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ABSTRACT 

A formal expression is obtained for the energy loss per 

. . _ turn, of a rigid bunch of electrons, to a closed cy 
- - 

lindrical 

cavity with quality factor Q. -The expression is valid provided 

the diameter of the entrance and exit ports for the beam are small 
._.. .- 

'compared to the bunch length. The effect of the ports is studied 

in an independent computational method. The energy loss is nu- 

merically evaluated for a range of parameters of interest to,elec- 

tron storage rings. 
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I. Introduction 

The next generation of electron storage rings, which currently is 

under design, Super-Adone', PEP2, EPIC3, PETRA' and the electron option of _- -, 

'- 

-ISABELLE'., has in typical cases electron bunches of about 0.1 m length 

and peak currents of up to 1000 A. For these devices, beam-loading of the 

rf system must be carefully considered.6 

Of course, the loading of an rf cavity by a beam is an old and well- 

understood subject. However, in the classical cases the bunch spacing 

is equal to an rf wavelength and the-bunch charge is so small that the 

energy loss is small compared to the energy gained by the bunch from the 

excited cavity. A striking exception to this situation is envisaged in 

the rf accelerating structure of an electron ring accelerqtor, where 

a bunch of negligible extent, and with very high charge, is expected to 

lose a considerable amount of energy. In fact, only the finite radius of 

the beam tube and the periodicity of the structure keep the loss within 

bounds.' - - 

-~ .^ .- 

The situation in electron storage rings is between these two extremes: 

The bunch charge is high, but the bunch length is of the order of the rf 

cavity length. In contrast to the electron ring accelerator, the bunch 

passes repeatedly through the same cavity. 

We employ routine procedures to evaluate the energy loss of an electron 

bunch to a model rf cavity, namely to a closed cylindrical lossy cavity. 

This model should be valid provided the bunch is long compared to the 

&meter of the entrance and exit ports of the cavity. In addition, we 

study, by a numerical method, the effect of--the ports on the energy loss. 
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In Section II, we present a formal expression for the energy loss 

in a structure characterized by an arbitrary coupling impedance. In 

Section III we introduce the expression of Z(w) for a pill-box cavity 

and obtain a formula for the energy loss as a double sum over all the 

cavity resonant modes. Numerical results are obta'ined and-discussed 

in Section--IV. 

II. Definition of the Energy Loss for an Arbitrary Coupling Impedance 

Let cR(n) and 4,(n) be the energy displacement and the azimuthal 

position of the a-th particle at the n-th revolution, with respect to 

the synchronous particle, having energy E. The equations of motion can 

be written as 

2Trci 
4,(n) - $&(n - 1) = - E&n) 

E 
(la) 

E&n + 1) - CR(n) = -8 E&n) - q,(n) + eVo [T$Q(n)/ZP] 

. . + energy change due to self-fields, 
- - 

(lb) 

-where CY is the momentum compaction factor, T is the revolution period, 

eV;(t) is the external radio-frequency voltage, B is the damping coeffi- 
-~ _^ .- . cient produced by synchrotron radiation and q,(n) is the energy loss at 

the n-th revolution due to incoherent synchrotron radiation. Let I(t) be 

the longitudinal beam current, I(W) its Fourier transform and Z(W) the 

longitudinal coupling impedance. The azimuthal component of the self- 

electric field can be written as8 

27rRgt) = - 
s 

du- Z(W) -I-(W) e-xp(-iwt) -. (2) 
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The energy loss of the R-th particle at the n-th revolution is then 

given by 

5&d = -e s dw i( exp t T;i(n)/Zri (3) 

We write the beam current as 

1(t) = e 1 1 6[t - mT - T$$n)/Zn] , (4) 
m=-00 k=l .- 

where N is the number of particles and the sum over m describes different 

revolutions 

Defining I(W) as 
1 

I(w) = - 
s 

I(t) exp(iwt) dt , 
2Tr 

using (4) and substituting in (3), we obtain 

e2 
5&n) = - - 

2lT 
- i+T $,(n) 

[ - O,(m):/Zs!, 
/ 

e2- 

-- 
c cs 

dw Z(W) exp 
2lT m kfa 

(5) 

