
DATA STRUCTURES FOR PATTERN RECOGNITION AIXORITRMS: A Case Study 
Charles T. Zahn, Jr. 

Computation Research Group 
Stanford Linear Accelerator Center* 

Stanford, California 94305 

SLAC-PUB-1566 
mrch 1975 

Summarx 

This paper will describe experiences gained while 
programming several pattern recognition algorithms in 
the languages ALGOL, FORTRAN, PL/l and PASCAL. The al- 
gorithms discussed are for boundary encodings of two- 
dimensional binary pictures, calculating and exploring 
the minimum spanning tree for a set of points, recog- 
nizing dotted curves from a set of planar points and 
performing a template matching in the presence of severe 
noise distortions. The lesson seems to be that pattern 
recognition algorithms require a range of data fitruc- 
Wring capabilities for their implementation, in parti- 
cular arrays , graphs and lists. The languages PL/l and 
PASCAL have facilities to accommodate graphs and lists 
but there are important differences for the programmer. 
The ease with;which the template matching program was 
written, debugged and modified during a 3 week period, 
using PASCAL, suggests that this small but powerful 
language should not be overlooked by those researchers 
who need a quick, reliable, and efficient implementation 
of a pattern recognition algorithm requiring graphs, 
lists and arrays. 

Algorithm 

Encoding Digital Pictures 

The storage of digital pictures' generally requires 
a rectangular array of picture elements (pixels), each 
represented by a small integer. The large number of 
pixels and the small number of bits (1 to 8) per pixel 
suggest packing the array with one machine word contain- 
ing several pixels. For efficiency in perforning local 
preprocessing on pixel neighborhoods, it seems natural 
to unpack several rows of the digital picture and then 
repack. 

Binary digital pictures consist of connected re- 
gions of black or white color which can be represented 

by a set of polygonal boundary curves. One method2 for 
calculating these curves scans the binary picture from 
top to bottom, extracting curvature points where some 
boundary curve changes direction. These curvature 
points are maintained in several linked lists which 
grow and merge and eventually become cyclic lists cor- 
responding to a completed closed polygon (see Figure 1). 
There is also a natural insidedness relation among these 
non-intersecting boundary curves which can best be rep- 
resented as a directed rooted tree of curves. 

A similar method for binary pictures on a triangu- 
lar grid3 requires a top-down processing of the strips 
(corridors) between two adjacent picture rows (see Fig- 
ure 2). The small pieces of boundary which touch the 
edges of the corridor are recognized as tops or bottoms 
according to which edge they touch, and by maintaining 
a queue of bottom elements, the processing of corridor 
sequences becomes quite simple: bottoms are added to the 
queue and tops are linked to the first queue element 
which is then taken off the queue. This queueing pro- 
cedure doesn't even need to know where one corridor 
leaves off and the next begins. 

*Work supported by United States Energy Research and 
Development Administration. 
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FIGURE 1. Region boundary 

Corridor 

FIGURE 2. Corridor sequence 
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Processing Region Boundaries 

It is often appropriate to smooth the polygonal 
region boundaries by the elimination of wiggly sequences 
of curvature points caused by quantization noise (see 
Figure 1). This requirement provides further motivation 
for representing the curves as linked lists. Not only 
is the deletion more convenient, but the storage for 
the deleted points can be re-used for other curves. 
Computing the convex hull of a closed polygonal curve 
retains more information if the portion of boundary de- 
lineating each concavity is extracted to form a poly- 
gonal boundary for the concavity. Once again the flex- 
ibility of linked lists is useful. 

For the computation of area and local curvature' 

as well as Fourier Descriptors of the boundary shape, 5 
it is very convenient to have the boundary represented 
as a cyclic doubly linked list in close correspondence 
to the true geometric relationship of the curvature 
points. The storage for Fourier Descriptors is natur- 
ally a static array. 

