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ABSTRACT 

We present a simple, two-component model for the charged mu’ltiplicity 

associated with the observed particle in an inclusive reaction. At small p T’ the 

scattering is ascribed to a coherent or I* soft” component, whereas at large pT 

the production mechanism is assumed to be incoherent or “hard. l1 At fixed 

incident energy and missing mass, the pT-dependence of Kc is given by the rela- 

tive weights of hard and soft scattering, so that the multiplicity is a sensitive 

probe of the transition region between the two components. The model is applied 

to recent multiplicity data for pp - pX and pp - ?r+X at 28.5 GeV/c, as well as 

data at Fermilab and ISR energies. 
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I. INTRODUCTION 

One facet of recent experimental work on inclusive reactions has been the 

study of the mean total charged multiplicity cc associated with the observed 

trigger particle. 1 At ISR energies, 2 results obtained for pp - 7r”X at 90’ in 

the c. m, system show that nc rises roughly linearly with increasing transverse 

momentum in the range 1 <-pT 5 4 GeV/c (since 6= 90°, this could be interpreted 

as a linear dependence on IF3 I, the momentum of the observed particle). At 

Fermilab, multiplicity data3 for pp - pX at 205 GeV/c show little or no pT 

dependence for 0 5 pT - < 1 GeV/c when M2 is fixed, where M2 is the mass- 

squared of X. Finally, the Brookhaven-Purdue-VP1 (BPV) collaboration 495 

have measured nc as a function of pT for various fixed values of the missing 

mass. For pp - pX the associated multiplicity is approximately independent of 

pT except for a rise of hc = 0.6 charged particles over an interval of 4, M 0.4 

-0.6 GeV/c. The location of the rise moves towards smaller values of pT with 

increasing missing mass. The corresponding data for pp - 7f+X are relatively 

meager, but are consistent with a behavior similar to that obtained when a proton 

is the trigger particle. 

Several authors 6-10 have proposed models to explain these results, partic- 

ularly the preliminary BPV data. 4 In the bremsstrahlung model of Ref. 6 it is 

not clear how to treat pp - ‘X, 7r and in the multiple-quark-scattering model of 

Ref. 7 the position of the rise does not move with missing mass. In multi- 

component’ and multiperipheral-bremsstrahlung’ models the rise in multiplicity 

does not appear to be confined to a restricted interval in pT, whereas a pure 

multiperipheral description 10 provides a multiplicity which is only weakly 

dependent on pT for fixed missing mass. 
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In the present work we interpret multiplicity and cross section data in terms 

of a simple, two-component model for inclusive reactions. At fixed energy the 

multiplicity associated with each component depends only on the missing mass, 

so there is no explicit pT dependence. However, in the kinematic transition 

region where the two components are of comparable importance, ;ic may be 

pT-dependent at fixed missing mass. 

To be more specific, we assume that production at large pT results from a 

“hard” interaction. 11 That is, the interaction is local, incoherent, and the 

inclusive cross section is characterized by a power-law dependence on pi. 

Several models 11 share this hard-scattering property; in particular, for the hard 

component we shall employ the constituent interchange model l2 (CIM), depicted 

in Fig. 1. 

At small pT, individual constituents of the proton are not probed incoherently, 

the scattering is “soft”, and the inclusive cross section is an exponential in pc. 

In the context of the CIM, the soft component corresponds to repeated iterations 

of the hard or “Born” term. 13 Both the hard and the soft component should 

contribute to scattering at all pt , but, because it is a power-law, the hard term 

dominates at large pi, and vice versa. 

The uncertainty principle suggests that hadronic constituents are probed for 

pT 2 1 GeV/c, which is a rough definition of lflargefy pT. Near pT M 1 GeV/c 

there should be a transition region in which cross sections change from an 

exponential to a power-law dependence on pc, and where other manifestations 

of the change from soft to hard scattering should occur. 

As we discuss in the next section, we expect on general grounds that, for 

fixed energy and missing mass, the multiplicity associated with the hard compo- 

nent should be larger than that coming from the soft component, and therefore 
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we anticipate a clear increase of the associated multiplicity in the transition 

region from the soft to the hard regime. In contrast, it is intrinsically difficult 

to differentiate between an exponential and a power law for the cross section in 

a small pT-range, so that to separate both contributing terms one can do a 

better job by analyzing the associated multiplicity rather than the single-particle 

distribution. 

