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ABSTRACT 

Interpreting the renormalization group in terms of its natural 

differential dispersive character, we analyze systematically general 

large momentum transfer processes in the context of renormalizable 

interacting quantum fields . The possibility of a consistent treatment of 

such processes is thereby attained. This possibility arises mainly 

from the occurrence of a power series in the inverse of the scale at 

large momentum transfer in the respective solutions of field theory- 

that is to say, in the solutions as determined by the previously intro- 

duced dimensional analysis violating sources which underlie the 

dispersive character of the renormalization group. Hence, our results 

generally deviate from those of convention. They appear to be in rea- 

sonable accord with experiment. 

(Submitted for publication. ) 
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1. INTRODUCTION 

In what follows, we shall be concerned with the implications of the violation 

of naive dimensional scaling in renormalized perturbation theory (four- 

dimensions, Minkowsky) . This phenomenon was pointed out in previous Letters’ 

and briefly discussed in connection with Bjorken scaling. The discussion here 

will in essence expand and continue the ideas introduced in Refs. 1. 

Specifically, we shall primarily focus on the large momentum transfer 

processes in r,enormalizable interacting field theory. Such processes have 

recently received considerable attention from the theoretic standpoint, as the 

data have revealed several surprises. 2 Indeed, numerous attempts3 have been 

made to provide a systematic treatment. The discussion below represents the 

basis for yet another such effort. We should remark that the other approaches 

are either lacking in predictive power, consistency, or both. The effort here 

will be seen to afford the possibility of remedying this latter situation. In 

particular, our approach will be seen to offer an explanation of the apparent 

difference in scale between 

e+p-e+x 

and 

e+ f e- -x1 , 

entirely within the context of renormalizable quantum field theory. Additionally, 

it will be seen that the fixed angle scattering data may be systematically incor- 

porated into our formalism, naturally. 

As we remarked above, the basis of our discussion will be the (perturbative) 

violation of dimensional analysis (in connection with the renormalization group), 

the effect pointed out in the previous Letters. 1 As this phenomenon is not very 

familiar, we shall discuss it in some detail before turning to its applications. 
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Its occurrence will be seen to dictate the restructuring of conventional intuition 

insofar as large momentum transfer processes in renormalizable interacting 

quantum field theory4 are concerned. The main physical notions underlying the 

phenomenon (to the extent that we shall employ it) are those of long range forces 

and/or particle collaboration in theories with bound states or all fields massive. 

Specifically, it will be seen that, contrary to the notions underlying previous 

efforts, the present discussion will allow particles in interaction undergoing 

large momentum transfer to do this in large space-time volumes, as dictated by 

long range, binding, and other renormalizable forces. This will be effected by 

treating systematically the violation of dimensional analysis, the natural mani- 

festation of the forces under discussion. To repeat, the resulting formalism 

will be seen to afford a systematic, consistent description of large momentum 

transfer processes in renormalizable quantum field theory. 

The approach to small distance behavior in quantum field theory presented 

here will thus be seen to depart significantly from the standard theory. 4 This 

can be most easily seen as follows: The conventional approaches have all been 

formulated with the idea that, for *‘small” effective couplings, the main effect 

of interactions at asymptotic distances is to perturb naive scaling in these 

regions, this being made manifest by the introduction of the notion of an anomalous 

dimension with the interpretation as a representation of the referred-to pertur- 

bation. This physical notion was based entirely on experience with the first 

loops of renormalized perturbation. On the other hand, the violation of dimen- 

sional analyses will be seen to be highly nonperturbative in its consequences, 

although it often occurs already in perturbation theory. Thus, our predictions 

for asymptotic behavior will not in general be mere perturbative effects when 
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the effective coupling is small. Rather, much like the occurrence of the posi- 

tronium resonance in QED in relation to the size of e, our results will be 

insensitive to the behavior of the effective coupling. 

Some of the more phenomenological discussions of large momentum transfer 

processes have already made it reasonably clear that it is the nonperturbative 

aspect of interactions which is determining the data being observed at high 

energies. 5 Indeed, it’s fairly well accepted6 that bound quark-partons afford a 

good fit to these data whereas several contradictions arise when it’s necessary 

for the quark parton to be “free” at some stage in the interaction. 7 Here, we 

shall view this as a natural dictate for the (perturbative) violation of dimensional 

analysis. 

We should remark that the theory to be presented actually affords a complete 

description of all asymptotic processes, both at small and large distances. Since 

the large distance behavior of the known particles is mainly electromagnetic, 

this regime of experiment is already well-understood, having been completely 

described by Feynman8 and Schwinger . 9 Hence we shall only enter into this 

regime when it’s necessary to discuss certain technical issues relating to bound- 

ary conditions. To repeat, we consider it already sufficiently well-understood. 

At this point, the reader may wonder, “Why are they not proposing their 

analysis as a complete transcension of renormalized perturbation theory?” 

The reason we shall not is extremely transparent-we have to input the precise 

form of the violation phenomenon and coefficient functions. In the text below, 

we shall sometimes take this information just as given by the first few loops of 

perturbation. 

However, particularly concerning bound states, we shall also have to use, 

on some occasions, Bethe-Salpeter 10 type equations, the precise form of which 



-5- 

can only be known by solving the theory! Consequently, we shall not be able to 

transcend perturbation theory definitively. But, to be sure, we shall certainly 

transcend it insofar as asymptotic behavior is concerned. 

The main characteristic of our results is a pokier series in l/h on the light- 

cone, where A is the scale. Of course, we shall also have a power series in h 

at large distances. However, as we have remarked above, this latter series is 

well understood. Let us mention that the data are completely consistent with 

such series. The coefficients of the terms in the series will be completely 

determined by the hard thresholds in the theory, i. e. , those thresholds which 

violate dimensional analysis. An immediate consequence of this last statement 

is a rather natural argument for the correspondence principle in the Regge 

scaling region. As is well-known, this principle appears to be in accord with 

experiment. 11 

Our analysis will necessarily be somewhat technical at points, since the 

conventional discussions of the renormalization group equation have not con- 

sidered the violation phenomenon referred to above. However, in the interest 

of clarity, we shall, where possible, relegate purely technical remarks to the 

Appendices. 

The present discussion should be viewed as the first of a series of reports 

on our approach to the renormalization group. In this first paper we shall mainly 

be concerned with the dependence of the respective Green’s functions on scale 

in various asymptotic limits. Detailed numerical results, to the extent that 
12 

they are possible, will be the goal of the later works. 

The paper is organized as follows. In Section II, we present a reasonably 

detailed discussion of the renormalization group equation in connection with its 

differential dispersive character, always comparing our view with convention 
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where appropriate. In Section III, we discuss, as a detailed example of our 

approach, the proper vertex and inverse photon propagation functions of quantum 

electrodynamics in connection with asymptopia, since these functions are the 

primary reason for belief in renormalization. In Section IV, we show how to 

apply our formalism to various other large momentum transfer processes. As 

we mentioned above, involved technical details are contained in the Appendices. 

And, Section V contains some concluding remarks. 
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II. DIFFERENTIAL DISPERSION RELATIONS 

In this section, we shall discuss the theory of differential dispersion rela- 

tions, the essence of which has already been introduced in the previous Letters. 1 

We shall define explicitly what we mean by such relations presently. The defi- 

nition will be given largely in an operative fashion. Thus, we shall initially 

examine various kinds of renormalizable interactions to see in which ones such 

relations obtain. After having accomplished this, we shall explain the general 

theory of application of the relations to asymptotic processes. 