The first term on the right-hand side of (5) gives the incoherent energy 

loss and in the following will be neglected; the second term describes 

tR coherent energy loss. The causality condition requires that in the 
- 

expression _- ._ -. 
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s&n) = - $ z 1 Jb Z(U) exp[-iaT 1 - m + "'":,- "k(m)]/ 9 

. m=-w k#& 

(6) 

: the only non-zero contributions must come from those terms satisfying the 

relationship 

n-m+ 
@&d - @k(m) 

> 0 . (7) 
2.Jr 

Hence the function Z(W) must be analyti-c except for poles in the lower 

half-complex w-plane. 

In the following we will assume the bunch to be much shorter than 

the machine circumference, or @k/2n << 1. We can then rewrite the 

expression (6) for the coherent energy loss as 

, ‘ 
-~ .^ .- 

-iwT 
$&n) - ektn) 

2lT 
[d$)) - +k(n)] ¶ 

(8) 

where S(x) is the step function. 

The first term on the right-hand side of (8) describes the "retarded 

energy loss" due to the fields induced in the cavity on the revolutions 

previous to the n-th revolution, while the second term describes the 

"instantaneous energy loss of the g-th particle". 
- 

._ -. 
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The coherent energy loss, as defined in (8), depends on the position 
. . 

of the a-th particle inside the bunch. A quantity of more practical 

interest is the average energy loss per particle 
c - - 

- 
1 

W(n) = - 
c 

N R 
Q-4 . 

If the particle distribution function is assumed to be time-independent, 

the average energy loss, W, will not depend on n. In the following, we 

shall only consider this case. .- 

III. The Closed Cylindrical Cavity Impedance 

The coupling impedance Z(W) must be evaluated for.any given structure 

for which we wish to compute the beam-structure interaction. For a closed 

cylindrical cavity, this is done in Appendices (A) and (B). Eqs. (B-14) 

. . and (B-17) are analytical expressions for the energy loss W. For our pre- 

sent purpose, it is-convenient to rewrite them ins terms of an effective 

I 
l 

impedance Zeff, 

. . .- W = -e I,, Zeff , (10) .- 

and an average beam current I,,,, 

I av = eN/T = e w. N/~IT . (11) 

Here, oO = EIT/T is the circular bunch frequency, and N is the bunch 

pTpulation. From (lo), (11) and (B-14) or (B-17), two equivalent expres- 

*ions for Zeff may be obtained, both-of themvalid for a Gaussian bunch 
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shape, as given by (B-12), with an rms half-length A. The first expression, 

which exhibits the periodic nature of the beam current driving the cavity, 

is 
_- -, 

- -- 

Z eff = go +pxp[- "'I!"'] . (12) 

Here, Z, is the cavity impedance at the n-th harmonic of the revolution 

frequency, given by _- 

z, = 
16 U; OD 

c 
b g v2 c p=. 1 :', 

% 1 
. 

D ' 
(13) 

np 

. . 

I 
. 

Here, b and g are the cavity radius and length, v and c are the beam and 
- - 

light velocities, o is the cavity wall conductivity and Dnp is defined in 

(B-15). The form (12) of the effective impedance will be used for studying 

-~ ._ .- .the effect of the beam ports. 

The second form, obtained from (B-17), exhibits the resonant properties 

of the cavity: 

Z eff = 

16 ,rr 

g w. 

W 

-1 

s=l 

1 - (- 1)P co* 2k-L 
V 

2 2 

It (:,:,i] 

(14) 
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In (14), vs is defined as the s-th root of JO(vs) = 0, y is the electron 

. . energy in units of its rest energy and the resonant frequency w sP 
of the 

E 
asp 

mode is gi-ven by 

The "resonant term" RSp is 

R = 
sinh (r usp/ua Qsp) 

sP cash (IT wsp/w; Q,,) - cos (2~ wsp/wO) 

and the quality factor Q,, is 

Q sP 
= (b/c)(ET u wsp)% . (17) 

(15) 

(16) 

The resonant term RSp describes the effect of the multiple passages of 

. . 
the bunch through the cavity. It was also derived by Wilson' using a 

different technique. _ Beta_use of the oscillatory behaviour of the denomina- 

I 
. 

tor, it is a rapidly varying function of wO, in particular when wsp >> wO. 