The paper is organized as follows. In Section II we discuss the expressions 

for the multiplicity associated with the hard and soft components. Multiplicity 

data from Fermilab and ISR are used to predict the hard and soft contributions 

to lit at Brookhaven energies. In Section III, we parametrize the hard and soft 

components of the invariant cross section. Using cross section data for small 

pT we fix the soft term. Then, by fitting the BPV multiplicity data for pp - pX 

and pp - n+X, we obtain the hard term, and find the predicted total cross section 

(soft plus hard) to be in reasonable agreement with the data. Section IV contains 

a discussion of our results, and conclusions. 

II. EXPRESSION FOR THE MULTIPLICITY 

In our model, the associated mean total charged multiplicity for 

P(P,) -f- P(P,) - h(p3) + X is given by the weighted average of the multiplicities 

coming from each component, 

593) f@3) = ‘$3) fs@3) + ‘h6?,) fJ-$p3) - (2-l) 

Here ns(p3) (nh(p3)) is the average charged multiplicity associated with the soft 

(hard) process, and 

(i=s,h) (2.2) 
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is the invariant single-particle distribution arising from soft or hard scattering, 

respectively . The invariant cross section is given by 
3 

f(p3) = E v 
dp 

= fs(p3) + fh@3) ’ 

The multiperipheral model suggests 10 that the multiplicity associated with 

the soft component should depend only on M2 -in fact, this *is one reason why 

the BPV multiplicity data are interesting. The Ma-dependence in the multi- 

peripheral model is approximately logarithmic (a + b Qn M2), with b close to 

one, l4 ” so we take 

ns(p3) = a + Qn M2 . 

The parameter a is determined by assuming that 

for M2/S 5 0.25 and pT 5 1 GeV/c only the soft term 

(2.4) 

3 at FNAL energies and 

contributes to pp - pX 

(there is no increase in the multiplicity with pT at fixed missing mass in the 

data of Ref. 3). The naive parametrization 15 

ns(p3) = 2 +Qn M2 (2.5) 

gives a good description of the data of Ref. 3, as is shown in Fig. 2. 

To derive an expression for the multiplicity associated with a hard process 

we refer to Fig. 1. The hard-process multiplicity is given by the sum of 

multiplicities from the irreducible (jet) process nJ and the remaining multiplicity 

nh@3) = nR(p3) + nJ(P3) ’ (2.6) 

We assume, for simplicity, that the c. m. system for the irreducible colli- 

sion in Fig. 1 coincides with the c. m. system for the pp collision. The sub- 

energy in the irreducible process is denoted by &l, so the energy remaining 

for particle production is & - &I. It is generally believed 16 that the asymptotic 
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multiplicity in a given system of particles is determined principally by the 

energy available, so we assume that the remaining particles should have a 

multiplicity depending on (& - &‘)2 in the same way as ii s depends on M2, 

nR(p3) = 1+ I?n(Js -Jsf)2 . (2.7) 

We assume that li J depends only on I s3 I . This is based on the idea that 

the number of particles necessary to compensate the momentum of the trigger 

should be independent of angle (although the cross section for the irreducible 

process has an angular dependence). This picture is simple and plausible, but 

it is by no means compulsory. 17 It implies that, to explain multiplicity data, 

we shall use no supplementary pT dependence beyond that coming from the 

transition from one mechanism to the other. 

Combining (2.6) and (2. 7)) we have 

To determine the jet contribution, we note that at 90’ at ISR energies the 

logarithm in (2.8) varies very little for 0 5 pT 5 4 GeV/c (the opposite is true 

at Brookhaven energies), so that ii, depends on pT only through iiJ( IF3 I). If 

we assume that ccb3) = n h3 - (p ) for pT > 1 GeV/c, then the observation l8 that 

nc rises approximately linearly with pT at the rate of ~0.5 charged particles/ 

(GeV/c) means that 

iiJ(lF31) = al+ 0.5 lZ31 . (2.9) 

As IF31 - 0, only one particle is needed in the jet to balance the momentum, 

and, by isospin arguments, its average EC is approximately 0.7. Therefore 

al fi: 1.7, and 

nJ(iF31) = 1.7 + 0.5 IF31 . (2.10) 
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Substituting (2.10) in (2.8) we have 

fi,(p,) = 2.7 + Qn(& -&V)2 + 0.5 IF3 I . (2.11) 

