m2 

( "c q [r(;(;,;;4),2)J(yl -y,) 
n= 1 n n! 

P 

i -1’2 ~ m2 
+ 

g 
p {2i + (yl -y2)2mi - ",I "c * 

n= 0 

x [: 
r(f + 1'4) 

r(ll4) I2 exp6-ib+l>(yl -y2)2mi], 
(3.52) 

From (3.52) and (3.42) we have 

-(I) 
i&-Y9 = AF (yl - y,> + p(y, - y,> + owg3’2> 
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i 7'4 rr2 6(yl -y,) i 5'2 n3 (2 + iz,) 
= + 

2g m2 
(F 
n=l 

P 

x L 
rc: + 1'4) 

r W4) 12> 6(y1 - Y,> 

.1'2 2 

+ -[2i+(y 
g 

1 -y2j2mi - ",I "c 
n= 0 

ewC-i(n+l)(yl -Y212 rni] + O(l/g3'2) 

w n n! 

(q-l [ e++; ,2 
n. 

. (3.53) 

This expression (3.53) contains in it one unknown parameter, z . From this 
m 

fact, it is apparent that (O\~(q~(yl)cp(y~))\O)c is calculable through order 

l/g at least. As usual, the parameter z m may be determined by the renormalized 

value of i,(p, 
2 2 -p)at some normalization point p =-b , for example, where 

AF(pl, P,)@TT)~ 6(p1 +P2) - l d4yl l d4y2 iF(yl - Y2) exPi~~Pl*Yl+P2’Y21 1 

(3.54) 

for 4-momenta pl, p2' This fact that only a mass renormalization parameter 

is necessary for the calculability of the large g limit of (3.1) to order l/g 

is in complete agreement with the results of Wilson7 for the strong coupling 

limit of the cp6 interaction of the scalar field CJI in two space and one time 

dimensions. 

A more complete treatment of the connected Green's functions of (3.1) 

will appear elsewhere. Before concluding the present discussion of the two- 

point function, however, we would like to examine the large lp21 limit of 
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‘&&, -p) through order l/g. We have from (3.53) and (3.54) (using (3.50) 

and the derivative of (3.50) with respect to n) 

i&b 'P) = 
$ i7'4 i1'2 n3 

(2+ izm) 
2 

.1'2 173 
-I- l 

2 

gm2 
"c 

n=O 

(-pTn-l 1"3,:,;;4) 12 (-2 - izm + 
n. 

P 
(n+1)2 (n + 1)3 

+ ip2 

4(n+l)4mz 
) exp[ip2/4(n+l)mi] + O(l/g3'2). 

The p2-dependent part of (3.55), as we shall show, is represented more 

conveniently by the use of 

r 
(3.55) 

Ik = 
n=O n. (n + l)k 

expi[p2/4(n+l)m~] 
(-)“2:-1 

(r(g + 1/4))2 ' 

. 
=- 

4' $ 
2z 

dz r(2 + 1) (r(f + 1'4))2 e 
i[p2/4(z + l)mp2] 

(3.56) 

C (Z+l)k sill7Tz 

where k is a positive integer and C is the open curve encircling the non- 

negative integers in the complex z-plane, as shown in Fig. 1. (The arcs at 

0~ and the line C' are not included in C.) Thus, we next study I in some de- 
k 

tail. 

First, we note that the identity 

-w(-z>r(z) = sinmz (3.57) 

allows us to write 
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Ik = 2 if dz r(-z) 2' <r(t + 114))~ e 
i[p2/4(z+l)mi] 

. (3.58) 

C (z+Uk 

But, the logarithm of l?(z) is 

An r(z) = (Z - l/2) An2 - z + $ Rn(27-r) 

+2 
a arc tan(t/z) dt 
s e2nt - 1 
0 

(3.59) 

where arc tan u is given by the equation 

U 

s 
dt arc tan u = 

0 1+t2 
(3.60) 

in which the path of integration is a straight line. Thus, we may use Cauchy's 

theorem to convert the integral over C to one over the line C' in Fig. 1, giv- 

ing 

.ia-6 
Ik = $ s dz r(-zjzZ (r(g + 1/4))2 

-ioo- 6 

where 1 >> 6 > C.(Hence, we have made a Sommerfeld-Watson transform.) 

