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INTRODUCTION

In this series of Jectures we are concerned with the experimental
determination of two-body amplitudes and their phenomenclogy. Even though
two~body and quasi-two~body processes represent only & small fraction of
the total interaction, their study is very important in several respects:

(1) They provide the simplest laboratory for studying the exchange
forces between hadrons in & rather controllable way: energies, spins, particle
identities and quantum numbers can be varied separately.

(2) Two-body processes constitute a testing ground for--as well as
inducing--theoretical ideas in hadron dynamics. Concepbs like Regge poles,
duality, absorption have been brought forward in trying to understand ex-
change processes. In turn these new ideas have been applied to more complex
situations involving multiparticle final states.

(3) Even at super-high energies where the cross sections for known
identifiable two-body processes will become very small--except for elastic
scattering--we still hope two-body scattering ideas willl be relevant. Indeed
in a multiparticle event subenergies will still be rather small and two-body
exchanges will probably still happen.

In these lectures we would like to focus our interest on the structure
of the amplitudes. Rather than discussing two-body scattering data in s
general way, we are going to translate and sumarize our knowledge in temms
of amplitudes. In the first chapters, we shall try to make as little refer-
ence as possible to our sometimes preconceived theoretical ideas, but instead

try to extract the maximum unbiased information from the data.
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I - GENERALITIES AND COMPLETE EXTRACTION OF AMPLITUDES FROM DATA

1. Generalities on Amplitudes (Spinology)
1,2

(a) Hellcity formalism.

Consider the scattering process
1+2-3+4

where each particle is labelled by a set of quantum numbers: %i (helicity),

9

defined by:

(spin), 0 (parity), m {mass) and i; (momentum). The naturality ¢ is

J
£=(-1)" n=m

where T 1s the signature. The process can be described in either the s or

the t channel vith helicity amplitudes:

s-channel t-channel
1 5 : lt ,
8
2 I 2 T
Y aa(ert) Y (858
32 51k

The amplitudes can be decomposed into amplitudes with well-defined total

angular momentum J using the Jacob-Wick expansion:



(6,0) - L (25 + 1) B} e (o)
J

¥ F
MMM A NAA "

with ?x:?\l-?\e and p = A -7\h

5

At high energy amplitudes are built up by exchanges in the
t(u) chamnel. Usually & given exchange is characterized by a set of
quantum numbers: 1, 7T, SU(3) quentum numbers, etc. ... . Although t-channel
helicity amplitudes show simple relations for a well-defined t-channel ex-
change, s-channel amplitudes are more widely used now: kinematic constraints
are easier to take into account in pole models and more importantly they
probably have a more physical interpretation.

-exchange of well-defined naturality in the t-channelj

Consider an exchange with quantum numbers J, 1 in-'the t-channel.

Parity conservation at vertex 25‘]' reads:

1 3
t{J)
BN AR
31h2
I J+J, -7,
t
= nnn(-l) e Fx(i)-)\ -
2 31§ 2
2 %
t B J t(J)
Fraan = (371 & (6.0 By o
z1Lh2 s1L2

At high energy (to leading order in 8) we have

aly(0) = (0% &) (6,) + o(3)

{cos 6, —1)

t

leading to:

7\)1-7\ g
J 2 k2 _t 1
A AR = 7(-1) ﬂn'ﬂz (-1) (-1) Py A-A_-A * O(E)
31ke 31 B 2

where ¢ = n(-l)J is the exchanged naturality. A similar relation holds for
the 13J vertex. An important consequence of these formulae is that amplitudes
with opposite naturality do not interfere in the unpolarized differentlal
cross section.

To see the effect on the (J,q) exchange on s-channel amplitudes,
one must make use of the s~t crossing matrix. After some more non-leading

terms in s are dropped, the following relations hold:

J, = A=A,

5 ik T2 L2 s 1
F = & nn,(-1) (-1) F o o)
)\37\14)\17‘2 2 7\3'7\1\&-)‘1 ?\2 s

J,-d AL-A
& myns(-1) Prent Ff7\5?\1;'7\1)‘2 ’ O(%)

[}

*
As an example, let us conslder the processes 7N —pR or pN .

At the mp vertex, for high energies, one has the relation

A
-t (-1) P P8

¥ =
AN, AN

so that & = +1 exchanges contribute only to helicities )\p = + 1, while
¢t = -1 exchanges populate all helicities 7\p =0, + 1.

