
DATA STRUCTURES FOR PATTERN RECOGNITION AIXORITRMS: A Case Study
Charles T. Zahn, Jr.

Computation Research Group
Stanford Linear Accelerator Center*

Stanford, California 94305

SLAC-PUB-1566
mrch 1975

Summarx

This paper will describe experiences gained while
programming several pattern recognition algorithms in
the languages ALGOL, FORTRAN, PL/l and PASCAL. The al-
gorithms discussed are for boundary encodings of two-
dimensional binary pictures, calculating and exploring
the minimum spanning tree for a set of points, recog-
nizing dotted curves from a set of planar points and
performing a template matching in the presence of severe
noise distortions. The lesson seems to be that pattern
recognition algorithms require a range of data fitruc-
Wring capabilities for their implementation, in parti-
cular arrays , graphs and lists. The languages PL/l and
PASCAL have facilities to accommodate graphs and lists
but there are important differences for the programmer.
The ease with;which the template matching program was
written, debugged and modified during a 3 week period,
using PASCAL, suggests that this small but powerful
language should not be overlooked by those researchers
who need a quick, reliable, and efficient implementation
of a pattern recognition algorithm requiring graphs,
lists and arrays.

Algorithm

Encoding Digital Pictures

The storage of digital pictures' generally requires
a rectangular array of picture elements (pixels), each
represented by a small integer. The large number of
pixels and the small number of bits (1 to 8) per pixel
suggest packing the array with one machine word contain-
ing several pixels. For efficiency in perforning local
preprocessing on pixel neighborhoods, it seems natural
to unpack several rows of the digital picture and then
repack.

Binary digital pictures consist of connected re-
gions of black or white color which can be represented

by a set of polygonal boundary curves. One method2 for
calculating these curves scans the binary picture from
top to bottom, extracting curvature points where some
boundary curve changes direction. These curvature
points are maintained in several linked lists which
grow and merge and eventually become cyclic lists cor-
responding to a completed closed polygon (see Figure 1).
There is also a natural insidedness relation among these
non-intersecting boundary curves which can best be rep-
resented as a directed rooted tree of curves.

A similar method for binary pictures on a triangu-
lar grid3 requires a top-down processing of the strips
(corridors) between two adjacent picture rows (see Fig-
ure 2). The small pieces of boundary which touch the
edges of the corridor are recognized as tops or bottoms
according to which edge they touch, and by maintaining
a queue of bottom elements, the processing of corridor
sequences becomes quite simple: bottoms are added to the
queue and tops are linked to the first queue element
which is then taken off the queue. This queueing pro-
cedure doesn't even need to know where one corridor
leaves off and the next begins.

*Work supported by United States Energy Research and
Development Administration.

--------‘-1 INSERT
I
I

I I I I I .
I I I 1~1 iTl-TTl-TTi

669A13

FIGURE 1. Region boundary

Corridor

FIGURE 2. Corridor sequence

(To be presented at Computer Graphics, Pattern Recognition, and Data Structure Conference,
Los Angeles, California, &y 14-16, 1975)

Processing Region Boundaries

It is often appropriate to smooth the polygonal
region boundaries by the elimination of wiggly sequences
of curvature points caused by quantization noise (see
Figure 1). This requirement provides further motivation
for representing the curves as linked lists. Not only
is the deletion more convenient, but the storage for
the deleted points can be re-used for other curves.
Computing the convex hull of a closed polygonal curve
retains more information if the portion of boundary de-
lineating each concavity is extracted to form a poly-
gonal boundary for the concavity. Once again the flex-
ibility of linked lists is useful.

For the computation of area and local curvature'

as well as Fourier Descriptors of the boundary shape, 5
it is very convenient to have the boundary represented
as a cyclic doubly linked list in close correspondence
to the true geometric relationship of the curvature
points. The storage for Fourier Descriptors is natur-
ally a static array.

Cluster Analysis

An important problem in pattern recognition is the
description of structural properties of a set of points
in a multidimensional space. One approach to this pro-

blem which applies in a general metric space ' is to com-
pute the minimal spanning tree (MST) from the complete
graph of points with metric distance as edge-weight
(see Figure 3). Each point can be represented as an
array of coordinate values, and the set as an array of
points. The most efficient algorithm for constructing

.
l .*=

. . . .* . . l *
. .’ .

l .*
.

. .
.
. l

: . .