We will use the method of stationary phase to study (3.61). Toward this 

end, we observe that the imaginary part of the logarithm of the integrand in 

(3.61) is, for z = iv - 6 with v real, 

Phase(v)=- van v +6 + (6 - l/2) tan-1(-v/6) F 

dt 
+ 21m y 2nt s 

it/(v+i6) 

o (e - 1) o 

-(6+l/2) tan-l [~/(1/2 - S)] + 4Im y ,$ 
-2it/(v+i6 - i/2) du 
s 

0 e -lo 1 + u2 
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-k tan -‘(v/(1 - 6)) + v .i?n 2 + p2(l- 6) 

4mi(v2 -I- (l- 6)2) 
. 

Hence, 

dPhase(v) 
dv 

co 

-21m s 
dt it 1 
2nt + 

0 e -1 ((v+i6)2 - t2> 

(3.62) 

(6 - 1’2) 6 _ 

v2 + 62 

1 2 An(v2 + (l/2 - 6)2) 

+ A- (6 + l/2)(1/2 - 6) 

v2 + (1'2 - 6)2 v2 + (1'2 - 6)2 

co 
+ 8 Im dt s 

it 

0 (e 
2nt 

-1)((v+i6-i/2)2 - 4t2) 

k (l- 6) _ 
2 

p v(l- 6) . 

v2 + (l- 6)2 2mi(v2 + (1- 6)2)2 

(3.63) 

Evidently, if v is fixed, dPhase(v)/dv is nonzero for Thus, 

any possible stationary point v o for the phase in (3.61) must satisfy, for 

lP21 + Q), 
I 

p2vo(l - 6) 

,%(vz + (l- 6)2)2 
I <M <m (3.64) 

for some positive number M independent of p2. Thus, for lp2\ + 00, we see by 

retaining the terms through order l/v' in (3.63) that 

dPhase(v I > = 
dv 0 

v=v 
0 

(3.65) 
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gives, approximately, for 6 - (rnillp 
2 314 I> to be more specific , 

0 = -In\v,l - 1 +A v2 ( y dt e2ntt - - - (k(1 s’2) _ 

0 0 

1) 2 ;;I 

0 0 

(3.66) 

(The region near v 0 
- 0, in which (3.64) can also be satisfied, can be shown 

not to give a solution to (3.65) by straightforward calculation so that only 

(3.66) is relevant to (3.65).) Hence, recalling that 

4Jdt ' 

0 
e2nt - 1 

is the first Bernoullian number, which is l/6, we have 

(k + 1 )6- ($ + k) = p2/2mivo 

(3.67) or 
V A -4p2/mi(l f 8k) . 

0 

Also, from (3.67), 

d2Phase(v)l 3p2 

dv2 
+ ($ + 2k) L + - 

V3 v=v 2m2v4 
0 

0 PO 

(1 + 8k)m2 
= (k + 1'8) ( 

4P2 
p)3 

(3.68) 

and, from (3.62), 

Phase(vo) 

lPq+ O3 

- F e(-p2) (3.69) 

c l,s>O 
with E(S)= -1 

, 
s < o , 
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- (9+ 8k)'16 (3.70) 

to the accuracy of our approximations. Thus, by the method of stationary 

phase, 

5 r 2 
-l-r Iv01 

yv lk +l (2?T)3’2fl e 
-(9+8k)/16 - 9 s(-p2)i O3 dv 

s 
0 -Co 

exp(-i(- (v-v 
16~; 0 

>2)> 

for lp21 -t m, This gives, with argi = TT’2, 
(3.71) 

Ik + -i 
16-F e(-p2)i-nIvo\ 16dvo13 $i 

4n\vo\k+1 
( i(l+8k)s(vo)) 

to the accuracy of our approximations. Finally, the real part of the 

logarithm of the integrand in (3.61) is, for v =v 
0’ 

-Ivo\n - (k + l)Rn\vo\ +$ an2 + $ Rn(2rr) 

" (4~) e -1 -(9+8k)'16 - krre( -p2> i/2 - 17 Iv, \ 
= 

Jlrrsr; \v,lk-fi~~ 
. (3.72) 

Hence, for lp2\ + a, we have, from (3.55) and (3.72), with argi= -3~12 =+arg-1, 

i,(P, -PI + Tr 
2 i7'4 _ i1'2 3 

U2Z m: 2gm2 
n (2+iz,) "c 

n=l 

(-)yl [Wl;4)]2 

n n! 
P 

+ irr3(4rf) e 
-41'16 -I+,\ 

(ip2/4m2) 

m$ 1~~1~‘~ A(-p2) (r(l/4))2 ' 

(3.73) 
where, here, v = -4p2/33m2' thus, for ]p21 + CO, 

0 P' 
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&7/4 i 1'2 3 02 
&h-P) -) n (2 + iz,) C 

2gmi n=l 

+ 35937 I-r41 
3 

128gW/W2 

( mp ) e-41/16 - 4n\p2\/33mi 

(P2j512 
. 