As the basis of our discussion will be the partial differential equations 13 

(PDE) of renormalizable field theory, let us first establish a convention insofar 

as they are concerned, for the literature on them has recently become quite 

extensive. Specifically, we shall always write the renormalization group equa- 

tion after the fashion of Weinberg, 14 mainly for convenience. Thus, in general 

we shall have (our notation is symbolic for theories with several g’s and mR1s) 

(2-l) 

where {I’} are, for example, the set of 1 PI Green’s functions of the theory, and /J, p, 

yI, , ye and mR have their usual meanings. 13 Further, we shall always consider (2.1) 

as applicable to all representations of the solutions of the respective theories, even 

though we are aware that in general it has only been explicitly verified for per- 

turbative solutions. ‘3 The physical equivalence of (2.1) to other forms of PDE 

for renormalizable theories has been demonstrated by several authors. 
15 

The dispersive aspect of (2.1) becomes manifest when one attempts to use 

this equation, which is a differential equation about intrinsic parameters of the 

respective theory, to study the behavior of {I’) as functions of the extrinsic scale 

h of their momenta. For, in order to effect such a use of (2.1)) its necessary to 
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change the operator in (2.1) to one involving h. This is most easily done by 

using dimensional analysis. We have 

( “+m a 
lJ a/d RKR+% d r=Drr+Rr 

) . (2.2) 

where Dr is the engineering dimension of r and Rr represents the possible 

(perturbative) violation of naive dimensional analysis in l?,: as was pointed out 

in the previous Letters. 1 In those Letters we argued that in general Rl? has the 

form 
L. 

Rr=-r,p,6 h Zp 
( “( j,fmrni) (2.3) 

where the {m20) are the appropriate set of thresholds in I and p,/ are the corre- { 

sponding amplitudes. Rewriting (2.1) in terms of h we have 

This last equation is our definition of a differential dispersion relation, since it 

relates a certain set of derivatives of l? to a set of sources determined by the 

thresholds therein. The presence of these sources has already been emphasized 

in connection with Bjorken scaling in the previous Letters. As we have remarked 

above, below we shall show that such sources actually may permit a natural 

description of the present data in all large momentum transfer processes. 

In the Letters, we only demonstrated (2.4) explicitly in perturbation theory 

in the case of quantum electrodynamics-Abelian gauge theory, considering it 

more or less self-evident thereafter. Thus, mainly in the interest of completing 

our definition (2.4), let us examine the various other renormalizable interactions 

in this connection. 
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We consider first the simplest of renormalizable interactions, that of a 

scalar field with quartic self-coupling. The Lagrangian is 

92 2 ( ap+ 8% - m2+2 -* +4 ) + counter terms 

This is a Lagrangian with no massless exchanges, ‘i. e. , no long range force. 

Now, in perturbation theory, the only singularities in the {I’1 corresponding to 

(2.5) may be characterized by 

0 6) f(x) , (2.6) 

the 0 (x) coming from phase space and f(x) representing the appropriate form 

factor. This is a general characteristic of renormalizable field theory, as is 

well-known. Hence, in order for a violation of naive dimensional analysis to 

occur, it’s necessary for f(x) to be singular at x=0, since it’s clear that x is a 

homogeneous quadratic function of s, /A, and A. It is also well-bown that in per- 

turbation theory the on-shell 1 PI Green’s functions of (2.5) are not expected to have 

singular f’s at thresholds, due to the massiveness of $. However, as we shall see 

shortly, this last remark does not hold true for the off-shell functions in general. Thus, 

even the Lagrangian (2.5) violates naive dimensional scaling inperturbation theory. 

And of course, nonperturbatively, one can also imagine the occurrence of 

a bound state pole in the theory (2.5)) yielding singularities 

- 6 69 f(x) , (2.7) 

as there would be no phase space. Then, a violation of naive scaling occurs if 

f(x) is as (or more) singular than log x at x=0. That. this may happen can be 

seen by considering the production and reabsorption of the presumed pole, as 

shown in Fig. 1. for the 1 PI 4-point function. However, to demonstrate this 

explicitly in the theory (2.5) would require methods unknown to us. 

From the arguments just given it’s clear that if m=O in (2.5)) then violations 

of dimensional analysis may manifestly occur in the perturbative solutions of the 
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theory, For example, the six-point function receives its third order contributions 

from the diagrams illustrated in Fig. 2. Explicit evaluation of this contribution 

shows that it violates dimensional analysis precisely in the form (2.3), as is dis- 

cussed in Appendix I. This same result also holds for (2.5), for off-shell momenta. 

Alternatively, if we add to (2.5) the field terms 

1 
- 8 2 P A #A - gl(Ae2+ @A2) -g2A2e2 -g3/4! A4 -t- counter terms (2.8) 

then, as a result of the zero mass of A, it is again seen that the {I’1 generally 

violate naive dimensional analysis in the form (2.3). (See Appendix I. ) Thus, 

dimensional analysis is violated in all scalar renormalizable interactions, and 

manifestly so in the massless cases. 

We consider next the interactions of scalars and vectors A p, adding to (2.5) 

$Ap + e2$? +A2 + counter terms (2.9) 

where we have given r#~ a charge. Straightforward calculation shows that three- 

loop diagrams as shown in Fig. 3 violate naive dimensional analysis in the form 

(2.3). Further, it’s clear that, in general, the other 1 PI Green’s functions 

behave similarly (see Appendix I). 

We next introduce particles of spin l/2, adding the terms 

(2.10) 

Then, from the discussion of the Letters’ and that above it’s clear that these 

additional interactions also give violations of naive dimensional analysis in per- 

turbation theory. (See Appendix I. ) 

The introduction of internal non-Abelian local symmetry does not alter any of the 

above conclusions. Naive dimensional analysis certainly is violated in perturbation 

theory whenever there are massless fields interactingrenormalizably. If all the fields 

are massive, violations also occur off-shell in perturbation theory as a result of the 

possibility of all internal lines being on-shell (free particle collaboration), as can 

be seen from Fig. 2 for the theory (2.5)) for example. 
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As we remarked above, the violation of dimensional analysis may also 

happen nonperturbatively as a result of the occurrence of bound state poles, 

provided the amplitudes characterizing this occurrence are at least as singular 

as log x at threshold. To repeat, such amplitudes are an immediate character- 

istic of the existence of the bound state in any theory. We see no reason why 

such poles can’t be a general characteristic of field theory. We shall not be 

concerned with the question of their existence any further here. 

We should mention that from Fig. 1 it is immediate that super renormalizable 

theories of e3 type also violate dimensional analysis, even when all fields are 

massive. We shall not be concerned with such theories here. 12 

Hence, it appears that the (perturbative) violation of dimensional analysis is 

a natural characteristic of renormalizable field theories, especially those with 

long range (and/or) binding forces. This has the consequence that our notion of 

differential dispersion relations is operative in all such theories. 

Intuitively, the meaning of the violation phenomenon is also rather natural 

t although somewhat iconoclastic. For, as we remarked above, contrary to other 

intuition based on the first loops of perturbation, the violation phenomenon says 

that large momentum transfer does not have to occur in finite space-time volumes 

when there are either long range forces, forces strong enough to make bound states, 

or forces mediated by on-mass shell particles; rather, these transfers can occur 

over large space-time volumes. Hence, naive dimensional analysis need not 

apply, not even within perturbative corrections! 

Having demonstrated the appropriateness of (2.4), let us now turn to its impli- 

cations. The general solution of (2.4) has the form 

r=rP+r homogeneous (2.11) 
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with 

1 =- 
47r dkd%de2 dr. 

32 
dsl.. .ds. 

J2 

Pa qr 1, sl). . .u 2( J2, ‘j2~~ 
r. exp [jlt+i(Zrj+Ql)v 

+ i~6i~Q2i”]/[-jl+i(Ql+Q2+~(ri+si))+I+,~2] 

+-& 
J 

dkdy2 z‘ 
‘jTp[ik)l exp[jt + iQlv f ie2wJ 

j 
j? [-j + i(Ql+Q,) + I+/23 

and 

V 

r homogeneous = F (t+v, t+w) exp$ J dx(Dr-Y) 2 

where we have introduced 

v=2 
/ 

gR dx 

g0 
PO 

I “R 

w=-2 mO ~* 

t = log A2 , 
as well as 

s i(Q lv+Q2w) 
- 

PO! - @lde2 e PO! 

m2 = 
o! 