(a)

0
FIGURE 3. Particle tracks problem. (a) Artificial
particle track photo. (b) Tracks and interaction
vertices. (c)Minimum spanning tree for (a) showing

"hairs." (d) MST without "hairs."

the MST begins with a single node (point), and repeti-
tively adds a new node and edge to the growing tree
until all points are nodes of the tree. Since the tree
grows and the local degree (number of connecting edges)
of nodes is not known a priori, it is convenient to
associate with each node a list of node-edge adjacencies
which refer to actual edges. Each edge has length in-
formation and is referred to by two node-edge adjacen-
ties. 730 arrays are used to select the next edge to
add to the growing tree.

Well-defined clusters can be found by deleting cer-
tain "inconsistent" edges of the MST; to determine in-
consistency, one must compute simple statistical pro-
perties of small sets of edges near the two end-nodes
of a given edge. Forming a list of the edges of a sub-
tree can be done by a recursive procedure or using an
explicit stack. The connected subtrees which result
from deletion of inconsistent edges can be further in-
vestigated by calculating the diameter path (longest),
considering it as a one-dimensional domain and plotting
other functions (e.g ., point density estimates) along
this coordinate. An especially elegant computation can
be constructed to determine, for a given node-edge ad-
jacency, the maximum path length between the given node
and all nodes of the subtree defined by the given node-
edge adjacency. These "relative-depths" allow almost
immediate calculation of "relative-diameters" and the
"global" diameter. They are properties of the node-
edge adjacencies and would have been awkward to include
in the data-structure if lists of node-adjacencies had
not been directly represented. When the diameter path
has been found, it may be convenient to represent it as
a list or array, depending on the subsequent uses of
the path.

Dotted Curve Recognition

As implied by Figure 3, the MST can be useful for
the recognition of curves formed by a set of points in
the plane. To realistically apply the MST to recognize
particle tracks from physics photographs, 7 some short-
cuts were necessary. The scanner transforms the photo
into a list of points corresponding to the normal top-
down left to right TV raster scan of a rectangular area.
The sorted order of rows was exploited for its geometric
content in the following way: a quasi-minimal spanning
forest (Q-MSF) was constructed by restricting the tree
to edges connecting a point to other points in a fixed ,_
rectangular window around the point. Because of this
modification, it became appropriate to maintain a queue
of current candidate edges for entry into the tree

sorted on edge length (i.e., a priority queue 8). The
crucial aspect of this method is that searching the
rectangular window around a new MST node requires look-

ing at only a small horizontal strip of the entire pic-
ture -- a small subset of the sorted rows. With these
modifications, it became feasible to compute quasi-min-
imal spanning forests for 1000-2000 points. To econo-
mize on storage requirements, the Q-MSF was represented
as directed rooted trees with each new edge pointing
back into the growing tree. Although this restricts
the subsequent tree explorations to follow directed
paths, for this type of line-like data the restriction
was quite tolerable.

The procedure for curve recognition extracts di-
rected paths from the Q-MSF (possibly after deletion of
"hairs": see Figure 3), and applies a variant of the
iterative endpoint fit method 9 to recursively decompose
the path into approximately linear segments. 7 This re-
quires recursion or an explicit stack. Figure 4 depicts
how the method works by breaking path (AB) at C, accept-
ing (AC) as a sufficiently linear segment, breaking (CB)

2

at D, and then accepting (CD) and (DB). The resulting
segments are connected into lists which represent
curves with slowly varying direction. It is useful to
provide links which associate each segment back down
to the lower level path of points constituting it.

A Ibs2.2

FIGURE 4. Iterative endpoint fit

IlJcisv Template Matchin

A program has been designed 10 to recognize a par-
tial fragment of an original base point set in the
plane even after rotation, uniform scale change, and
extremely heavy noise distortions. The method used de-
pends on invariance of local structure of the MST to
these forms of distortion. Figure 5 shows the MSTs for

(a) (b)

FIGURE 5. Local structure of MSTs

two almost matching sets; the local structure invariant
tc scale changes consists of the angles formed by the
sequence of edges about a node, as well as the ratios
between lengths of pairs of edges subtending such
angles. To adjust to these needs, we calculate a di-
rection for each node-edge adjacency while growing the
MST, and keep each node's adjacency list ordered by
edge-direction counter-clockwise around the node.
When the MST is complete, we calculate angles around
each node, storing the information at node-edge adja-
cencies. The minimum angle at each node is calculated
along with the ratio between the lengths of the edges
subtending this minimum angle. This information is
stored at the node. The nodes of the MST are next
arranged into separate lists based on local degree
(5 6 for a planar MST), and each list is ordered by
the value of minimum angle. This structure is computed
for both base and fragment point sets so that the
matching algorithm will be very efficient. Attempts
to find nodes with similar local structure restrict
their attention to nodes of nearly the same degree and
with compatible minimum angle and length ratio. This
focuses the search dramatically.