(3.74) 

As expected, the propagator approaches its asymptotic value essentially expo- 

nentially for large \p2\. More elaboration of the meaning of this result will 

appear elsewhere. 



I IV. DISCUSSION 

We have formulated the theory of strongly coupled renormalizablc fields 

using scalar field theory as a prototype. To repeat, the more interesting ap- 

plications will be taken up elsewhere. 1 

The restraint of renormalizability is clearly necessary in giving a meaning- 

ful formulation, for it assures us of only a finite number of parameters. We 

have no argument which would suggest that unrenormalizable theories possess 

a meaningful large coupling limit, although it would appear that in this latter 

limit formal expressions can be obtained for these theories just like the in- 

verse power series expansion (3.21). We shall, therefore, not be concerned 

with such unrenormalizable theories in further reports, although, as we already 

admitted, we do not actually have a proof that such theories are without meaning 

in the respective limit. 

We have given, for scalar field theory, an explicit demonstration of the re- 

normalizability (“finiteness”) of our formulation of the large coupling limit. Of 

course, this “finiteness” is intuitively clear (for all renormalizable theories) 

from the fact that the g - 0 limits of the respective theories are “finite”. In 

establishing this finiteness we have used an unconventional regularization pro- \ 
cedure. In the Appendix II this unconventional procedure is compared with 

that of convention. The two would appear to be physically equivalent. This 

point will be discussed in more detail in the later works. 

Our approach to the problem of strong coupling should be compared with 

that of Wentzel. 
8 

In this latter approach, an attempt is made to isolate the 

free and bound parts of the respective fields. On the other hand, in our ap- 

proach, all aspects of the fields are treated on equal footing so that, for ex- 

ample, relativistic invariance is manifest throughout. Indeed, it is a special 
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power of the path-space approach2 that it permits all aspects of the theory, 

i.e., all aspects of the Lagrangian, to be treated on equal footing in a mani- 

festly Lorentz invariant fashion. 

We end by emphasizing that the methods in the text would appear to render 

accessible the large coupling limit of all renormalizable interactions. 
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APPENDIX I 

A USEFUL EQUIVALENCE 

In this short appendix, we shall establish the result (3.3b) of the text. It, 

like (3.3a), follows immediately from the work of Feynman. 2 For, from the 

definition of the path integral we have 

C CF(( Pi 

j 

) ) + Tjbj-4j)J) 

j 

dp 

= lim & 
( > 

N 
exp i AXcF({G. 

N--m j ’ 3 
f> 

= C exp i 
J 

d4x F(G) (AI. 1) 

where the trivial infinite factor C could easily have been absorbed into the 

normalization of the functionals. This establishes (3.3b). 
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APPENDIX II 
COMPARISON WITH CONVENTIONAL SMALL COUPLING THEORY 

Here, we shall compare our method of regularizing the strong coupling 

limit with the conventional procedure for regularization. Since the conven- 

tional prescription has only been applied to small coupling, we shall effect such 

a comparison by applying our method of regularization to this. same small 

coupling limit of (3.1)) i. e. , the theory 

LP= - m2G2) - g$4 + J@ (AH. 1) 

with g - 0. 

Our generating functional is still 

eWJ) = J 9Q exp i d4x J (~8p~a’~ - m2e2) - gq4 + J$) , (AK 2) 

We find it convenient to write 

exp -i 
J 

c& g+4 = 5 
n=O 

+ ; [jd4x d 
j=l 

j 77 j114 -$ exP i C Pj(rlj-@txj)) ““‘] 
j 

(AH. 3) 

in view of the presumed smallness of g. Then 

e iz = f * jtl [,&kjdnjnf ‘@+ exp{ic pjqj + i/d4x[$3p$3p$ 
n=O j 

’ - m2e2) + J@ - F Pj’ @-Xj)$]} 
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where AF is Feynman’s solution of 

- (ox! m2)AF = 6(x-y) (AII.5) . 

This last representation (AIL 4) of Z is the small coupling analogue of (3.21). 

It can easily be seen to correspond to the usual Feynman rules for the theory 

(AIL 1). It is, moreover, extremely convenient for applying our regularization 

procedure. 

Since the function AF(xi-xj) diverges badly for xi =x., this small coupling 
J 

limit of (AIL 1) also has singular ill-defined operator products at short dis- 

tances, as iSWell known. PrCCeCdiIlgpreCiSely aS iII Sec.III.B, we introduce the 

regularization 

with 6’(x) given by (3.24a) 

8(x) f e 
-ix 2/4h2 

(2h,J?;fP 

(AlI.6) 

(AIL?) 