To calculate &I we assume that the particles in the jet are mostly pions, 

so that the energy associated with the jet is given by 

EJ=~(l<i12+mf) 
l/2 

i 
(2.12) 

where the sum is over the jet particles. To estimate the sum in (2.12) we 

assume that the momenta of the particles comprising the jet are almost col- 

linear with -F3. This implies that 

cq- IS31 9 (2.13) 
i 

so that the subenergy in the irreducible collision is 

l/2 
+ IiT3 I . (2.14) 

Formula (2.14) must underestimate the jet energy, particularly for large values 

of Is3 I when the jet consists of a large number of particles. It corresponds to 

the neglect of the missing-mass M’ in the jet, so that in general 

l/2 
&‘= (IFj,12+mi) 

l/2 
-f- (1c312+Mr2) . (2.15) 

If, at large IF3 I, M’ should become appreciable, the argument of the logarithm 

in (2.11) would decrease more rapidly with increasing Is3 I than is suggested 

by (2. 14). For example, if the jet-multiplicity depends asymptotically on its 

invariant energy in the same way as other multiplicities do, we have, using (2.9)) 

IF3 1 
nJ(p3) M 2 M Qn MI 2 , 
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Ml2 M eq (lj$l/2) . (2.16) 

When lc9 I is large, this effect may cause a levelling-off of the rise in ;ic, 

although it should not be too important for ‘$9 I 5 8’. 5 GeV/c (i. e. , M’ 2s IF3 I 2 19 ) . 

When M2 is small, say M2 5 4 GeV2, we expect deviations from (2.5); 

similarly, (2.11) may not hold when (& -&I,2 5 4 GeV2. 

Independent of any parametrization, we expect that 

(2.17) 

The reason is that the hard process correlates some of the produced particles 

into a jet. Therefore, more particles are needed to produce a given missing 

mass in the hard process than in the soft process. The inequality (2.17) is 

satisfied by (2.5) and (2.11) in their range of applicability. Near the phase- 

space boundary of the inclusive process, we expect that (2.17) should reduce to 

an approximate equality, because in that case kinematics constrains the soft 

process to have a jetlike momentum-balancing structure similar to that of the 

hard process. In this kinematic boundary region (2.11) does not hold since 

+,k - &‘( 1 GeV. 

For pp - T’X the associated multiplicity is roughly 1.1 particles less than 

for PP - pX at the same pT and missing mass. ’ Thus (2.5) and (2.11) should 

be reduced by 1.1 particles to describe pp - 7r’X, 

nf+@,) = +I,) - 1.1 (i=s,h) . (2.18) 

This is qualitatively understood by the fact that the missing mass in 

pp - 7r+X contains two nucleons. For example, if we assume that 

a2 f Qn M2 (2.19) 
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and evaluate (2.19) at M2 = 4mi, we get 

“2 =2-Qn 4rni ( > M 0.75 . 

Comparing (2.5) and (2.19), we get 
+ 

Es” (P,) = 5; (P,) - 1.25 , (2.21) 

and, for the hard term, the result is 

E;+(P,) M iiZ(p3) - 1.22 ) 

(2.20) 

(2.22) 

both in good agreement with (2.18). 

III. CROSS SECTION AND COMPARISON WITH DATA 

Before applying (2.1) to the BPV multiplicity data, we need to parametrize 

fs and fh. For the soft cross section for pp -) pX, we take a triple-Regge form, 20 

frs)(P3) = 
2P max 

7.r & 

+ PRRR(t) ($f-2aRtt) (M2)aR”.j , (3.1) 

where pmax is the c. m. beam momentum. We do not include the diffractive 

scale-breaking PPR term because we do not expect it to be important in the 

kinematic region of interest to us (M2/s ) 0.1 at Brookhaven energies). Our 

Pomeron trajectory is given by 

a,(t) = lf 0.3 t , 

while the (effective) nondiffractive trajectory oR reads 21 

o!,(t) = 0.2 + 0.75 t . 

(3.2) 

(3.3) 
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The triple-Regge couplings are taken to be exponentials in t, 

Pitt) = Pi e 
bit 

(i=PPP, RRP, RRR) . (3.4) 

Formula (3.1) is known 21 to give a reasonably good description of data for 

xL 2 0.5, where xL is the longitudinal variable 

PIA 
xL=pmax * (3.5) 

We need, in addition, a parametrization of the soft term for XL 5 0.5. In the 

context of the RPV multiplicity data, XL 5 0.3 corresponds to large pT values 

where, in our model, the hard term is dominant and the soft parametrization 

is unimportant. 22 For 0.3 s XL 5 0.5 the soft term should be a smooth extrap- 

olation of the soft cross section for XL 2 0.5, The simplest way to ensure this 

is to take the triple-Regge formula (3.1) as the soft term in the region 

0.3 5 XL 5 0.5. The use of other reasonable extrapolations in this region does 

not change our conclusions; therefore we keep the triple-Regge parametrization 

for all values of XL. 