Upper and lower bounds for RSp can be found by inserting cos (2~ wsp/wO) = 21. __ 
-~ ._ .- 

into (16): - 

;i 
sP 

= tanh (IT wsp/2w0 Q,,) 5 RSp s coth (71 wsp/2w0 Q,,) = ssp . I 

(18) 

Averaging Rsp over one period of cos (2~ wsp/w,,) yields:10 

(Rsp) .T- 1 l ._. (19) 
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These relations will be used later on in the discussion of numerical 

. .- results. 

In the limit Q,, + = , we have Rsp + 0 unless the resonant condition 

%p 0 /w = h is satisfied,. where h is an integer.' In thiz case, one has, 

: for Qsp->> h: 

R z 2QSp 
sP 

. 
rh 

(20) 

Hence, for a perfectly conducting cavity, there is no energy loss unless 

the resonance condition wsp/~o = h is satisfied. 

In evaluating Zeff from (12) or (14), one must distinguish two cases. 

For externally-driven rf cavities, the term with p = 0 and s = 1 should be 

removed from the sum. It corresponds to the driven fundamental mode of 

the cavity and needs a separate treatment." For cavities which are not 

driven from an external rf power source and which might exist in an 

electron storage ring, the full formulae (12) and (14) may be used. 
. . 

_ - 

I 

. 

IV. Numerical Evaluation of Zqff L 

In this section estimates of Zeff will be obtained for values of 

the parameters relevant to electron storage rings. To this end, it 

is convenient to rewrite Zeff in terms of 4 scaled variables: pi -. 
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h, L Y and Q,, defined as follows: 

. .- 
h = WIO/WO (21) 

x = g/b (22) 

= Ajb 
F- - - 

lJ (23) - 
: Q lo = (b/c)@71 u ulo) (24) 

We shall call h the harmonic number, X the cavity aspect ratio, 1-1 the 

normalized bunch length and Q,, the quality factor of the Eolo mode. 

In these new parameters, the effective impedance of (14) becomes, when con- 
.- 

verted to mks units (by multiplying by Z,c/47r where Z, = 1207~ fi is the 

impedance of free space): 

Z 
4Z,h = exp 

eff = c 
[- h P u/02] 

x v1 p=o I- l + 6po -l 

.. 

03 -. 1 - (- 1)P cos 
X 

L R 
sP 

s=l v; J; (v,) 

8 
. Here, B = v/c. In the new variables, we also have 

” .- 

R = 
sinh 6, 

sP cash 6 - cos (24 
sP sp %p) 

rh 
6 sp = 

vl Qs, I v's + (lTp/x)' 
3 

+ 

Q sP = Q,,v,-~ [v: + (np,-Q21k 
/ - - 

exp [ - (vs d2; 

[ 1 + (TP/-y vs x)2j2 ' 

(25) 

(26) 

(27) 

(28) 
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The effective impedance (25) was evaluated on a computer. As one might have 

.. 

suspected from the arguments given above, the resonant factors R 
sP 

are 

varying too rapidly to yield smooth curves for Zeff. We have therefore 

decided to present only curves for the minimum, average and maximum impedance, c 

using the-values of R sp given in (18) and (19). It may be seen from (26) 

that in this case Zeff only depends on the ratio h/Q,,. Figure 1 shows the 

results obtained for a range of values for X and JL The average impedance 

divided by the harmonic number (Zeff)/h which is independent of Qloand h is 

shown for a wider range of h and u and for two cases: .- Figure 2 shows 

\ .c Z,,,)/h for an active cavity when the E,,, mode is not included in the 

summation, and Fig. 3 shows ('Zeff,, >/h for a passive cavity where the E,,, 

mode is included. A comparison between Figs. 2 and 3 shows that for long 

cavities (A >> 1) the effective impedances are practically the same for 

both cases, while for short cavities (X << 1) leaving out the Eol, mode 

reduces '.,, Zeff'/ by a large factor, as one would expect. 