Cluster Analysis 

An important problem in pattern recognition is the 
description of structural properties of a set of points 
in a multidimensional space. One approach to this pro- 

blem which applies in a general metric space ' is to com- 
pute the minimal spanning tree (MST) from the complete 
graph of points with metric distance as edge-weight 
(see Figure 3). Each point can be represented as an 
array of coordinate values, and the set as an array of 
points. The most efficient algorithm for constructing 
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FIGURE 3. Particle tracks problem. (a) Artificial 
particle track photo. (b) Tracks and interaction 
vertices. (c)Minimum spanning tree for (a) showing 

"hairs." (d) MST without "hairs." 

the MST begins with a single node (point), and repeti- 
tively adds a new node and edge to the growing tree 
until all points are nodes of the tree. Since the tree 
grows and the local degree (number of connecting edges) 
of nodes is not known a priori, it is convenient to 
associate with each node a list of node-edge adjacencies 
which refer to actual edges. Each edge has length in- 
formation and is referred to by two node-edge adjacen- 
ties. 730 arrays are used to select the next edge to 
add to the growing tree. 

Well-defined clusters can be found by deleting cer- 
tain "inconsistent" edges of the MST; to determine in- 
consistency, one must compute simple statistical pro- 
perties of small sets of edges near the two end-nodes 
of a given edge. Forming a list of the edges of a sub- 
tree can be done by a recursive procedure or using an 
explicit stack. The connected subtrees which result 
from deletion of inconsistent edges can be further in- 
vestigated by calculating the diameter path (longest), 
considering it as a one-dimensional domain and plotting 
other functions (e.g ., point density estimates) along 
this coordinate. An especially elegant computation can 
be constructed to determine, for a given node-edge ad- 
jacency, the maximum path length between the given node 
and all nodes of the subtree defined by the given node- 
edge adjacency. These "relative-depths" allow almost 
immediate calculation of "relative-diameters" and the 
"global" diameter. They are properties of the node- 
edge adjacencies and would have been awkward to include 
in the data-structure if lists of node-adjacencies had 
not been directly represented. When the diameter path 
has been found, it may be convenient to represent it as 
a list or array, depending on the subsequent uses of 
the path. 

Dotted Curve Recognition 

As implied by Figure 3, the MST can be useful for 
the recognition of curves formed by a set of points in 
the plane. To realistically apply the MST to recognize 
particle tracks from physics photographs, 7 some short- 
cuts were necessary. The scanner transforms the photo 
into a list of points corresponding to the normal top- 
down left to right TV raster scan of a rectangular area. 
The sorted order of rows was exploited for its geometric 
content in the following way: a quasi-minimal spanning 
forest (Q-MSF) was constructed by restricting the tree 
to edges connecting a point to other points in a fixed ,_ 
rectangular window around the point. Because of this 
modification, it became appropriate to maintain a queue 
of current candidate edges for entry into the tree 

sorted on edge length (i.e., a priority queue 8 ). The 
crucial aspect of this method is that searching the 
rectangular window around a new MST node requires look- 

ing at only a small horizontal strip of the entire pic- 
ture -- a small subset of the sorted rows. With these 
modifications, it became feasible to compute quasi-min- 
imal spanning forests for 1000-2000 points. To econo- 
mize on storage requirements, the Q-MSF was represented 
as directed rooted trees with each new edge pointing 
back into the growing tree. Although this restricts 
the subsequent tree explorations to follow directed 
paths, for this type of line-like data the restriction 
was quite tolerable. 

The procedure for curve recognition extracts di- 
rected paths from the Q-MSF (possibly after deletion of 
"hairs": see Figure 3), and applies a variant of the 
iterative endpoint fit method 9 to recursively decompose 
the path into approximately linear segments. 7 This re- 
quires recursion or an explicit stack. Figure 4 depicts 
how the method works by breaking path (AB) at C, accept- 
ing (AC) as a sufficiently linear segment, breaking (CB) 
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at D, and then accepting (CD) and (DB). The resulting 
segments are connected into lists which represent 
curves with slowly varying direction. It is useful to 
provide links which associate each segment back down 
to the lower level path of points constituting it. 