The best place to fix the free parameters of (3.1) would be at values of pT 

where we assume there is no hard term, that is, the 205 GeV/c data of Ref. 3, 

where there is no increase in the multiplicity with pT at fixed missing mass. In 

addition to the 205 GeV/c data, in order to evaluate the RRR term, we have 

taken the 24 GeV/c data of Ref. 23 for values of XL corresponding to those of 

the BPV multiplicity data where there is no increase of iic. 24 

The fitted parameter values are 

PPPP = 1.88 mb GeV-2, bPPP = 5.67 GeV-‘, 

(3.6) ‘RRP = 47.1 mb GeVm2, bRRP = 1.75 GeVm2, 

‘RRR = 114.4 mb GeVm2, bRRR = 0.4 GeVw2 . 
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The resulting soft-scattering component is shown as the dashed lines with the 

205 GeV/c data of Ref. 3 in Figs. 3a and 3b, and with the 24 GeV/c and 

29.7 GeV/c data of Refs. 23 and 25 in Fig. 4. Notice that in Fig. 4 we show 

our extrapolation for values of x L < 0.5, as discussed in the preceding 

paragraph. 

For PP - l;‘X, the nucleon pole lies near the physical region, so we take 26 

-I- 2pmax 
f; (P,) = - 

& 
PNNP(t) ($)l-2Q”t)(m:-t)-1 , 

:. 

where o&(t) is an effective nucleon trajectory 

a&(t) = cvN + cy , 

and PNNptt) is an exponential in t 

(3.7) 

(3.8) 

(3.9) 

By fitting the 24 GeV/c data23 for pp - 7r’X for values of x L where, as 

above, we believe there is no hard contribution, 24 with the parametrization 

(3.7) we get the dashed lines shown with the data in Fig. 5. The parameter 

values obtained from the fit are, 

-2 aN= -1.10 , ah= 0.60 GeV , 

(3.10) 
‘NNP = 9.23 mb, bNNp = 0.50 GeV -2 . 

For the hard contribution to scattering we use a form suggested by the 

CIM, IL2 

fhtP3) = AWQF (Pi+ m;)-” - (3.11) 

Here xR is the radial variable, 

xR= lF31/P max ’ (3.12) 
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and rni is a mass scale which may differ from process to process. In the CIM, 

fh(p3) consists of a sum of terms such as (3.11) with definite values for F and 

N. We shall regard (3.11) as an effective hard term, summarizing the sum 

over a limited kinematic range. 

According to (2. l), the hard component fh(p3) can now be obtained by fitting 

the BPV data for nc(p3). In principle, we could use the expressions (2.5)) 

(2. ll), and (2.18) for ns(M2) and nh(M2), but instead we obtain ns and nh directly 

from the BPV data by assuming that, for fixed missing mass, the scattering is 

essentially pure soft for the lowest pT values, and pure hard for the highest pT 

values. The values for Es and ‘ih obtained by this method are given in Table I, 

and are seen to be in good agreement with the parametrizations (2.5)) (2. ll), 

and (2.18)) also given in Table I. Since the multiplicity is given by the weighted 

average of the multiplicities of each component, the reader can check that with 

fixed hard and soft cross sections the resulting nc is approximately the same 

for the empirical iih and ns as for the parametrized iih and Es. 

Thus, using the values given in columns 3 and 4 of Table I, together with 

expression (3. ll), we have fitted (2.1) to the BPV data for pp - pX. We 

allowed the normalization parameter A to vary free of constraint and we chose 

the parameters N, F and rni to be consistent with values obtained by fitting the 

CIM to data at FNAL energies. 12 The result is shown as the solid lines in 

Fig. 6a, with 

A = 1.26 x lo3 mb GeV8, 2 
mO = 3.0 GeV2 

(3.13) 
F=3 3 N=5 . 

The fit is not particularly sensitive to changes in the parameter values of AF M *i, 

AN= *;, and Am2 M -+l GeV2. 0 The sharpness of the rise in nc in Fig. 6a is 
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2 controlled by m. and N; increasing m2 and/or decreasing N produces a sharper 0 
rise over a shorter interval in p T’ The location of the rise as a function of M2 

is controlled by F. These features are seen to be well described by our model. 