The effect of the beam entrance and exit ports on the coupling im- 

pedance has been studied-by a computational- procedare12 for finding the 
I 

. coupling impedance of the infinite structure shown in Fig. 4 at all the 

. . .- harmonics of w o,- and sumhing over them according to (12). Two new parame- 

ters appear in this calculation: a/b, the ratio between hole and cavity 

radius, and d/b, the ratio between the cavity spacing and the cavity ra- 

dius. We made d equal to one rf wavelength. We have verified that 

changing d/b has little influence on the effective impedance. 
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Figures 5 and 6 show the results of this calculation in terms of "beam 

port reduction factors". In order to obtain the impedance of a cavity with 

beam ports, the values shown in Figs. 2 and 3 must be multigl,ied by the fat- _ 

. tars- shown in Figs. 6 and 7, respectively. These factors are always smaller 

than unity. Hence, calculations neglecting the beam ports always overesti- 

mate the impedance. For cc << u, i.e., when the beam port radius is small 

compared to the bunch length, the reduction factors are close to unity, and 

the error committed in neglecting the beam ports is small. Substantial reduc- 
.- 

tions are obtained when the beam port radius becomes bigger than the bunch 

length. 

Figure 7 shows a specific example: the average impedance of the PEP rf 

system.2 The cavity dimensions are a = 6.4 cm, b = 32 cm, g = 22.4 cm; their 

number is 90. The design current is 82 mA in three bunches, and hence h = 864. 

At the design bunch length, A = 2.2 cm, the total energy loss due to higher 

modes is about 10 MeV if the beam ports are neglected and about 2.5 MeV if 

they are taken into account? 
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V. Conclusions 

We have evaluated the energy loss of a bunched beam passing through 

a closed cylindrical lossy cavity in an electron storage ring. Our re- _ - e, 
suits are given in a series of graphs. They show that in typical cases the 

energy loss due to the excitation of the cavities adds a significant 

amount to the energy loss due to synchrotron radiation. Therefore the 

rf system of these storage rings must be designed to handle this additional 

power loss, by increasing the rf voltage and hence the total rf power in- 

stalled beyond what would have been necessary to handle synchrotron radia- 

tion alone. 

Our calculation has been done for machines with either a single bunch 

in the beam, or with several equi-distant bunches with equal populations. 

It could easily be extended to cases with unequal bunches with unequal 

spacings, or to the case of two counter-rotating beams. 

'. 
Since the beam-cavity interaction produces such a large coherent energy 

loss, it must be expected that it strongly affects the synchrotron motion,13 

t 
l 

_ as well as other phenomena such as bunch lengthening. 
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APPENDIX A. 

Electromagnetic Field in a Closed Resistive Cylindrical Cavity 

- 
: 

The cavity considered is shown in Fig. 8. It has cylindrical 

symmetry around the z-axis, the beam direction, infinite conductivity on 

the walls perpendicular to Z, and conductivity u on the wall parallel to 

Z. Using cylindrical coordinates r, 8, Z, we assume that all derivatives 

with respect to 8 vanish, and that the only non-zero component of the 

current density is: 

+ . 
J, = I(z - vt) 6(r)/2nr , (A-1) 

where I(z - vt) is the instantaneous current at position z and time t. 

Maxwell's equations are written in terms of the vector and scalar 

potentials A, 4, using the Lorentz gauge. We obtain A, = A@ = 0 and 

47T 
- aAz = - - j;. ~. 

C 

D$J = -4lTp (A-3) 

a AZ 1 w 
+-- = 0 . 

az c at 

(A-2) 

(A-4) 

The boundary conditions are 

Er = 0 for z = 0 and z = g (A-5) 

- 
M-6) 
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Here, Ez and $ are the Fourier transforms of E, and He, respectively; i.e., 
- . 