_ && eitrv+sw) ga! 
/ 

wp= Jw.epe2rf, exp i 

and F is arbitrary. 

(2.12) 

(2. 13) 

(2.14) 

(2.15) 



- 13 - 

Now, in order to obtain the solution of (2.4)) it’s necessary to impose some 

kind of subsidiary condition on {IYt, just as it’s necessary to impose Coulomb’s 

law in order to pin down the solution of 

V2* = -47re S(Ff ‘ (2. 16) 

In the conventional approach, where RI’ is ignored, the subsidiary condition is 

correspondence with perturbation theory in the regime where perturbation should 

be applicable. Of course, it is well-known that such a condition renders solu- 

tions which are applicable only in restricted asymptotic ranges of their arguments. 

The raison d’etre underlying the condition is the obvious, namely, the success of 

renormalized perturbation theory in low momentum quantum electrodynamics. 
16 

Here, too, we shall use correspondence with renormalized perturbation theory. 

We shall argue, in analogy with Coulomb’s law, that in the cases of physical 

interest the homogeneous solution (2.13) is not allowed, except in certain cases, 

so that the entire solution is just (2.12). This is a drastic departure from the 

standard lore, where the homogeneous integrals regular at zero effective coupling 

are taken as the entire solution! Let us also remark that, so long as the initial 

coupling gR is small, the approximation (to be described presently) which we 

shall employ in determining rp should be valid for all momenta, again contrary 

to the conventional approach, where, to repeat, at most only one asymptotic 

regime is expected to be appropriate. 

Specifically, the scheme we shall use will be based on iteration in y(gR), 

taking gR to be small. In such a scheme, the expansion in h will be in powers 

of h for A -0 and in powers of l/h for A2 - 00 . Thus, to repeat we shall be able 

to discuss large.and small distance behavior. 
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In a general model, it is indeed possible that the homogeneous integral 

(2.13) may be necessary, depending on what kind of boundary conditions are 

applicable, just as in classical electrodynamics, where often times one has to 

make use of the homogeneous solutions of (2.16) in‘ order to satisfy boundary 

conditions. The condition of correspondence is not sacred; rather, it’s only 

convenient, in certain theories. Any boundary condition consistent with the 

axioms of field theory may be used, as is well-tiown. However, a set of 

boundary conditions should not be circular in the sense of assuming the existence 

of a limit, which is in itself a major point of the analysis. Indeed, away from 

the sources in (2.4), the complete characteristics are, formally, 

(2.17) 

so that each asymptotic limit is generally nonregular in the effective coupling, 

unless the theory is trivial. Hence, it would be circular to presume the exist- 

ence of such asymptotic limits in effective coupling in theories of interest! 

As we remarked above, bound state poles can generate violations of naive 

scaling if the respective residues are at least as singular as log (x) at threshold. 

Consequently, we shall naturally be able to handle the asymptotic interactions 

of the particles corresponding to such states systematically. This may be done 

most conveniently by employing the Bethe-Salpeter formalism. Hence, let us 

now consider this formalism in connection with (2.4). 

Specifically, for the exclusive scattering of bound states 

at-b-c+d 

the complete amplitude can be represented as 

dtt! cb;ab = I- +;S +BS 
d &rr 

cd;ab @iS @!KS 17d4k ’ i 
(2.18) 
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where &lrr cd;ab is the appropriate irreducible amplitude and&&are the respec- 

tive Bethe-Salpeter (BS) wavefunctions. We are presuming an underlying renor- 

malizable field theory. Thus, the irreducible vertex satisfies the differential 

dispersion relation 

( -Aah J-+/3-- a a 
agR- tl+Y~)mR~R->+D~ 

) 
dHirr = g@J6(A2(Zpjar-rnE) , 

(2.19) 

where {rni\ are the hard thresholds and (pft are the respective amplitudes. 

Similarly, the Bethe-Salpeter wave functions must satisfy the analogous con- 

straints. These constraints follow from the standard definitions in the BS 

formalism and are given in Appendix II. In keeping with our approach to asymp- 

totic processes we shall take only the corresponding particular solution to (2.19) 

as relevant. Then depending on the details of the fundamental fields comprising 

a,b, c, d, (2.19) will be seen to permit a systematic discussion of fixed-angle 

scattering as s - 00, for example. 

The next two sections will be devoted to detailed discussions of the applica- 

tion of the ideas in this section to QED (Section III) and high transverse momentum 

hadron scattering (Section IV), the latter processes being considered within the 

quark model for definiteness. The consistency of our approach will then be 

manifest. 
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III. ASYMPTOTIC PROPERTIES OF QUANTUM ELECTRODYNAMICS 

In this section, we shall discuss the application of differential dispersion 

relations to quantum electrodynamics, as this theory is the main reason for 

belief in renormalization. We shall consider in detail the proper vertex func- 

tion, since it has played such a central role in the study of the theory. Our 

ultimate goal here is an explanation of the recently reported large 

e++ e- -+ hadrons 

cross section. (We shall ignore in the present discussion the recently reported17 
:. 

resonances in this and related processes. The meaning of these phenomena in 

the. context of the present theory will be taken up elsewhere, 12 ) 

The proper vertex, I’ 
P’ 

is also of particular interest because it permits an 

easy evaluation of the RHS of (2.4) in perturbation theory, as was pointed out in 

the previous Letters. 1 Indeed, from the result of Barbieri et al. l8 we have, -- 

by direct calculation (see Appendix VI), 

+ higher orders (3.1) 

where 0, is indeterminant due to the infrared divergence. Hence, Fp satisfies 

the differential dispersion relation 

-WY,) mR kRYY, rp ) 

5 
gR 

=:m y/l 
[ 

i$+ilog (h2qtym2) 

I- higher orders . 

I 1 4g 2 
R 

mR 6 ( h2q2-4rni ) 

(3.2) 
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We shall make the approximation of neglecting the remaining terms in the 

RHS of (3.2). Further, we shall, for simplicity, take the coefficient functions 

as given by their lowest order forms 

2 
Y,tf@ = ‘1gR +“’ (3.3) 

2 
Ye tg,) = “JgR + . - ’ 

where b o, cl and c2 are given by perturbation. (We are in the Landau gauge. ) 

Then, the particular integral for (3.2) corresponding to (2.12) is straightforward 

to evaluate. It is examined in the various asymptotic limits in Appendix III. A 

complete evaluation may be effected, for example, in terms of the trans- 

cendental functions $ c defined by 
, 

C(y) = jmdx .q cos xy , 
0 (l+x2)r 2 

which are, of course, intimately connected with the functions of 

However, here, we shall not do this, for we are only concerned 

Whittaker. 

with the depend- 

ence on the scale h in the various asymptotic limits. A complete evaluation will 

be the subject of later works. 12 

For h2 - 0, we have (see Appendix III) 

r(P) 
I-1 

- yp (Iy + O(A2)) + * ($0) + O(h2)) 
R 

and for h2 -00 we have 

r (P) 
P 

- yp(,$! .,,-J)+ Egg g+ 0(-j)) 

(3.5) 

(3.6) 
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where I(‘), I(‘), T(O), and T(O) are defined in Appendix III. 1 2 1 2 It is shown in Appendices III 

andVIthat homogeneous solutions are here necessitated by the requirements of 

muon-electron universality as h2 - 03 , as this appears to exist experimentally. 