At this juncture, we have determined both the soft term (3.1) and the hard 

term (3.11) for pp --t pX. The predicted total invariant cross section, given by 

(2.3)) is shown as the solid lines in Figs. 3a, 3b and 4. For pT < 0.35 GeV/c 

the soft component (dashed lines) dominates the cross section when XL > 0.3, 

while the hard component begins to become important for pT 2 0.65 GeV/c, and 

constitutes over 90% of the cross section at pT = 1.6 GeV/c. Evidently, the 

soft component alone is insufficient to describe the cross section at large pT, 

while the addition of the hard component brings the resulting cross section into 

much better agreement with the data. Although the hard component becomes 

dominant in a relatively short interval of pT, as is shown by Fig. 6a, the invar- 

iant distribution, when plotted versus p2 T at fixed x L’ shows little evidence of a 

break; the transition from soft to hard as pT increases is smooth in the cross 

section. 

The BPV data show that the rise in fit shifts to smaller values of pT for 

increasing M2, which must be interpreted in our model as a corresponding 

change in the pT -value where hard scattering becomes important. We note in 

this connection that, although the multiplicity data do not imply hard scattering 

for pT < 0.4 GeV/c (see Fig. 6), with our parametrization the hard component 

is appreciable when xL 5 0.3 even for p T = 0. 15 (see Fig. 4). It is difficult to 

understand how the hadronic constituents could be probed at such small trans- 

verse momentum. Notice, however, that at 24 GeV/c for pT = 0.15 GeV/c and 

xL - < 0.3 GeV/c, we have E = M2/s > 0.64 (or IF31 < 0.98), whereas we have - - 

fixed our parametrization of the hard term for E < 0.54 (see data in Fig. 6). 
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In the CIM the effective parameters N and F may depend on pT and E , corre- 

sponding to different dominating terms in different kinematic regions. A pos- 

sibly more important correction to our results is the inclusion of the expected 

angular dependence in the hard term, which we have neglected in (3.11). This 

correction should be most important at small IF3 I, where a small change in 

pT corresponds to a large change in the angle (we have fixed our parametriza- 

tion using multiplicity data for IF3 I 2 1.5 GeV/c). 

For pp -T+X we again use the values of ns and ii, given in columns 3 and 

4 of Table I to fit (2.1) to the BPV data. Again, F, N and rni were chosen to be 

consistent with fits to data at FNAL energies, and A was allowed to vary freely. 

The resulting parameter values are 

A=3.6x102mbGeV8 , 2 mo= 2.0 GeV2 
(3. 14) 

F=4 > N=5 , 

and the fit is shown as solid lines with the data in Fig. 6b. The invariant cross 

section (2.3) for pp - r+X is displayed as the solid lines in Fig. 5. Our 

remarks concerning the fits to the pp -) pX data carry over for the pp - +X 7r 

case. 

The striking similarity in the multiplicity data for p and 7r+ triggers is at 

least partially understood in our model. For fixed missing mass, 
+ + 

6; - iih” M <; - ;,” because the same mechanism which reduces the yield of 

particles when a 7r+ is the trigger operates in both the hard and soft processes. 

Therefore, for fixed M2 the 71‘t data should show a rise equal in magnitude to 

that for the proton data. That the location of the rise should be the same for 

7$ as for p is not a priori clear, although one expects the constituent structure 

to manifest itself at roughly the same value for all processes. 
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IV. DISCUSSION AND CONCLUSION 

In the present work we have investigated the possibility that the concept of 

hard scattering, which has been applied to high-p?, cross section data by many 

authors, may have interesting, observable consequences for the associated 

multiplicity. We have investigated whether the steplike behavior of the 

Brookhaven-Purdue-VP1 multiplicity data can be attributed to the onset of hard 

scattering, and have found that such an interpretation is consistent with experi- 

ment. At the present stage, our parametrization gives a general description of 

our two-component mechanism without specifying all the details. For instance, 

the transition from exponential to power-law behavior in the cross section is 

incorporated in the model without reference to deviations from a single expo- 

nential for the soft term, angular dependence of the hard term, etc. In fact, 

the relative weights are well-tested only in the transition region for the multi- 

plicity; at low and high pT the scattering is (essentially) either pure soft or 

pure hard, respectively. 