EZhzrt) = Ezb,ud exp (-iat) dw . (A-7 1 

The wall impedance 
- 

Y - - 

71 = (1 - i)(w/8rro)25 (A-8) 

satisfies the condition 

where the asterisk denotes 

We now write A, and 9 

OD 

31(-w) = 3$(w) * 

the complex-conjugate. 

in the form: 

Ap(u,r) cos (srpzlg) exp (-iwt) dw (A-10) 

co 
$ = cs Bp(w,r) sin (rpzlg) exp (-iwt) dw 

p=! _ _ 

8 and obtain from (A-4) 
. 

ic +I - . . .- 
-Bp(w,r) = - 

w  

- Ap(d l 

9 

Now, (A-5) is automatically satisfied, and (A-2) and (A-6) are 

reduced to 

aA 
\ --EL + h2A = : 

8~r c (w) 6(r) 

ar/ p- 41 + 6po) 27rr 
._ -. 

(A-9) 

(A-11) 

(A-12) - 

(A-13) 
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. 
Ap(w,b) = 2 

C x2 ar ,.=b 

where 

- -- 

: and 

(A-14) 

(A-15) 

c,(w) = -Jdz r 

21T 0 
exp (iwt) cos (rpz/g) I(z - vt) dt . 

-w 
(~-16) 

The solution of (A-13) can be written as the sum of that solution of the 

homogeneous equation which is finite for r = 0, and a solution of the in- 

homogeneous equation, chosen such as to describe outgoing waves at r -t- 01: 

2ni 
A 

P = ap J,(Ar) t 
cdl + 6po) 

H61) Or) cph) . 

The factor ap is determined by (A-14), which yields 

(A-17) 

Ap(w;.r) = - 
27r i c (w) i 

H(')(U)) t iw 
0 &?H;')(Xb) 

I iJ,(Ar) - Hj')(Ar)j . h - 
. -~ .I .- cdl + 6po) -, 

\ 3, (xb) t +j- @ J, (W 

(A-18) 
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APPENDIX B. 

. .- 

Energy Loss of Particles Crossing a Cavity 

F- - 

Consider one of the charged particles in the beam, moving along the 

trajectory 

2 = vt+Zk 

(B-1) 
r = o--* 

The energy loss of this particle is obtained by integrating the force 

acting on it over the time taken to cross the cavity: 

Wk = ev E,(r = 0, z = Vt + 2k't) dt . (B-2) 

a$ 1 aA, 
Since E, = - - - - , we obtain, using (A-10) to (A-12), 

az- t: at 

tw 

b/k = ev. c,,(w) do 9 (B-3) - 

where bzkh Cpk(d = s exp (-itit) cOS [Tp(Vt t tk)/g' dt . (B-4) d 
-'k/V 

We now introduce an explicit expression for the beam current I: - 
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I(z - vt) = ev cc 6(2 - Vt - zk - nvT) . (B-5) 
rim-w k=l 

Here, T is the time interval between successive bunches,-each containing N - 

-particles-; The sum over n describes the passages of the bunch through the 

cavity. Using (B-5), the quantity C,(W) defined in (A-16) can be written 

as follows: 

ev N 

c,(w) = - 
2Tr 

f exp (-iwnT) 1 .- cp,(-d . 
n=-w k=l 

Putting (B-6) into (A-18), and the latter into (B-3), yields for the energy 

loss of the k-th particle: 

e2 v2 m 1 
tw 

Wk = 
9 

T 
p=-6 lt6po 

s 
dw P(o) z 

exp (-iwnT) x 

n Z-00 

I 
l 

N _ - 
x 

T 
rn2 

-Cpm b-d c&d i (B-7) 

-~ _ .- 

Here, we have omitted the term H qx ) r in (A-18) since it describes the 

self-field of the beam in vacuum, and introduced 

x2 HiI) t +H,(')(Xb) 

P(w) = = 
w 

The average energy loss W can be-defined..as 

(B-8) 



Beam-Cavity Interaction in 
Electron Storage Rings 

1 N 
w = - 

N c ‘k l 

k=l 
(B-9) 

It is imnediately obvious from (B-7) to (B-g) that for a-= 0,~the average 

energy.loss_W.vanishes. For the case%# 0, the average energy loss can 

be written as follows: 

e2v2 O3 
c 

1 
w = 

2Ng 
exp (-MT) x 

p=() 1 + 6 
P(o) + P(-w)] f 

PO n=4, 

N 

x )’ 
Cpm(-W) cp,(w) d,d l (B-10) 

k;=l 

- By using the relationship J,(z) H, (‘I(Z) - J,(Z) H,(')(Z) = -2i/nz, and 

by evaluating cpk(u) from (B-4), (B-11) becomes: 