A Ibs2.2 

FIGURE 4. Iterative endpoint fit 

IlJcisv Template Matchin 

A program has been designed 10 to recognize a par- 
tial fragment of an original base point set in the 
plane even after rotation, uniform scale change, and 
extremely heavy noise distortions. The method used de- 
pends on invariance of local structure of the MST to 
these forms of distortion. Figure 5 shows the MSTs for 
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FIGURE 5. Local structure of MSTs 

two almost matching sets; the local structure invariant 
tc scale changes consists of the angles formed by the 
sequence of edges about a node, as well as the ratios 
between lengths of pairs of edges subtending such 
angles. To adjust to these needs, we calculate a di- 
rection for each node-edge adjacency while growing the 
MST, and keep each node's adjacency list ordered by 
edge-direction counter-clockwise around the node. 
When the MST is complete, we calculate angles around 
each node, storing the information at node-edge adja- 
cencies. The minimum angle at each node is calculated 
along with the ratio between the lengths of the edges 
subtending this minimum angle. This information is 
stored at the node. The nodes of the MST are next 
arranged into separate lists based on local degree 
(5 6 for a planar MST), and each list is ordered by 
the value of minimum angle. This structure is computed 
for both base and fragment point sets so that the 
matching algorithm will be very efficient. Attempts 
to find nodes with similar local structure restrict 
their attention to nodes of nearly the same degree and 
with compatible minimum angle and length ratio. This 
focuses the search dramatically. 

When there is reasonable evidence of matching 
local structure between two nodes, then a global least 
squares fit is performed to obtain a final verification. 
This requires a 4x4 matrix which defines the linear 
system to be solved. 

Data-Structures 

The functional requirements of the various algo- 
rithms described above dictate the use of a wide range 
of data structures including arrays, matrices, singly 
and doubly linked lists, cyclic lists, rooted directed 
and symmetric trees, simple and priority queues, stacks, 
and sorted lists. These are fundamental data-structures 

for general programming, 11 and pattern recognition 
methods appear to need a rich blending of the entire 
range for their convenient implementation. We have 
attempted to describe the algorithms in sufficient de- 
tail to indicate that the chosen data-structures were 
the natural consequence of certain requirements for 
efficiency or convenience. 

Lists, trees, queues, and stacks can be implemen- 
ted in terms of two more primitive data-types called 
records and references. A record is a data-structure 
consisting of several named fields of possibly different 
types, and a reference is a variable which points to 
some record. If records containing references to other 
records can be dynamically created and destroyed during 
the execution of a program, then one has all the facil- 
ities needed to create arbitrary graphs; lists,'trees, 
queues and stacks are special instances of general graphs. 

While there are ways to implement lists and trees 
in some cases using arrays, the lack of dynamic storage 
allocation can make such solutions awkward. The clarity 
of programs can also suffer when arrays are used for 
purposes never intended. 

Language Comparison 

FORTRAN and ALGOL-60 

From the point-of-view of data-structures, FORTRAN 
and ALGOL-60 are almost identical since arrays are all 

that is offered. The curvature points algorithm2 was 
implemented in ALGOL-60 (see Appendix A,B in 12) with 
arrays named X,Y,ECGEIN,ElZEOUT to represent the curva- 
ture points themselves, and arrays named TOP, BOTTOM, 
NEXTPOINT, NMTEDGE, LASTPOINT, LASTECGE, ANGLE, LENGTH 
to represent the cyclic polygonal curves. The program 
is reasonably clear but there is some waste of storage, 
and misuse of the integer pointers cannot be detected 
by the language compiler as it can be in languages with 
references declared as bound to one particular record 
class. 