The effect of this kind of solution need only be to cause the scale in (3.6) to be 

universal in (m 
P’ 

me). Thus, (3.5) and (3.6) are complete representations of 

the dependence of rP on A in the respective limits. We note that (3.5) is con- 

sistent with the conventional 899 perturbative representation of rP as X2 - 0, 

since 0, in (3.:2) is indeterminant so that IYP is described by gR, mR and an indeter- 

minant, just as the conventional solution is described by eR, m, and the usual 

infrared cutoff. (See Appendix III for more discussion of this point.) 

Of particular interest is the implication of (3.6) for the ratio 

RZ a(e+e- - hadrons) 

m(e+e- - IL+/-3 
(3.7) 

To compute R, we need also our representation of the photon inverse propagator 

D-l 
PV - 

In Appendix III, we show that, in the Landau gauge, 

D;I; @cl) + (const-k . ..) (g 
AdW 

pv -s,s,/s2) (3.8) 

where . . . is of order mi/h2q2. This occurs in such away that I’DI’ retains its 

usual value (see Appendix V ). Thus, as described in Refs. 1, we have that for 

s>s - 0’ 

R.-+- 
sO 

(3.9) 

where 
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is the quark charge content of qM and so is the energy at which (3.6) and (3.8) 

become operative. Assuming a gauge-theoretic view 19 of leptons, we estimate 

the size of so to be given by the well-known STrn:/a N 13 (GeV)2. 

As we pointed out in Ref. 1, if one takes Bjorken scaling to set-in at 

Q2 2 1, tGeY2, then the prediction for o(e+e- -, hadrons) is that R is constant 

and equal to p for l+ (GeV)2 5 s < s - 0 = 10 (GeV)2 and t.hat’R rises linearly with 

s/so with slope p for 10, (GeV)2 2 s. These predictions are in agreement with 

the recently reported data2 if p is taken to be as given by the fractionally 

charged S-triplet model as shown by Fig. 4. In making this last remark, we are 

ignoring the existence of %ew” physics relative to the data of Refs. 1. That is 

to say, as we already admitted above, we are ignoring the recently reported 17 

resonances in e+e- - hadrons and p+Re -e+e-+x. Therefore, while we would 

normally expect the rise in R to persist for some time beyond s = 25 (GeV)2, 

the “new” physics responsible for these resonances may generate an entirely 

different behavior. This problem is, of course, under investigation. 

In order to have a consistent picture of deep inelastic processes, one must 

verify that the conventional scaling prediction of Ref. 1 is not changed by (3.6) 

and (3.8). However, to see that this is so, it’s only necessary to recall that in 

the “scaling” region the scattering of a fundamental fermion from a composite 

one, here, the proton, can be viewed as the incoherent sum of elemental scat- 

terings between the respective constituents and the initial fundamental fermion, 

as shown in Fig. 5 . Thus the scaling result is left unchanged by (3.6) and (3.8). 

The crucial point is that the physically relevant combination‘ l?DI’ remain 

unchanged from its usual value N e 2/h2q2 for all values of h. As we indicated - 

above, in Appendix V we argue that this is indeed the case. 
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Thus, the leptons, on account of their electromagnetic interactions, develop 

a 7Yradius11 r - l/h, - (01/3r m;)1’2 -A (GeV)-‘. This radius then charac- 

terizes the very large momentum behavior of these particles until unitarity- 

higher order corrections and “new physics” dictate otherwise. 

Returning to the general behavior of quantum electrodynamics we note that 

dimensional analysis will be generally violated by the Green’s functions of the 

theory, since higher Green’s functions may be constructed from D and.I’ 
PV CL’ 

This point as well as its further implications will be discussed in more detail 

in later work. 12 
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IV. LARGE-ANGLE SCATTERING 

Aside from Bjorken scaling, perhaps the most intriguing experimental 

results are those of hadronic processes at large transverse momentum. 2 These 

data also appear to exhibit “dimensional” scaling laws for the invariant amplitudes: 

For example, in exclusive processes we have, generally, 

- (&4-n (4-l) 

in the asymptotic fixed angle limit, where n is the number of elementary fields 

in the notation of Refs. 20. In general, all large angle hadronic data have 

exhibited a power law falloff in scale, significantly different from what would 

have been expected. Several models5 ’ 21 for these processes have been pro- 

posed, as we pointed out earlier. All such efforts have been characterized by 

an aspect of theoretical arbitrariness in the sense of empiricallyexcluding with- 

out fundamental reason certain graphs or types of interaction which one might 

otherwise expect to participate. In this section, we shall show that, upon 

assuming, for example, the quark model with massive renormalizable inter- 

actions, differential dispersion relations may permit a systematic treatment of 

the data under discussion. 

For definiteness, we consider exclusive processes. Other processes will 

be taken up in later work. We are thus interested in 

hadron a + hadron b - hadron c + hadron d 

for example. The corresponding amplitude will be written as in (2.18) 

(4.2) 

To establish (4.1)) it is sufficient to show that (1) the $?B,S are finite at the 
1’ I 

origin and (2) Jlirr scales ff dimensionally”. 20 We consider first the behavior of 
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Now by (2.19) 

with pa9 ma, p , ye, y, h, and mR defined as in (2.19). By assumption, a, b, c, 

and d are bound states of nj fields, j=a, b, c, d, respectively. Thus, the thres- 

holds in .M”’ must necessarily reflect this fact. For we have 

-I- . . . V-4) 

where . . . stands for similar generalized interchanges. 20,21 As can be seen, 
. 

the thresholds in &lrr occur in general with coefficients which are precisely the 

wavefunctions corresponding to the various physical states of the theory. The 

orthogonality and completeness properties of these states then assure that only 

those thresholds with the BS wavefunction residues corresponding to physical 

particles will contribute to O& Had . 

To proceed further we must pin down more precisely the form of the 

thresholds in (4.4). The general case, which is rather cumbersome, will not 

be discussed here. 12 Rather, for simplicity and illustration, we consider here 

the case where a=b=c=d=r, i.e. , a bound state of qG. Then, 

b d 

(4.5) 
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In order to violate naive dimensional analysis, with bound poles, at least two 

such poles must occur,on account of the fact that every interaction of fields is here 

presumed to be appropriately massive (see Appendix II). It therefore follows that 

only discontinuities such as that exhibited in (4.5). will contribute to the RHS of 

(4.3) in such a way as to make a contribution to &Z Had . Thus, from (4.5) 

we have 

+ (more singular terms) , (4.6) 

where j is determined by BS wavefunction residues. We therefore see from 

(4.6) and (4.3) that (see the discussion following (AH. 15)) Appendix II), 

Jpr - 1 - 1 
A4 ( 4-an-4 

(4.7) 

ash--La,, where n= number of elementary fields, in agreement with Brodsky and 

Farrar , Matveev et al. , Blankenbecler et al. , and Gunion. 20,21 The result of -- -- 

Landshoff would thus appear to be an artifact of keeping only the lowest order terms in 

dz’ lrr; this artifact does not hold true for our complete solution for this amplitude. 

We shall therefore have established dimensional counting for 7~7r -7r7r if 

we can show that the wavefunctions are finite at the origin. So let us now turn 

to this issue. 

As pointed out in Appendix II , the BS wavefunction satisfies 

where denotes $Bs (hr) with the legs amputated. Now from our arguments 

above, it is clear that the RHS of this last equation has the effective structure 
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(see Appendix II) 

- (mB+mR)2 ) - 6(A2k2 - (mB-mR)2)] (4.9) 

(mB = bound state mass) so that 

P 
(4.10) 

homogeneous solutions again being disallowed by our choice of the solution of PDE, 

and the relations (2.17), as discussed above. Then 

so that C+(X) is finite at the origin as desired. 23 

We have therefore established dimensional counting for meson meson exclu- 

sive scattering. The general case will be discussed in later work. 12 We would 

like to emphasize that for processes just considered, the basic counting law 

derives from the fact that the smallest number of fields participating in a bound 

state is two, and the delta function resulting from the respective pole is quadratic 

in the scale, so that there is a power of h -m = h4/n - 1 for each elementary 

field. For other processes, the situation may be more involved. To repeat, we 

shall consider the general case in later work. 
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V. DISCUSSION 

We have therefore presented an alternative approach to asymptotic dis- 

tance behavior in renormalizable field theory. As is apparent from the general 

discussion, this approach is highly nonperturbative in its predictions though its 

foundation lies almost entirely in perturbation theory. These predictions are 

in reasonable accord with experiment. 

