
SLAC-PUB-1559

CONTROL THROUGH A SYSTEM OF SMALL COMPUTERS*
K. B. Mallory

March 1975

Stanford Linear Accelerator Center
Stanford University, Stanford, Calif,>rnia 94305

Introduction

It is still possible to operate SLAC's linac with-
out any computers. Normal operation, however, now re-
lies heavily on the system of eleven computers varying
in sizes from 4K to 16K words of memory. By using a
large number of small computers, the I/O demand on each
computer is kept small. The use of disks and a pro-
gramming system that exploits multiprogramming and pro-
gram overlays allows the computers to execute large
numbers of tasks in a virtual memory several times
their real size. The response times demanded are mod-
erate, but the multiple input terminals, the different
types of links between computers and the different
sizes of the computers require a continuing traffic an-
alysis to reduce the probability of "rush hour peaks"
jamming too many tasks into any one computer.

Status of System

The original purpose of &AC's SDS-$5 in the
switchyard control room and of the PDP-9 in the accel-
erator control room was to perform routine chores auto-
matically as an aid to the operator. In 1971 this
goal was changed to provide a method to operate aTcel-
erator and switchyard from a single control room. The
method chosen was to link the two computers, to finish
connecting all accelerator signals to the PDP-9 and to
emulate the existing manual control functions on to5ch
panel display units at the new Main Control Center.
One major improvement was a more flexible trigger-de-
fining system for setting up beams, better correlation
of multi-level devices with the beams they contSo1 and
better human engineering of the setup controls.

As a result of consolidating the two control rooms,
however, it became no longer possible to display so
much status information about the accelerator at one
time; operators could only adjust one control at a time;
and it became difficult to obtain and display some of
the analog signals. During the past two years, a set
of panel displays has been devised that provides new
types of status summary to compensate for the limited
disp.lay area. Nine PDP-8's have been installed t8 im-
prove access to accelerator signals and controls. The
operators now have more control parallelism than they
had under the original manual control system, and an
improved analog acquisition system will be completed
this summer.

It is now time to return emphasis to convenience
features for the operators. The original magnet set
programs for the BSY were removed when fhe SDS-925 was
reprogrammed to handle the touch panels. They must now
be restored. A program in the PDP-9 to record and
later restore sets of quadrupole settings in -the accel-
erator has never been made available from the touch
panels. Beam L1iagnostics programs, while of lower im-
portance in a linear accelerator than in a circular ma-
chine, should be provided. These are all software ad-
ditions, since the required signals presumably have all
been interfaced to the2 computer system. We expect that
many new programs can be added without degrading system
performance because of the unique features of the exec-
utive program used in all of the computers.

Executive Program

The executive programs in the SDS-925, the PDP-9
and the PDP-8's are all versions of the same Disk Sys-

*The work described in this paper was supported by the
U. S. Energy Research & Development AdministratLon

tern (DS) executive. 5 DS provides for multiprogramming
a large number of tasks (typically up to 25 in a PDP-8,
well over 100 in the SDS-925) and multiprocessing, in
that a task may be transferred from one computer to an-
other for continued execution. Tasks may be initiated
by the system in response to I/O input or by other
tasks. Supervisor calls are provided for real-time
waits and.for communication between tasks and the sys-
tem by means of Events. (A task may wait for an event
to be declared by the system or by another task. A
number of parameters may be passed to the task, if de-
sired. The program declaring the event is informed if
a task was released by the event.) The major paths of
task flow and communication are indicated in the figure
on the next page.

The primary concept of DS is that a "task" con-
sists of a list of arguments ob-tained from a. "free list"
established when the system is loaded. These arguments
include information for scheduling the task, a page
name and entry-point location pointing to the code to
be executed, and a variable number of parameters that
are saved by the program during supervisor calls. A
secondary concept is that all code should be reenter-
able after each supervisor call, so that many tasks may
share the same code and so that a task will execute
properly if the return from a supervisory call finds
itself in a new copy of the code, possible in a differ-
ent part of core. Parameters of a task may therefore
not be stored on the program page during a supervisor
call. DS provides system subroutines to allow a user
to locate, create and delete arguments as required.

A queue consists of a list of arguments which are
pointers to tasks. Two queues are maintained by DS:
an active queue which contains tasks due for scheduling
in past or Zuture time and a blocked queue containing
tasks waiting for named events. A minimum of five ar-
guments must be obtained from the free list when a task
is created. A task may obtain more arguments from the
free list when it requires them (or return unused argu-
ments) during execution. When a task is terminated,
all of its remaining arguments are restored to the free
list. The number of tasks that can be handled by the
system is limited by arglist overflow; that is, a situ-
ation in which the free list is empty and additional
arguments are not available when required.