The dotted curve recognition program for particle 
tracks7 was implemented in FORTRAN although originally 
developed and debugged in PL/l. The clarity of the pro- 
gram suffered considerably in the translation while the 
efficiency was not substantially enhanced. It was pro- 
bably quite fortunate that the program was correct be- 
fore being translated to FORTRAN since the array imple- 
mentation of pointers has the same problem as mentioned 
above for ALGOL-60. 

The MST cluster analysis algorithm has been pro- 

grammed in FORTRAN 13 making it more accessible, but the 
FORTRAN version lacks something in clarity, for the 
usual reasons, even though the author made a valiant 
attempt. 

The PL/l language offers structures (similar to 
records) and pointers (references), and allows for dy- 
namic storage allocation and deallocation. Unfortunately, 
pointers are not restricted to refer to a particular 
class of structure and, as a result, detecting misuses 
of pointers by traditional debugging can be quite pain- 
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ful. We implemented the minimal spanning tree cluster- 

ing 6 in PL/l as well as the earlier versions of the 

dotted curve recognition.7 In general, we found PL/l 
to be an adequate programming tool for these algorithms 
if used in a very constrained way, avoiding the more 
dangerous or mysterious aspects of the language. 

AIGOL-W 

The language ALGOL-W14 (implemented extremely well 
on the m1/360) is based on ALGOL-60 but includes 
records separated into disjoint classes, and references 
which are restricted to refer to a particular class or 
set of classes. The compiler can, therefore, diagnose 
most misuses of references and save the programmer 
many 

7 
rey hairs. The algorithms we have implemented 

in PL 1 could have been programmed almost identically 
in ALGOL-W with a gain in efficiency as well as pro- 
grammer convenience. 

PASCAL 

The language PASCAL 15'16'17 is based on ALGOL-60 
and ALGOL-W; but implements many of the important data 
structuring facilities described and motivated by 
Hoare18 It has the records and references (here called 
pointers) of AIGOL-W but includes programmer defined 
data types, constants, sets, etc. It enjoys most of 
the desirable properties of ALGOL-W but was more con- 
sciously designed to support modern ideas of hierar- 
chical refinement of data-structures and procedures. 

We programmed, debugged, experimented with, and 
modified the noisy template matching algorithm 10 as 
well as writing the paper -- all within 3 weeks. The 
initial computer run was an attempted compilation of 

r900 lines of PASCAL and the final production run 
occurred 8 working days later with a 1300 line program! 
Only two programming errors slipped past the compiler 
and they caused no severe difficulty. This was, more- 
over, our first serious effort at programming in PASCAL, 
although familiarity with ALGOL-W helped. 

In PASCAL, the programmer can define the type 
pixel to be a subrange 0. .7 of integer values, and then 
a packed array [1..500,1..500] of pixel would require 
only 25,000 32-bit words of storage. The programmer 
must consciously pack and unpack, but need not be con- 
cerned with the machine dependent details of shifting, 
masking and field extraction. 

SGOL75 

SGOL75 is a language which is currently under ex- 
perimental development, and which represents an attempt 
to implement some of the features of PASCAL, along with 
structured control as advocated by Knuth, 19 using the 

macro-translator for MORTRAN2. 20 The language MORTRAN2 
is a structured extension to FORTRAN which can be trans- 
lated into standard FORTRAN by a very small standard 
FORTRAN program (700 cards). The translator is driven 
by a list of macro-rules for text replacement, and 
SGOL75 +FORTRAN translation is achieved simply by 
using a list of macro-rules appropriate to SGOL75. 
The most interesting development to date has been the 
relative ease with which records and references can be -- 
implemented 21 with very good protection against misuse 
of references. 

The macro-based implementation of a structured 
language allowing records and references by a standard 
FORTRAN program which translates the given language 
into standard FORTRAN has large implications. The 

major advantages of FORTRAN (i.e., frequency of imple- 
mentation and program libraries) are retained while its 
considerable deficiency as an intellectual tool for 
problem solving is not relevant. Other data structures 
such as stacks and queues are easy to implement in the 
macro-based fashion, as are other user-defined facili- 
ties. In its present state of development, SGOL75 
would be a fairly convenient vehicle for programming 
the pattern recognition algorithms discussed above. 