Specifically, the recent high q2-experiments tend to indicate that the 

results in Sections III andIV are indeed manifested in nature. In particular, the 

apparent difference in scale between the space-like and time-like data for the 

hadronic electromagnetic current has here been given a natural explanation. 

We should remark in our approach that the weak interactions, owing partly to the 

massiveness of the intermediate vector boson, behave conventionally insofar 

as scaling is concerned. However, violations 
24 

of Bjorken scaling in these 

experiments could be incorporated into our formalism, but not within the con- 

ventional view of leptonic weak interactions. 

Our approach, as constructed, agrees with known low-momentum phenome- 

nology. As we pointed out above, this regime is already sufficiently well under- 

stood. Thus, as we promised, we only ventured into it to “settle,, certain matters 

relating to boundary conditions. 

Our argument against the general inclusion of additional homogeneous solu- 

tions in our analysis is not strict, being essentially the existence of limits in 

small effective coupling as stated in the text above and Appendix III. We would 

like to repeat that there is in principle no sacred dictum requiring this kind of 

behavior, except, in general, the experiments apparently! 
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In the text above we have only considered explicitly the asymptotic behavior 

of the processes 

e+ + e- - hadrons 

e+p-e+x 

meson a + meson b - meson c + meson d 

at fixed angle, s -00 

taking Bjorken scaling to be explained as briefly described in the previous 

Letter. 1 :’ We have focused these processess because they are of central 

interest. We would like to emphasize again, however, that the ideas in the text 
.~ 

above clearly have general applicability and represent a systematic approach 

to asymptotic behavior in renormalizable field theory. More detailed analyses 

of all of the various processes will appear elsewhere. 
12 

We have thus been able to discuss the general high energy behavior of 

interactions in terms of the respective threshold structures. This may seem 

rather unintuitive at first sight. However, looked at more carefully, it 

becomes clear that this should be possible. For, on the intuitive scale, it’s 

well-known that duality 
25 

is manifest throughout the interactions of particles, 

giving immediately that 

sum over resonances w sum over high energy. 

This is clearly manifest throughout the above discussion. As a corollary it 

follows that continuity in dynamics is also manifest in our approach, as we prom- 

26 isedin Section I. Then, on the technical side, it’s well-known that already in 

perturbation theory the Feynman integrals may be written entirely in terms of 

singularities corresponding to the vanishing of one or more propagators and, 

thereby, to the threshold structure of the respective theory. Thus, the discussion 
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here is nothing more than a natural systematic synthesis of these well-known 

physical phenomena. 

Let us end by re-emphasizing that the approach presented here represents 

the basis for a complete discussion of the asymptotic behavior of interacting 

field theory under the constraint of renormalizability. More detailed implica- 

tions will be taken up in subsequent works. 
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APPENDIX I 

PERTURBATIVE VIOLATIONS OF DIMENSIONAL ANALYSIS 

In this appendix we shall establish the violation of naive dimensional scaling 

in various renormalized perturbation theories. ’ 

A. gI = gG4 (massless) 

In this theory, the diagrams illustrated in Fig. 6 give, for example, the 

singularity Xr 22 
\ 
4 

= %5-) f(r,s,t) , (AI. 1) 
:. As \ At A2S2 

the function f being given by standard methods. From the work of Symanzik4 it 

can be shown that this latter result persists to all orders in perturbation theory. 

Here, however, we shall think of it as being strictly perturbative. With this under- 

standing we have the violation 

(AI. 2) 

where . . . represents the violation from the remaining thresholds. Hence, the 

six-point irreducible vertex violates naive dimensional analysis, for example. 

For n> 3, the 2n-point 1PI vertex is even stronger in its violation, since it 

contains 

r 2n = 
et h2P2) 

= 2:-4 f@l, * * * 5 P,,I) (AI. 3) 
(AP,) 

giving XPI 
I’ 167 

( 
a a 

) 
2n-4 

i %I ( ‘A’ 2l-4 
2n-4 

l-qy+hx P 
S(h2Pi) 

zz 
‘. (hp,)2n-6 

fgn + . . . w 4 

XPn-I 

Hence naive dimensional analysis manifestly is violated. 
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The finiteness of the on-shell amplitudes in massive $4 would appear to 

forbid the violation of dimensional analysis in that theory’s fully on-shell pertur- 

bative solutions. But, the phenomenon reappears off-shell, as can be seen from 

Fig. 6. It may also reappear through bound poles’ as pointed out in the text. 

Here, we have a dimension 3 vertex so that we expect that naive dimen- 

sional analysis will be badly violated. We have 

8 h2q2-4m2 
( $2 1 

h2q2-4m2 
$2 

mi22f 

where f is dimensionless, giving a violation in analogy with (AI. 2) In general 

for the I-$,, 2m-e2, 1PI vertex, we have 

=m6-2Q-2m 

$2 ‘, m ’ 

(AI. 5) 

F-6) 

thereby giving 

(m&+X$-) [-i”.’ :M ] cc mi2 $k2(Zqj)2-4mi2)fp,m (AI.7) 

Now, if both +fs are massive, then, on account of the super-renormalizable 

interaction and the off-shell behavior of @4, the amplitudes will still exhibit 
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violations of dimensional analysis in perturbation theory, but away from the 

usual physical regions. 

With the usual free Lagrangian for $, $(iq-m ‘)& the situation is entirely 
J, 

analogous to case B, except for the y-matrix algebra resulting from 

1 = 
ti+mQ 

d-m +ie 21, p2 -mi+ie 
(AI.8) 

and the vertices. Thus, again dimensional analysis is manifestly violated in 

the theory. 

D. 9, = e$yG$AP, mz4=0, m #O 
-$- 

This case, Q. E. D., was already pointed out to violate dimensional analysis 

in Ref. 1. In AppendixIII, we discuss the proper vertex IP in detail. However, 

again in analogy with B, it’s clear that, generally, the proper vertices manifest 

the violation. 

E. EI = ie @*FP$AP -t e $I 2 2A2 
, m e #O, mA =O; m =O, “;1#0 

+ - 

Aside from the occurrence of the momentum p;I+pP at the derivative 

vertices, this theory’s functions clearly behave similarly to case B (owing to the 

first interaction), giving a corresponding violation of dimensional analysis. The 

second interaction behaves analogously to the A2B2 terms in the next example. 

Thus, the violation phenomenon will again be manifest. 

F. gI = -ie[aPEz (AV BP-APBV) - 8PgV(A”B*P-APB*“)] + e2(A2B*BP-A. B Aa B*), 
P 

where 

mA=O, mB#o - 
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For k, 124, the Q-A 
P’ 

k-BP 1PI vertex receives a contribution from 

6 ( h2(Zq.)2 - 4rni > = 

( 

A2(Z qj)2 - 4d)p 
mif , 

where f is dimensionless, p= l/4+ (k-3)/2, and s = l-Q/2. 

The 2BC1-point 1PI vertex receives contributions from 
I 

8 
( 
h2q2 - 9rni 1 = 

h2q2 - 9mi 
=$.g 

v 

(AI.3 

(AI. 10) 

where g is dimensionless. Both (AI. 10) and (AI. 11) are seen 

to violate dimensional analysis in analogy with (AI. 2). 

Also, a @f@i term in case B above would behave precisely as the second 

term here. 