When there is reasonable evidence of matching
local structure between two nodes, then a global least
squares fit is performed to obtain a final verification.
This requires a 4x4 matrix which defines the linear
system to be solved.

Data-Structures

The functional requirements of the various algo-
rithms described above dictate the use of a wide range
of data structures including arrays, matrices, singly
and doubly linked lists, cyclic lists, rooted directed
and symmetric trees, simple and priority queues, stacks,
and sorted lists. These are fundamental data-structures

for general programming, 11 and pattern recognition
methods appear to need a rich blending of the entire
range for their convenient implementation. We have
attempted to describe the algorithms in sufficient de-
tail to indicate that the chosen data-structures were
the natural consequence of certain requirements for
efficiency or convenience.

Lists, trees, queues, and stacks can be implemen-
ted in terms of two more primitive data-types called
records and references. A record is a data-structure
consisting of several named fields of possibly different
types, and a reference is a variable which points to
some record. If records containing references to other
records can be dynamically created and destroyed during
the execution of a program, then one has all the facil-
ities needed to create arbitrary graphs; lists,'trees,
queues and stacks are special instances of general graphs.

While there are ways to implement lists and trees
in some cases using arrays, the lack of dynamic storage
allocation can make such solutions awkward. The clarity
of programs can also suffer when arrays are used for
purposes never intended.

Language Comparison

FORTRAN and ALGOL-60

From the point-of-view of data-structures, FORTRAN
and ALGOL-60 are almost identical since arrays are all

that is offered. The curvature points algorithm2 was
implemented in ALGOL-60 (see Appendix A,B in 12) with
arrays named X,Y,ECGEIN,ElZEOUT to represent the curva-
ture points themselves, and arrays named TOP, BOTTOM,
NEXTPOINT, NMTEDGE, LASTPOINT, LASTECGE, ANGLE, LENGTH
to represent the cyclic polygonal curves. The program
is reasonably clear but there is some waste of storage,
and misuse of the integer pointers cannot be detected
by the language compiler as it can be in languages with
references declared as bound to one particular record
class.

The dotted curve recognition program for particle
tracks7 was implemented in FORTRAN although originally
developed and debugged in PL/l. The clarity of the pro-
gram suffered considerably in the translation while the
efficiency was not substantially enhanced. It was pro-
bably quite fortunate that the program was correct be-
fore being translated to FORTRAN since the array imple-
mentation of pointers has the same problem as mentioned
above for ALGOL-60.

The MST cluster analysis algorithm has been pro-

grammed in FORTRAN 13 making it more accessible, but the
FORTRAN version lacks something in clarity, for the
usual reasons, even though the author made a valiant
attempt.

The PL/l language offers structures (similar to
records) and pointers (references), and allows for dy-
namic storage allocation and deallocation. Unfortunately,
pointers are not restricted to refer to a particular
class of structure and, as a result, detecting misuses
of pointers by traditional debugging can be quite pain-

3

ful. We implemented the minimal spanning tree cluster-

ing 6 in PL/l as well as the earlier versions of the

dotted curve recognition.7 In general, we found PL/l
to be an adequate programming tool for these algorithms
if used in a very constrained way, avoiding the more
dangerous or mysterious aspects of the language.

AIGOL-W

The language ALGOL-W14 (implemented extremely well
on the m1/360) is based on ALGOL-60 but includes
records separated into disjoint classes, and references
which are restricted to refer to a particular class or
set of classes. The compiler can, therefore, diagnose
most misuses of references and save the programmer
many

7
rey hairs. The algorithms we have implemented

in PL 1 could have been programmed almost identically
in ALGOL-W with a gain in efficiency as well as pro-
grammer convenience.

PASCAL

The language PASCAL 15'16'17 is based on ALGOL-60
and ALGOL-W; but implements many of the important data
structuring facilities described and motivated by
Hoare18 It has the records and references (here called
pointers) of AIGOL-W but includes programmer defined
data types, constants, sets, etc. It enjoys most of
the desirable properties of ALGOL-W but was more con-
sciously designed to support modern ideas of hierar-
chical refinement of data-structures and procedures.

We programmed, debugged, experimented with, and
modified the noisy template matching algorithm 10 as
well as writing the paper -- all within 3 weeks. The
initial computer run was an attempted compilation of

r900 lines of PASCAL and the final production run
occurred 8 working days later with a 1300 line program!
Only two programming errors slipped past the compiler
and they caused no severe difficulty. This was, more-
over, our first serious effort at programming in PASCAL,
although familiarity with ALGOL-W helped.