PASCAL Data-structures 

The PASCAL language has data-definition and data- 
structuring facilities which, in conjunction with rec- 
ords and references, allow the programmer to strut= 
G in a conceptually natural way. The programmer may 
define a name (i.e., identifier) to be synonymous with 
a constant value (e.g., PI=3.14159). He may define a 
new type (i.e., range of values) as a finite set of 
distinct names which become the constant values of the 
new type (e.g., Color=[Red,Yellow,Green]) or as a sub- 
range of the integers (e.g., Age_range=0..150). 

We shall present some concrete examples of PASCAL 
data-structures in the context of pattern recognition 
algorithms. 

General Digital Pictures 

Suppose we wish to represent general digital pic- 
tures -- that is, colored (trispectral) as well as 
black and white. We begin by defining several constant 
names which will be used uniformly in all subsequent 
data-definitions, data-declarations and commands. 

constant Pix-size = 100; Black=63; White=O; 
Next, we define four new types - Color, Pixel, Pix-type 
and Pix-range 

type Color = [Red,Yellow,Green]; 
Pixel = White . . Black; 
Pix_type = [Colored,Slack-white]; 
Pix-range = 1 . . Pix-size; 

and then new structured types called Simple-pix and 
Coloredgix 

a Simple-pix = packed array[Pix-range,Pix-range] 
of Pixel; 

Colored-pix = aGay[Color] f Simple-pix; 
Now we can define the new type Picture 

type Picture = 
record 

Name: Text-string; 
case P T: Pix_type g -- 

Colored: (C-P : Colored-pix); 
Black white: - (S-P : Simple-pix) 

end; 
The case variant construction within a record is pecu- 
liar to PASCAL; in this case, it means that each vari- 
able of type Picture will have a field called P-T of 
type Pix-type (i.e., Colored or Black-white) and subse- , 
quent fields will have names and types depending on the 
particular value of P-T. We have thus defined a single 
data-type which can be used to represent general digi- 
tal pictures. 

Should we need to handle pictures 150x150 with 
picture elements in the range O=Xhite to 15=Black, then 
all that is required is to change the constant defini- 
tions for Pix size and Black'. All other adjustments re- 
quired throughout the program are obtained consistently 
by recompilation of the program. 

Planar MST for Matching 

The PASCAL data-structures employed in the templaiE 
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matching problem 10 included the following three new 
types to represent the MSTs and their associated angle 
and length information. The symbol (1) means "reference 
to". 

m Point-type = array[l..Max-dim] of real; 
Node-type = 

record 
X:Point-type;Degree:Integer; 

Next:TNode-type; 
Min-angle,Length ratio:=; 
First-adj,Min-adj:tAdj-type 

a; 
Adj-type = 

record 
Edge:TEdge-type;Next:tAdj-type; 
Direction,Angle:real 

end; 
Edge_type = 

record 
End_node:a[l..2]of T Node-type; 
Length:real 

end 
Inside the procedure which actually grows the MST, we 
have the following variable declaration 

variable Near : array [l..NN-max] of - 
record Node:TNode-type;Distance:real; 

F'ree:boolean end; - 
Each node/point has an integer index between 1 and NN- 
max and Near[i] .Node references that node of the cur- 
rent tree nearest to the i'ch node if Near[i] . Free is 
true and Near[i] .Distance is the distance between 
these two nodes. Free means "not yet in the tree". 

Node lists based on local degree (~6) and sorted on 
Min-angle require 

m Node-lists = array [1..6] of T Node-type; 
variable Base-lists, Fragment-lzts:Node-lists; 

These examples do not involve all the nice data- 
representation facilities of PASCAL, but we hope to 
have indicated that this language allows a very pleasant 
implementation of algorithms which manipulate graphs, 
lists and arrays. 
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