The introduction of non-Abelian local symmetry into the interactions above 

does not change any of the conclusions. Hence, the perturbative violation of 

dimensional analysis appears to be a natural aspect of long range forces. It 

is also generally manifest in the off-shell Green’s functions of fully massive 

theories, due to internal particles propagating freely on-shell when the external 

lines are appropriately off-shell. Dimensional analysis violations therefore 

abound in renormalizable field theory. 
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APPENDIX II 

BETHE-SALPETER WAVEFUNCTION 

In this appendix, we shall give the well-known derivation of the renormali- 

zation group equation for the Bethe-Salpeter (BS) wavefunction and discuss the 

respective dimensional analysis violating singularity structure which leads to 

Eq. (4.9) of the text. We restrict our attention to bound states of two elementary 

fields . 

The BS wavefunction, 
< 

, of the bound state of mass MB is defined 

through the residue of the corresponding pole in the renormalized BS equation 

lo,27 . 
for the two body propagator 

DC 
= (2d4(k2-rn2,) 

+ terms regular near the pole , (AIL 1) 

where the legs are not amputated, k is the total four momentum of the system, and 

3 
is the conjugate of 

c3 
. As the theory is renormalizable, we have, upon 

amputating the legs, 

a z-1 
bp B Ix 

= 0 WI* 2) 

where p is the renormalization point and ZB is the appropriate renormalization 

constant. Thus, on substituting the RHS of (AH. 1) into (AII. 2) and extracting 

the various independent functions of external momenta, we have 

[ _ p dp ag i+pA -ye mR&-yB I> ZZ 0 
R 

where 

(AH. 3) 

(AII. 4) 
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andP, ye, and mR have their usual meanings. As pointed out in the text, the 

notations PA and a - 
ag ‘6 “R 8mR ’ etc. are to be understood as abbreviations 

for the respective sums of all such quantities in a theory with several g’s and 

l-l-J$S. 

In the model discussed in Section IV, we consider the pion as a bound state 

of quark-antiquark due to renormalizable massive interactions. Therefore, the 

singularity structure of the BS wavefunction is given by Fig. 7. The l-2 (-3) 

singularities depicted in Fig. 7 give for the respective dimensional analysis 

violation amplitude p 

+ 
0 h2ky-(mB-mf)2 ( 

4 mR 

i 

f+ . . . (AII. 5) 

where f is dimensionless, . . . represents terms as or less ‘,significant’, than 

that exhibited, and we take h2kf = h2ki for definiteness. Hence, 

(mB+mf) 2 

in agreement with (4. 9), 
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APPENDIX III 

PROPER VERTEX FUNCTION OF Q. E. D. 

In this appendix, we shall give the details of the differential dispersive 

evaluation of the proper vertex function, F 
P’ 

of quantum electrodynamics. 

Specifically, as we pointed out in Section II, this function satisfies 

[’ 
“+m rp(h@=-~ap 

(AIII. 1) I. 

Here, we shall give a method for evaluating the particular integral (2.12) for 

this equation in the regions h2 - 0 and h2 - 00, under the assumption of small 

coupling gR . 

We begin by introducing the result of Barbieri et al. 
18 

-- for Im Fp into the 

RHS of @III. 1): We find 

(AlII. 2) 

where we have introduced the infrared cutoff through 

lim log ““9”-tm’ 6(h2q2-44) = log[ 6 (A2q2-4mi) (AIII. 3) 
r-O+ rm R 

It’s well-known how to handle this infrared infinity in applications so we shall 

not concern ourselves with it here. The meaning of t will be discussed in later 

work. l2 

We next observe that the singularities in Re Fp and Im Fp are not unrelated, 

since Re Fcl may determined from Im 1’1-1 through ordinary dispersion relations. 
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(See Ref. 18, for example. ) This gives 

+ higher orders (AIII. 4) 

Following the discussion in the text above, we find it convenient to write 

(AIII. 4) in terms of the t, v, and w from (2. 14). We then have finally 

( a 2, a 
-z?av G. -Yr/2 ) 

rp = -$$$ [ii,i l%t) Yp -Upv $&J *(h2qZ-4mi) 

(AIR. 5) 

with the particular integral given by (2.12). 

This particular integral for (AIR. 5) becomes more transparent when we note 

that from (2.14) and (3.3) there follow -bow/c2 2 2 1 c /‘2bo 
“R =m 0 - c2go (AIII. 6) 

and 

80 

g’ = (I. -,,:,v) 
1 

co 

J du u3’2 e 
- (l/bo&-v)u 

2 5/2= b;‘2 r(5/2) 0 

(Am. 7) 

where we take go to be small relative to gR, and I’(p) is the gamma function. 
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Further, we shall also for convenience replace log 5 by its coupling 

constant independent part (presuming this to be nonzero), 
12 without loss of 

generality, since the numerator of the Coulomb potential, e/r, is a parameter, 

conventionally defined as the physical charge e. 

From (AIII. 6) and (AIII. 7)) it’s clear that we may iterate (AIII. 5) in yI. 

To wit, ignoring yI, for the moment we have our first approximation pr;), to 

the particular solution (2.12) for I’ P 
;. 

‘r(O) = f(O) y + ig 
P 1P 

Aqv f(O) 
pv 2mR 2 

where 

(ADI. 8) 

-64n ff)’ = (;+i logt) (-&+s+&rI/” dsI s;/z e 
-pog~-+l 

0 b;‘2 I’(5/2) 

1 
I 

G+im s w 

ZZ 6-ice 
e2 - mR(s2) ds2 

($ {exp ik(hQ- 2%(w)) + exp ik(d?+ 2mR(w))} (AnI. 9) 

and 

1 
/ 

gt-ioo s w 

5Z g-ice 
e2 - mR(s2) ds2 

e [exp ik(Ag-2mR(w)) - exp ik(h~+2mRo)j 

i 

9 (AnI- lo) 
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where we have introduced the familiar Laplace transform 

iii,(S) z/m evsw’ 
0 

%(w’) dw’ 

and 6>0. 

The first corrections, { fi’)}, to the {fi) are clearly 

(AIII. 11) 

(AIR. 12a) 

(AIII. 12b) 

subsequent corrections being given by induction. 

As one may verify, the corrections to (AIR. 9) and (AIR. 10) given (and 

implied) by (AIII. 12) are indeed small if g R is small, so that our iteration 

makes sense. Thus, we shall work only with (AIR. 9) and (AIR. 10) in what 

follows, leaving the detailed discussion of the corrections to subsequent work. 

Before proceeding further, we should mention that one may construct the 

particular integrals of (2.4) after Symanzik, 4 However, though this would be 

just as direct, we do not consider it as transparent, physically. For 

this reason, we have chosen to use (2.12). This has caused no loss or gain of 

content. 

Returning to (AIII. 9) and (AIII. lo), we now have to determine what (if any) 

homogeneous integrals are necessary to fully specify I’ 
P. 

To make this decision, 

we shall examine the region h2 - 0, as the data in this region are well- 

understood. Toward this end, we first note that, as pointed out in Section II, 

the complete characteristics of the homogeneous version of (AU. 5) are given by 
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It’s well-kuown13 that any homogeneous integral may be written as 

r p, homogeneous = F&‘t’, GRtt)) eq -/” dt’ ?‘@t’)) 3 
0 

where 2, 6i R are the usual effective coupling and mass, respectively: 

ii(‘+$ = gR 

(AIR. 13) 

(AIII. 14) 

(AIR. 15) 

Therefore, from (3.3) and (AIR, 12) it’s clear that I p, homogeneous is 

singular where g - 0. Since the constant b. is positive for quantum electro- 

dynamics, this function g - 0 precisely as h2 - 0, as is well-known. Conse- 

quently, because we require rP to exist as a perturbation series as h2 ---f 0, one 

might think that we should exclude these contributions from rP entirely! 