If there were no error-recovery, one would have to
halt and restart the system when arglist overflow oc-
curs. A first step of error-reco'sery is to purge the
task which requires another argument when the free list
is empty. This can result in losing an essential task
like the keyboard or link handler. It sometimes purges
one of a pair of co-tasks leaving the other hung for-
ever. In a PDP-8, overflojd can occur in the foreground,
and it is not clear how to purge the partial task that
is iiivolved.

Normally, tasks are terminated and their arguments
returned to the free list a t a rate faster than they
are created. But occasional bursts of new tasks or a
concentration of tasks waiting for the same resource
can produce peaks, which deplete the free list. By re-
ducing the intensity and frequency of these peaks, the
system may he made to operate more smoothly and relia-
bly.

The installation of the PDP-8's was required pri-
marily to reduce contention for the single control chan-
nel connected to the PDP-9 and for its single ADC multi-
plexer. The PDP-8's have provided 31 smaller ADC multi-

(Presented at the 1975 Particle Accelerator Conference, Washington, D.C., March 12-14, 1975)

I ’

plexers and 33 parallel output control channels at con-
siderably lower cost than adding the equivalent resour-
ces to the PDP-9.

Traffic study

We maintain a continuing traffic study of the flow
of tasks within and between CPU's and of the utiliza-
t&on of resources such as the disk, links, "real-world"
interfaces and internal I/O buffers. We have identi-
fied a number of situations where contention may be re-
duced, the rate of creation of tasks may be lowered or
a task may be brought to an early termination. This
sometimes reduces the total work accompllshed, but has
resulted in large gains in overall system efficiency.

Contentlon for disk access is a major cause of
queuing of tasks. DS reduces this contention by never
rolling a program out and relieves "t.hrashlng" by over-
laying only the program page that has been Idle longest
and only then if the page has been in core long enough
to have been used at least once. We have also found it
desirable to write frequently used code into a single
program page to reduce the number of different pages
required.

The following techniques (with examples) have been
found useful in limiting the rate of creation of tasks.
1. Change node of operatlon of program

The status monltorlng program normally lnltiates a
separate task to update operator displays for each
status change in the accelerator. When more than
20 changes are detected in a frame of the status
multiplexer, the program stops reporting individu-
al changes and sends instead an update of all ac-
celerator status in a single message.

2. Force tasks to be serial instead of parallel
If a value must be updated on several of the
touch-panel displays, a single program performs
each update in sequence, instead of initiating a
separate task for each panel.

3. Suppress task initiation
In the PDP-9 and the 925, link messages are not
initiated if the free list is too short. (This
has the disadvantage of dropping the newest data
in favor of older and possibly obsolete data.)

We have adopted a number of methods to reduce con-
tention for other resources.

1. Eliminate duplicate tasks
When requests for analog values arrive at the
PDP-9 faster than the values can be returned to
the 925, the elder requests are terminated.

2. Terminate tasks before free list is depleted
In a PDP-8, when the free list is short, the eld-
est task waiting for a link Is terminated if there
are more tasks waiting for that link. (Thl.8 only
occurs, however, when the resource is released and
there is a chance to check ‘lf more tasks are wait-
ing for it. It has the advantage that the eldest
tasks are terminated and the 'queues are kept cur-
rent, but It can do nothing about tasks queuing up
during a single "busy" period of the resource.)

3. Reject conflicting tasks
When the PDP-8 is busy with a continuous “adjust”
command, commands to adjust a different parameter
are terminated Instead of queuing up, since they
will continue to be sent until the first command
is complete and the second is then allowed t.o pro-
duce the required effect.

4. Combine related tasks
When several messages for display are created in
quick sequence, the separate messages are given to
a single task for rewriting the display.

Conclusion

Each of the computers in the control system is
idle much of the time. By controlling the peak traf-
fic, we expect to be able to add meny "occasional"
tasks to increase the aid the computers can provide to
the operators.

References

1. a) K. Breymayer et al, "SIN Control Room Consoli
dation Using Linked Computers," SIN-FUB-866,
March 191.

b) S. Howry et al, "SLAC Control Room Consolida-
tion -- Software Aspects,' SLAC-~~~-871,
March lgl.

2. W. Struven, "Experience with Touch Panel Control
at &AC!," SLAC-PUB-1191(A), March 1973.

3. S. Howry, "Trigger Pattern Generation," SLAC-TN-
75-5, March 1975.

4. W. Struven, "SLACB'S - A Distributed Accelerator
Control and Monitoring System," this conference.

5. a.

b.

C.

S. Howry, "A Multiprogramming Syst.em for Pro-
cess Control," SLAC-FUB-943 (MISC), August
1971.
S. Howry, 'DS: A Virtual Memory Executive
Program for the SL4C Control Computer," SLAC
TN-75-4, March 195.
K. Mallory, "Sam Howry's DS Executive Trans-
lated for a PDP-8," SIN-TN-75-6, March 1975.

TASK FLOW AND COMMUNICATIO+4 UNDER S