In PASCAL, the programmer can define the type
pixel to be a subrange 0. .7 of integer values, and then
a packed array [1..500,1..500] of pixel would require
only 25,000 32-bit words of storage. The programmer
must consciously pack and unpack, but need not be con-
cerned with the machine dependent details of shifting,
masking and field extraction.

SGOL75

SGOL75 is a language which is currently under ex-
perimental development, and which represents an attempt
to implement some of the features of PASCAL, along with
structured control as advocated by Knuth, 19 using the

macro-translator for MORTRAN2. 20 The language MORTRAN2
is a structured extension to FORTRAN which can be trans-
lated into standard FORTRAN by a very small standard
FORTRAN program (700 cards). The translator is driven
by a list of macro-rules for text replacement, and
SGOL75 +FORTRAN translation is achieved simply by
using a list of macro-rules appropriate to SGOL75.
The most interesting development to date has been the
relative ease with which records and references can be --
implemented 21 with very good protection against misuse
of references.

The macro-based implementation of a structured
language allowing records and references by a standard
FORTRAN program which translates the given language
into standard FORTRAN has large implications. The

major advantages of FORTRAN (i.e., frequency of imple-
mentation and program libraries) are retained while its
considerable deficiency as an intellectual tool for
problem solving is not relevant. Other data structures
such as stacks and queues are easy to implement in the
macro-based fashion, as are other user-defined facili-
ties. In its present state of development, SGOL75
would be a fairly convenient vehicle for programming
the pattern recognition algorithms discussed above.

PASCAL Data-structures

The PASCAL language has data-definition and data-
structuring facilities which, in conjunction with rec-
ords and references, allow the programmer to strut=
G in a conceptually natural way. The programmer may
define a name (i.e., identifier) to be synonymous with
a constant value (e.g., PI=3.14159). He may define a
new type (i.e., range of values) as a finite set of
distinct names which become the constant values of the
new type (e.g., Color=[Red,Yellow,Green]) or as a sub-
range of the integers (e.g., Age_range=0..150).

We shall present some concrete examples of PASCAL
data-structures in the context of pattern recognition
algorithms.

General Digital Pictures

Suppose we wish to represent general digital pic-
tures -- that is, colored (trispectral) as well as
black and white. We begin by defining several constant
names which will be used uniformly in all subsequent
data-definitions, data-declarations and commands.

constant Pix-size = 100; Black=63; White=O;
Next, we define four new types - Color, Pixel, Pix-type
and Pix-range

type Color = [Red,Yellow,Green];
Pixel = White . . Black;
Pix_type = [Colored,Slack-white];
Pix-range = 1 . . Pix-size;

and then new structured types called Simple-pix and
Coloredgix

a Simple-pix = packed array[Pix-range,Pix-range]
of Pixel;

Colored-pix = aGay[Color] f Simple-pix;
Now we can define the new type Picture

type Picture =
record

Name: Text-string;
case P T: Pix_type g --

Colored: (C-P : Colored-pix);
Black white: - (S-P : Simple-pix)

end;
The case variant construction within a record is pecu-
liar to PASCAL; in this case, it means that each vari-
able of type Picture will have a field called P-T of
type Pix-type (i.e., Colored or Black-white) and subse- ,
quent fields will have names and types depending on the
particular value of P-T. We have thus defined a single
data-type which can be used to represent general digi-
tal pictures.

Should we need to handle pictures 150x150 with
picture elements in the range O=Xhite to 15=Black, then
all that is required is to change the constant defini-
tions for Pix size and Black'. All other adjustments re-
quired throughout the program are obtained consistently
by recompilation of the program.

Planar MST for Matching

The PASCAL data-structures employed in the templaiE
4

matching problem 10 included the following three new
types to represent the MSTs and their associated angle
and length information. The symbol (1) means "reference
to".

m Point-type = array[l..Max-dim] of real;
Node-type =

record
X:Point-type;Degree:Integer;

Next:TNode-type;
Min-angle,Length ratio:=;
First-adj,Min-adj:tAdj-type

a;
Adj-type =

record
Edge:TEdge-type;Next:tAdj-type;
Direction,Angle:real

end;
Edge_type =

record
End_node:a[l..2]of T Node-type;
Length:real

end
Inside the procedure which actually grows the MST, we
have the following variable declaration

variable Near : array [l..NN-max] of -
record Node:TNode-type;Distance:real;

F'ree:boolean end; -
Each node/point has an integer index between 1 and NN-
max and Near[i] .Node references that node of the cur-
rent tree nearest to the i'ch node if Near[i] . Free is
true and Near[i] .Distance is the distance between
these two nodes. Free means "not yet in the tree".