However, as one can see from (AIII. 9) and (AIII. lo), our representations of 

fI 2 are highly nonperturbative as functions of gR. Indeed, below we shall 
3 

identify a certain nonperturbative function of gR with the physical charge. Thus 

within our framework, the homogeneous integrals are in general allowed. 

In fact, one can say more here. For the results fy)z in (AIII. 9) and 

(AIR. 10) do not reflect manifestly the experimentally odserved muon-electron 

universality of quantum electrodynamics for h2 - 0. It is therefore necessary 

(0) to consider homogeneous integrals in addition to fl 2 in order to maintain this 
t 

symmetry within the approximation scheme which we are using. For, indeed, 

the electron’s violations of dimensional analysis are trivial to the order to 

which we are working in gR, since we take 19 

2 m e - gRrnp ’ 
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Hence, here the electron’s rP is entirely homogeneous. As we shall see in 

AppendixVI, it would appear to be always possible to choose this vertex to satisfy 

the usual requirements of p-e universality. So, let us discuss the various limits 

of (ALU.. 9) and (AIII. lo), assuming the requirements of p-e universality have 

been satisfied and, thus, that no further homogeneous integrals are necessary. 

Making use of the trivial identity, for Re a > 0, 

i 
-= 
a J 

co dv e-aV 

0 

we have formally 

J -64tiy) =-c&v- v) mR(w- v) ; J-- q2 - 2mR(w- 

$t+ v) 
J-- q2 + 2mR(w- dv 

and 

(AIII. 16) 

(Am. 17) 

( qt+ v) 
- exp ik e2 J- q2 + 2mR(w- v) 

)I 
(AIR. 18) 

where g:(v) and m:(w) are given by (AIII. 6) and &III. 7). 

The limits h2 -. 0 of (AIR. 17) and (AIR. 18) can be seen to be independent 

of m R and therefore in the combination of l?DlY (see Appendix IV for a discussion 

of D 
PV 

), which is the only one of physical significance, may be identified, in 

the usual way, with the physical electron charge eR, and the electron’s g-2 in 

the standard fashion. Of course, in the perturbation theory approach, 8yg the 

relationship between e and g-2 has been the subject of considerable theoretical 
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28 
effort, having been computed to order a3, In our approach, one can of course 

carry out the same calculation of such a coupling constant relationship, since 

we shall argue below that I’Dr is unchanged from its usual value. However, the 

precise relationship between g-2 and eR cannot be taken too seriously as given 

here, since we have driven the differential dispersion relations with only the first 

(violation) term of what is actually a series in coupling of such terms with singular 

coefficients, succeeding coefficients being more and more singular. But, the 

behavior of central interest is that for h2 -co, since A240 is well-understood. 
:. 

Succeeding terms in the driving series make contributions to rP down by powers 

of l/h relative to the first term, as h2 - 00. Thus, we may expect the h2 - 00 

behavior of IP to be accurately given by our approximation. 

In the limit h2 - 0, we have 

fP)- I (0) + I(l) a + . . . 
1 1 

4 (AIII. 19) 

$0) --t 1 (0) 
2 

+ I(l) q2h2 + . . . 
2 2 2 

mR 

and, for h2 - ~0 we have 

f(O) - L 
1 A 

p(O) 
1 

+ 0 1 
( 7 1 

(AIII. 20) 

where I(k) and TOC) 
j j 

are clearly determined by (AID. 18) and (AIII. 19) and 

boundary conditions. Q The precise meanings of I. and Ttk) 
J j 

will be the subject 

of later work. Here we are only interested in A-dependence. 

The implications of (AIR. 19) and (AIII. 20) are discussed in Section IV. 
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APPENDIX IV 

PHOTON PROPAGATOR 

Here, we consider the asymptotic behavior of D-l 
PV ’ 

the inverse photon 

propagator. We have, 

(Am. 1) 

where :. 

?D 
2 =CDgR+... (AIV.2) 

We shall be interested only in the h2 - ~0 behavior of D-l 
W’ 

as the h2 - 0 

behavior of I’ and D has been accurately described by Refs. 8 and 9. 

The lowest violation of dimensional analysis in this Green function comes 

from 

We have 

(AIV.3) 

where f is a dimensionless, singular, calculable function. 12 

Using (AIV. 1) we obtain, in analogy with the discussion of P 
P’ 

- (const) 
2 

h -+W 

(AIV. 4) 

where const may be determined from (AIV. 3). 
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The evaluation of (const) will not be attempted here, as it is not necessary 

for the present analysis. This will be taken up elsewhere. 12 We are here only 

interested in the large h dependence of D-l TV (Aq). (A slightly more complete 

representation of D 
/JV 

can be found in the next appendix.) 

From (AIV. 4) and (AIII. 20) it’s clear that as h -m , 1 

rm - l/h2q2 . 

We have not shown explicitly that I’DI? is in fact always equal to its conventional 

value. This is the subject of the next appendix. 
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APPENDIX V 

BEHAVIOR OF I’DI’ IN Q. E. D. 

In this appendix, we shall show that the results of Appendices III and IV 

imply that when I’(Aq) starts behaving as l/A, Di: (Aq) starts behaving as const 

in such a way that FDI? retains its usual value. To establish this result, we 

proceed as follows: 

For clarity, we first restate the renormalizationgroup property: 

( 
a 

-at+S+aW 
a. &y2)rp 

y {~(~f2mR/~)+~(~-2mR/~)]~~alt~)+ia2(~) g,&,hqV/2mR] 
4 q2 (AV.la) 

( a 
-at+av aw 

2 +L+ 1 -yD/z) Tit = h2g~(v) m:(w) 6(h2 - 4mt/q2) 

x d(5) gpv + gauge terms (AV. lb) 

where ai and d may be determined from (AIII. 5) and (AIV. 3). 

We wish to show that the solutions I’(‘) and D(O) discussed in Appen- 
P PV 

dices III and IV satisfy 

Ur toI 
2 isy UQhJ 

P 
UDt”)pV Urt”)p u = eR 

h2q2 
, (AV. 2) 

where the U are the usual spinors. 
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In order to do this we proceed straightforwardly. We note that, from (AIII. 9), 

(AIII. 10) and (AV. lb) we may write 

-(l/bogf-V)S Jdk ikho 2 -(2ik)2n 
2ne n=() P-v 

i J 0 
mdv e-++w m2Ru+l(w-u) 

5 :: 

ds e-’ s312 Jdk 
YzTe 

ikhp 2 (2ik)2n /mdv ~v(bOg~s’%?~mr+l(w~v) 
n=o cm! 0 

(AV. 3) 

5 
f(O) = -2mRa2gR 

/ 
mdS e-s ,3/2 /a 

2 
e 

J-- 
47r 

ti~p 2 (2ik)2n+: 

A q2 r(5/2) O 
n=o (2n+l) - 

03 

J dv e > 
0 

mr2(w-v) 

dg8 ~0 J dk 
D(‘)-l = h2q2gPv $4 ds s3 e-‘T e 

/JV 

J 
Co 

dv e 
0 

2n+2 mR (w-v) + gauge terms 

(AV.4) 

(AV.5) 

where (AV. 5) is obtained in complete analogy with (AV. 3) and (AV. 4). Notice 

that h f(O) 
“R 2 

is odd in h. Now, since h f(O) 

; (t+v), 
mR 2 

, fl, and Dpv are functions only of 

$ (t+w)] almost everywhere, it follows that the change 

(AV. 6a) 
v,w - v,w 
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is equivalent to 

v -v+2r (AV. 6b) 

w-w+2r , 

almost everywhere. For h - 0, we may therefore conclude that hfr)/gLmR can 

not be independent of v, since it is clearly not independent of t. Hence, the h - 0 

limit of ff) must be 0 gi . 
( ) 

But, again from (AV. 6), it follows that this last state- 
:. 

ment must be true for all A. Thus, f (0) 
2 isOg:xfI. ( > 

(0) We shall therefore have 

(0) established (AV. 2) if we can show that fl is 0 gi and D(‘)-l 
( ) PV 

is0 gi . ( > 
To convince oneself that these last estimates are indeed correct, one may 

simply notice that the h --, 0 limits of f(‘)/g5 and D(O)-1 8 2 ’ 1 R TV /gRh (ignoring gauge terms) 

are clearly independent of h and, thus, by (AV. 6), necessarily independent of v 

and w. Hence, these limits are clearly independent of gR. But, then, from 

(AV. 6), it follows that fy) is O(gi) and Dri-l is 0 gR ( “) for all h, since, as we 

just observed, these estimates are true for A - 0. Hence, (AV. 2) clearly holds 

with an appropriate definition of eiocgi. 