Support for the dominance of hard scattering at ISR energies comes from 

the observation’ that the rise in multiplicity with increasing pT is associated 

with particle production in a broad region in the hemisphere of phase space 

opposite to that of the trigger. The rise is confined to a range of approximately 

120’ in azimuthal angle $ centered at $ = 180°, which is consistent with our 

picture of a momentum-balancing jet. Similarly, the rise in EC observed by the 

BPV collaboration appears to come from the opposite hemisphere. 4 
Further- 

more, the fact that the relative contributions of the n-prong cross sections all 

exhibit a significant change at the same value of pT for fixed missing mass 4 sug- 

gests the onset of a new dynamical mechanism at this value of pT. Finally, at 

28.5 GeV/c the distribution of 7r-‘s associated with a trigger proton has been 
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measured. 27 No increase in the width of the momentum distribution normal to 

the scattering plane is observed; such behavior is difficult to reconcile with 

fireball models, ’ and is consistent with our scheme, 

A test of our model would be the observation at FNAL and ISR energies of 

steplike behavior for iic at fixed missing mass. The multiplicities below and 

above the rise should be consistent with (2.5) and (2,11) respectively, provided 

that M2 is not too small and IF3 I is not too large. If the scale-breaking terms 

of the soft component are not too large our model predicts that, for a given E , ‘. 
the step should be located at approximately the same pT value as is seen at 

28.5 GeV/c; in our model the variable E , rather than M2, determines the loca- 

tion of the rise in iic. For instance, if at FNAL it is difficult3 to obtain data 

for transverse momenta greater than -1 GeV/c, it should be sufficient to take 

M2 x 200 GeV2 (E M 0.5) to observe the rise in multiplicity. This value of E 

corresponds to a missing mass of 5.47 GeV at Brookhaven energies, where the 

rise occurs for 0.5 5 pT 5 1.0 GeV/c. We note, however, that this prediction 

should be modified to take into account the (imperfectly known) energy depend- 

ence of the effective parameters N and F. 

According to our picture, changes in the invariant cross section occur in 

the transition from soft to hard scattering. It would seem, however, that 

changes in the behavior of the associated multiplicity may be one of the sharpest 

signals of a fundamental transition in the dynamics of particle production. 
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TABLE I 

Mean Charged Multiplicities for Soft and Hard Components 

M 

1.66 

2.56 

I. 3.57 
PP +Px 

4.56 

5.47 

6.15 

4.56 

pp- 7r+x 5.47 

6.15 

Empirical 
Multiplicity 

ii 
S nh 

2.75 2.75 

3.75 4.45 

4.40 5.00 

5.00 5.80 

5.45 6.35 

--- 6.70 

3.90 4.90 

4.40 5.30 

5.00 5.70 

Parametrizations 
, (2.5), (2. ll), (2.18) 

ri 
S “h 

3.01 * 

3.88 * 

4.54 5.19 

5.03 5.90 

5.40 6.31 

5.63 6.48 

3.93 4.80 

4.30 5.21 

4.53 5.38 

*The parametrization (2.11) is not applicable for M=l. 66, 
2.56 GeV because & - &z~ < 1 GeV. 
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LIST OF FIGURES 

1. General CIM diagram for A f B - C +X. The hadron-irreducible process 

a+b -+ C+ d* is hard and gives a momentum-balancing jet d*. 

2. Data from Ref. 3 for the average charged multiplicity tic plotted versus 

M2 for different t values. The solid lines represent the t-independent 

soft-scattering parametrization (2.5). 

3. Data for the invariant cross section for pp - pX from Ref. 3. a) Plotted 

versus pi;for various fixed values of xL. b) Plotted versus xL for various 

fixed values of pc. The dashed lines are the triple-Regge fit (3.1)) and 

the solid lines are our predicted total (hard plus soft) invariant cross 

section in the region where it differs from the soft term. 

4. Data for the invariant cross section for pp - pX from Refs. 23 (circles) 

and 25 (squares) plotted versus x L for various values of pT. The dashed 

lines are the triple-Regge formula (3. l), and the solid lines are our 

prediction for the total (hard plus soft) invariant cross section. 

5. Data for the invariant cross section for pp - r+X from Refs. 23 (circles) 

and 25 (squares) plotted versus x L for various values of pT. The dashed 

lines are the formula (3.7), and the solid lines are our prediction for the 

total (hard plus soft) invariant cross section. 

6. Total mean charged multiplicity plotted versus pT for various fixed values 

of the average missing mass iK The data are from Ref. 5 and the solid 

lines are our fits. a) pp - pX. b) pp - 7~ +x. 
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