2e2 m 
w = 

TNbgcv2 c 
1 (R-+~*, u2 dw 

p=o 1 t-6 po JI [J,(Xb) + (iu’Fi/cX) 3, (Xb)][Jo(Xb) - (i&?/cX) J,(Xb)] ’ 

- .- .- 1 - (- l)P cos (Log/v) O” N 

so &, exp [- + + Zk  ;  1,3 l 

At this point, we may use two alternative ways to perform the integra- 

J (B-11) 

tion over W. We may either exploit the periodicity of the bunch current 

driving the cavity, or we may integrate over w in the complex plane, using 
- 

the residue theorem which yields W as a--sum overthe cavity resonant 
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i 
frequencies. The sums over k and m can subsequently be evaluated once 

the bunch shape is given. In the following, we shall assume a Gaussian 

bunch shape, replacing the sum over k by an integral: 

: 
N 

c + 
k=l 

N 

(2n)$ A 

6 Ye - 

eXp (-+/2A2) dZk . 

Usinq the first wa.v, we replace the sum over n in (B-11) bv the 

Poisson sum formula - 

tw -ice 

c exp (-itinT) = w. c 6b - nti,) 
n=-o3 n=-02 

with w. = 2T/T, and obtain: 

.. 
8e2w3 N 

m w 

cc 

n2 
0 

1 - (- 1p cos (ru,g/v) 
w = 0 

Tbgv2c n=O p=O 1 + tip0 [(np/d2 - (n~o/v)2]2 
- - 

I 

. 

-~ . . .- 

4 

Dnp exp (-n2$A2/v2) , 

where 

D -1 = 
w 

Jo(Xnpb) - ‘;, 
CA 

[zr J, (i,pbl] 2 

and 

t 

[ 

nwO 

%p 

(B-12) 

(B-13) 

(B-14) . . 

(B-15) 
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(8-16) 

Using the second way; namely the residue theorem we find 
T - - 

. -8e2N OD OD 
w = 

cx 
Rsp exp [- bsp A/d2] 1 - (- 1P cos(w, g/v) 

9 p=o s=l (1 + ‘fjpo) v; J; b,) [l + (npb/y vs g)2]2 

(B-17) 

The resonant factor R ' sp lS 

R = 
sinh 17 us /w, Q, ) 

sP 
l cash h wsp/uo Q,,) - cos (29~ ~sp/wo) 

(8-18) 

The resonant frequencies w 
sP 

are given by 

b,,/c)’ = (vS/b)2 + (qVg)2 . (B-19) 

where vs is the s-th root of the equation Jo(vs) = 0. The quality factor 

is given by . . . _ 

I 

. 

- - 

Q ‘= 
sP 

(b-/c)(2r u wsp)' . (B-20) 

-~ . I  . -  

In evaluating (B-17), the position of the poles has been determined 

to first order in T, and all terms in W, except the resonant factor R 
sp' 

have been evaluated for vi)= 0. 
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Bure Captions 

1. 

2. 

3. 

4. 

5. 
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. 6. 
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7. 

8. 

Minimum,~average and maximum impedance of an active closed cylindrical 

cavity. X is cavity length/cavity radius, uis bunctr=length/cavity 

radius, h is the harmonic number, and Q,, is the quality factor of the 

E olo mode. The impedance of the E,,, mode is not included. 

Average impedance of an active closed cylindrical cavity. The contri- 

bution of the E,,, mode is not included. 
.- 

Average impedance of a passive closed cylindrical cavity. The contri- 

bution of the E,,O mode is included. 

Geometry of the infinite structure used for calculating the effect of 

the beam ports. 

Beam port reduction factor for an active cavity. a = a/b is the ratio 

of the beam port and cavity radii. The contribution of the Eolo mode 

is not included. - 1 

Beam port reduction factor for a passive cavity. The contribution of 

the Ecu, mode is included. 

Average impedance and energy loss due to the PEP rf system. The contri- 

bution of the E,,, mode is not included. 

Geometry of a closed cylindrical cavity. 