It’s also self-evident from the discussion here that we may maintain p-e 

universality, since we have not had to specify the value of mR. We discuss this 

last point in more detail in the following appendix. 
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APPENDIX VI 

MUON-ELECTRON UNIVERSALITY 
29 

As we pointed out in Appendix IV, the discussion there for Fp does not take 

into account the empirical fact that there are in nature two distinguishable funda- 

mental fermions with charge e, namely, the electron and the muon. In particular, 

these particles are known to couple symmetrically to the photon up to q2 2 24 

(GeV)2. 3o Hence, any representation of electrodynamics must reflect this fact. 

At present,‘ it is as yet not known whether or not the existence of the electron 

necessitates the existence of the muon, for example. A priori, one can imagine 

a world with only one of the two. This possibility is actually manifest in 

Section III, since, to the order to which we are working, the dimensional 

analysis violation in Fp can be shown to be precisely that of Fig. 8 independent 

of the muon, i.e., totally unconnected with Fig, 9 as this diagram does not 

violate dimensional analysis. 

However, the possibility of the existence of the muon is reflected by the 

necessity to determine which homogeneous integral is necessary to completely 

specify r 
CL’ 

Indeed, this is clearly as it should be, since, as we just remarked, 

contributions to Fcl corresponding to Fig. 9 are most certainly homogeneous. 

We shall now show that it is actually possible to achieve the observed univer- 

sality as h2 - 00. 

Our starting point for the discussion of Fp is @III. 5) 

rp c$$- [~+ilog*)~~-o~v 6 

ERRr 
P 

(AVI. 1) 
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Thus, if m w cllrn e CL’ 
as we are assuming, then to order gk, RrP(electron) = 0, 

and rP(electron) is an entirely homogeneous solution to the order to which we 

are working. We then determine it to the extent required by universality. 

Specifically, our solutions to (AIII. 5) were the fy)2 of Eqs. @III. 9 ) and 
, 

(AIL lo), ignoring y. To these, in general, we may add a homogeneous integral, 

if necessary. In particular, to satisfy p-e universality, we must choose homo- 

geneous integrals as necessary so that rP(e) = rP@) for h=O. To do this, we shall 

employ the approach of Symanzik. 4 

Specifically, it follows from @III. 5), that fr)2 may also be described by 
, 

dt’ RI&t’, t+v-t’, t+w-t’) (AVI. 2) 

for some choice of h. In particular, let ho be this choice. 

Now since we are viewing the electron as deriving its mass from the muon, 18 

rP(e) is homogeneous to the order to which we are working, as we already 

remarked. Thus, we are clearly free to choose 

rp(e) = (p,(t+v, t-i-w) exp-$ / 
V 

~XY(X) z Pr(“)(m )(h ) - ‘r(‘)(m 
IJ PO P I-L 

)(h=hI) 

(AVI. 3) 

such that p-e universality is satisfied. A more direct argument will be the 

subject of later work. 
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APPENDIX VII 

MATHEMATICAL CONSIDERATIONS 

In this appendix we shall, for the sake of completeness, discuss certain 

mathematical aspects of the violation of dimensional analysis. Such a violation 

can occur only at singularities of Green’s functions. Here, we shall take a 

closer look at such singularities. 

The most common characteristic of dimensional analysis violating singu- 

larities is a discontinuity which behaves as 

mi 0 (x) 
X 

(AVII. 1) 

where x is a quadratic function of momenta and masses; for example, in dis- 

cussing Pl-l in Appendix III we had 

rn; 8 
( 
h2q2-4mi > 

h2q2-4rng 
. (AVlI. 2) 

The fact that x is quadratic gives 

( ?3h a+mR * 2 x=2x . 
R +b& 1 

(AVII. 3) 

Hence 

'ah a+m RsR+‘$) 

2,: 6(x) 
+ x + 

ZmkS(x)x 
x 

= 2rnt 6(x) (AVIT. 4) 

It is this kind of arithmetic which we have used throughout the manuscript. It 

is clearly delicate. 
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The delicacy involved is of course the differentiation of singularities. One 

, then 

( 8) m28(h2t-4m2) _ trn,drn : AYiJ ‘(!3 -4) rn+$+hx 
A2t - 4m2 h2t 

2-4 

20 (AWL 5) 

However, the,.correct statement, ignoring the difference between 0(h2t - 4m2) and 

for m2 < 0, is that the RHS of (AVII. 5) is 

1 

A2t 
6h2t_4 ma 

( >( m2 
arn+h. 

2-4 

$)(9-4)=6@-$)O , (AVII. 6) 

which is indeterminate. 

In attempting to handle this indeterminateness, we may introduce E =A :2-4 

and write 

1 

h2t 4 -- 
4m2 3 E2 E -zze=- 

h m 2n 

n arbitrary (AVII. 7) 

The result (AVII. 4) avoids this indeterminateness by L’hopital’s rule. 
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The arithmetic (AVII. 4) may be repeated by introducing the standard repre- 

sentation 

lim 

(AVE. 8) 

and proceeding with the strict analysis definition of derivative. Again, we find 

an indeterminate result, which we take to be resolved by (AVII. 4). We leave 

the explicit demonstration of this latter indeterminateness to the reader. 

Thus, it would appear that our method of handling such functions as @x)/x 

is indeed the correct one. The physical consequences which we have drawn 

from it would thus appear to be justified. 
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FIGURE CAPTIONS 

1. Virtual emission and decay of a hypothetical bound pole m generating a 

singularity in the respective Bethe-Salpeter wavefunction. 

2. Six-point proper vertex in $4 theory. For m=O, violation of dimensional 

analysis occurs on-shell and may be identified with longe range interaction; 

for m#O, violations are generated off-shell and are due to particle collaboration; 

i.e., to internal particles propagating on-shell freely. 

3. Two-loop dimensional analysis violating contribution to the scalar-vector- 

scalar vertex in scalar electrodynamics. 

4. Data for e+e- - hadrons, reproduced by permission of B. Richter, Invited 

Talk, 1974 London Conference. The data are roughly consistent with the 

fractionally charged 3-triplet model. qi N 10 (GeV)2. 

5. (a) Lepton-lepton annihilation in the one-photon exchange approximation; 

(b) deep inelastic lepton-proton scattering in the parton model. In (a), the 

amplitude is I’D < 0 1 eJ EM Ix > and in (b), it is FDI’ incoherently weighted 

for each constituent. Thus, we have the result (3.8) for R and the conven- 

tional result for the scattering process (ignoring the new physics associated 

with $(3 105)). 

6. Dimensional analysis violating proper vertex in e4 theory, as already 

exemplified by Fig. 2 above. 

7. Graphical singularity structure of the pion’s BS wavefunction. 

8. On-shell dimensional analysis violating proper vertex Fl-I of the electron. 

9. Typical contribution to electron’s Fp involving the muon. Such terms are 

homogeneous to the order that we are working. 
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