In the limit A 10, we recover AF 

AF = limAi ‘\ (AII.8) 
Ai0 

. 
\ 

Explicitly , 

h 4 , d4k 
AF= dy JJ 

,-ik l (x-y-y’) ,-iyt2/4h2 

J 

d4k .-ik l (x-y)+ih2k2 

m,4 k2-m2+ie (2hJGj4jF = c2,ii k2 -m2+i E 

(AII.9) 

Now, in (AIL 4), we again scale 

xj 
- Am x 

Rj 

9 - 77 j/hmR 
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pj - PjhmR , (AIL 10) 

giving 

iZ e = 2 # i [h4xj dq jqf 21 exp i[q pjq j - &/d4xd4yJ(x)Ak(x-y)J@) 
n=a - j=l 

+ /““XT j, p J(x)a’,(x-xj) - f c pipj A;(xi-xj) 
i,j 1 

where we have defined 

dF(x-y) = /A4 e 

-ik l (x-y) + ik2/+ 

(2n) [k2 - mizm + ie] 

Z = lim h2m2 m h--O 

and have taken J so that 

J(ax) = am3J(x) 

(AIL 11) 

, (AIL 12) 

(AIL 13) 

in accordance with (3.31). Again, zm is the mass renormalization parameter. 

The perturbation series (AIL 11) would appear to correspond physically to the 

usual series, except that now the “subtracted” propagator A’F is exponentially 

damped at high energy. The precise relationship between our series (AIL 11) 

and that of convention will be taken up elsewhere., 1 
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APPENDIX III 

EVALUATION OF R 

It may appear that there is a certain freedom associated with the phase 

of R- in view of the fractional powers appearing in it in (3.17). Thus, we 

should like to expose our choice of branch for these powers* 

Specifically, for the evaluationofRwe need, inthe normal case, at order (l/mn, 
co 

J' dqj expi-i[gAKV; - "Jo vi13 

R=; -m . 
j=l co 

(AIII.l) 

s dcpj exp{-igAXqi] 
-CO 

The numerator integrals are given by 

Nj(aj) = y d 
-CO 

'Pj expi-i[gAWi - olj~ v:lj 

=1(cyi% 
2 -AX&) e 

ict:/8Ax 
K,,,(iai/ (-)28AX) (AIII.2) 

second kind of order l/4. where Kl14 is the modified Bessel function of the 

In defining the denominator of (AIII. l), we may s imply write 

co 

S dVj exp{-igAxcpi] = lim Nj (aj) 
-03 a. +o 

J 

= lim 

= r(1/4) 1 
2i1/4 

(AXg)1'4 
(AIII.3) 

if -7 < argz S; 7~ for the complex variable z. Here, we have used the result 

that 

Kl/4(Z)Z z o r(l/4) 2'314 Z'1'4 for \argzl < ~ 
. 

(AIII.4) 



-37- 

Indeed, by rotating the positive real v. axis to the axis arg (p. = -n/8, 
J J 

we have Q) 
l dcpj exp{-igAxv;l = 2 7 dp e -in/8 

ex??C-gAxp4j 
-02 0 

= I-(1/4) 

2i1'4 (AXg)l'4 ' 
(AIII.5) 

in agreement with (AIII.3). 

NOW, on taking the limit AX 1 0 in the numerator factor N. we have 
J' 

Nj bj > 

3 

AX 1 0 
(AIII.6) 

since 

K1/4(Z) ,,,; o. e-z f 
2 for larg z\ <rr . (AIII.7) 

Thus, 

R+: 
(-rrlia.fi)' 

j=l (r(l/4)/2il'4(Axg)1'4) 

n 2i314G (Ax>% 
= l-r 

j=l 
m/4) (~111.8) 

where i314 is defined on the branch specified above: -n <arg isrr. 

From (AIII.8), we see that in equations (3.17) - (3.55) in the text, 

the branch of z 114 to be used in computing i 114 is given by 

(2n- l)n< arg z 5 (2n+l)rr (AIII.9) 

such that 

2nrri (e i> -L = _ (e(2n+%hi)-k = i3/4 ~ .3rri/8 . (AIII.lO) 
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This gives n 13 --w--z-- 
2 8 8 

(AIII.ll) or 
n= -1 . 

Hence, 

i 114 = .in/8 - irrl2 = .-3rri/8 (AIII.12) 

in (3.17) - (3.55). 
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FIG. 1. 

Caption: The open curve C encircles the nonnegative integers and is 

otherwise infintesimally close to the real axis. The line C' is the line Rez = 

-6, where 1 >> 6 > 0. 
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