Node lists based on local degree (~6) and sorted on
Min-angle require

m Node-lists = array [1..6] of T Node-type;
variable Base-lists, Fragment-lzts:Node-lists;

These examples do not involve all the nice data-
representation facilities of PASCAL, but we hope to
have indicated that this language allows a very pleasant
implementation of algorithms which manipulate graphs,
lists and arrays.

References

1. A. Rosenfeld, Picture Processing by Computer,Aca-
demic Press, 1969, (see also Computing Surveys,
Sept. 1969).

2. C.T. Zahn, "A Formal Description for 'Iwo-dimen-
sional Patterns," Proc. Intl. J. Conf. on A.I.,
Washington, D.C., May 1969, available as SLAC-
PUB-538 from Stanford Linear Accelerator Center,
Stanford, California 94305.

3. C.T. Zahn, "Region Boundaries on a Triangular
Grid," Proc. 2nd Intl. J. Conf. on Pattern Rec-
ognition, Copenhagen, Denmark, August 3.974,
available as SLAC-PUB-1437.

4. H. Freeman, "Techniques for the digital computer
analysis of chain-encoded arbitrary plane curves,'
Proc. Natl. Electronics Conf., 1961, pp 421-432.

5. C.T. Zahn and R.Z. Roskies, "Fourier Descriptors
for Piane Closed Curves," mE Trans. Computers,
Vol. C-21, NO. 3, March 1972, pp 269-281.

6. C.T. Zahn, "Graph-theoretical methods for detect-
ing and describing Gestalt clusters," IEEE Trans.
Computers, Vol. C-20, No. 1, Jan. i971, pp 68-86.

7. C.T. Zahn, "Using the Minimum Spanning Tree to
Recognize Dotted and Dashed Curves," Proc. of an
Intl.Computing Symp. 1973), A. Gunther et al

8.

9.

10.

11.

12.

13.

14.

15 *

16.

17.

18.

1-9.

20.

21.

(Editors), North-Holland Publ. Co., 1974.
D.E. Knuth, "The Art of Computer Programming:

Sorting and Searching," Vo1.3, Addison-Wesley,
1973.

R.O. Duda and P.E. Hart, Pattern Recognition and
Scene Analysis, John Wiley, New York, 1973.

C.T. Zahn, "An Algorithm for Noisy Template Match-
ing," Proc. IFIP Congress 1974, pp 698-701.

D.E. Knuth, "The Art of Computer Programming: Fun-
damental Algorithms, 11 Vol.1, Addison Wesley,1968.

C.T. Zahn, "Two-dimensional pattern description
and recognition via curvaturepoints," SLAC Report
NO. 70, Dec. 1966.

R.L. Page, "A Minimal Spanning Tree Clustering
Method[~]," Algorithm 479, CACM, June 1974.

N.Wirth and C.A.R. Hoare, "A Contribution to the
development of ALGOL," CACM, June 1966, pp 413-431.

N. Wirth, "The programming language PASCAL," Acta
Informatica, vol. 1, pp 35-63.

K. Jensen and N. Wirth, "PASCAL-User Manual and
Report," Springer-Verlag Lecture Notes in Compu-
ter Science, vol. 18, 1974.

C.A.R. Hoare and N. Wirth, "An axiomatic. defini-
tion of the programming language PASCAL, It Acta
Informatica, Vol. 3, pp 335-355.

C.A.R. Hoare, "Notes on Data Structuring" in
Structured Programming by O.J. Dahl, E.W. Dijkstra
and C.A.R. Hoare, Academic Press, 1972.

D.E. Knuth, "Structured programming with go to
statements," ACM Computing Surveys, Dec. 1974,
pp 261-301.

A.J. Cook and L.J. Shustek, "MORTRAN2, a macro-
based structured FORTRAN extension," presented
at 10th IEEE Computer Society Intl. Conf. (COMP-
CON'75), available as SLAC-PUB-1527, Jan. 1975.

L.J. Shustek and C.T. Zahn, "Records and refer-
ences in MORTRAN2," presented at ACM SIGNUM Work-
shop on FORTRAN preprocessors for Numeric Soft-
ware, Jet Propulsion Lab, Pasadena, Calif., Nov.
1974.