-number of independent helicity amplitudes

Restrictions on helicity amplitudes are imposed by invariance

under discrete symmetries: parity, time-reversal, charge conJugation.
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perity

J +J +J_+J N, HA A
My MRty
F = nynn,n, (-1) (-1) F
AMNMA 1MeN3Ty, A A

time reversal {restricts the number of amplitudes only for elastic scattering

F. = F
AB}“&}\].}\Q }\l}\Z;\j;\h

charge conjugation {for charge-conjugate reactions like pp —AA)

F. = €.€,€,€ F
7‘3)‘1;)‘1)‘2 1727374 7\&?\3)\27\1

Using these rules enables one to determine the number of inde-
pendent amplitudes required to describe a given process: a few simple
exemples are shown in Table 1. A genersl remark is that except for reactions
of the type O —é -0 -;- with only 2 amplitudes, the number of amplitudes
for processes of interest is large (> %) and consequently the separation

of individual amplitudes is 8 somevhat tedious experimentel task.

(v} Invarient amplitudes

Helicity amplitudes refer explicitly to the centre-of-mass frame.
When calculating scattering emplitudes from field theory, or when studying

analytic properties, it is useful to write down explicitly invariant amplitudes.

If nc spins are lnvolved, the only lLorentz scalars are s and

t (u) and the scattering amplitude is a scalar
T = £(s,t)

¥hen some of the particles have spin, Lorentz invariants In

cen be constructed from 4-vectors and spin tensors:

T = E fn(s,t) In
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where the fn sre invariant amplitudes. Invariant amplitudes are related

linearly to helicity emplitudes:

fn(s’t> =(§:) A(’\)(E,t) F()\)(slt)

vwhere {A) represents a set of helicities and the A(?\) are known kinematic

functions.

. +
-example: O él--qo % elastic scattering.

Using the 2 Dirac spinors, it 1s possidle to form 2 invariants
and the general form of the amplitudes in terms of the 2 invariant amplitudee

A and B is:

15, [Aet) + 2 aa,t) 1, + A )y

Assuning my = m3 << m2 =m, = M, one can express the s~channel hellcity

antplitudes in terms of the invarient smplitudes A and B:

[}
FH=u7Gccs§{A+(v-{i)B]

M 8 M 1+Mv-t+1m2 iy - t
P === ging A+ N B
2]

T T )

vhere v = (s-u)/M end the following notation hes been used:

F,=F F,_=*F

++ 1.1 +- 1.1
0505 0-20'-2‘

dg  br 2 2
S UR I+ 7 1T

At high & and for t not too large, we have the simpler

expressionst



M M

F., = (& + vB) = At
T e yr s
[ N
F,_ xR (v + M08 + MvB] > tog
wrds ® 5 —w gr s

so that

T o U RPN

dt’s—s o« )4»1152

L e % e 1)
. :

1

The amplitudes A and B are free of kirematic singularities

and possess simple properties under s-u crossing. Defining the amplitudes

(*)

+
and B(_) for wN scattering:

A
a9 =% (I, = 3) + 2A(T, = 2] =J—§_—A(It = 0)
A - 5 a1, = ) -z, - 2 =5a1, = 1)

+
(and similar relations for B( )), g-u crossing means:

A(i)(s,t,u) A(t)(u,’c,s)

1
I+

5 (u,t,9)

+1

E(i)(s,t,u) =

(c) Density matrices and polarizations

The initial state is described by a density matrix pi with
Tr p1 = 1. If no polarization is observed in the final state, the differ-

ential cross section is expressed by

a1 i+, 1 1 +

9o S rr(MpM ) = I ' -

at - 2 z - M’}\B}\@l?\z PAMMA Mxﬁxuxl)\g
3

MMM

For unpolarized initial state pi is a diagonal unit matrix multiplied by

a normalization constant:

i I

e =Tar, F0(Ey, 1)

The polarization information on the final state is described by

a density matrix pf:

doy f 1 it
(E’t')p = EMQM
8
£ 1yt
- i
(Mo M)

The expectation value of an observable A referring to the

spins of the final state particles is given by:

f

Tr(p A
) - B
<]

For the construction of density matrices describing polarization

states for arbitrary spins,see Ref. b.

-examples.

0 % -0 -21- : the density matrix describing the nucleon polarization

has the generel form p = % 1 + F. ?] corresponding to a polarization Pi

of the nucleon along the axis 1
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—»-21;% : the most general density matrix with correlations will involve

PO
j =

the tensor products between I, ?1 and 3;:

p:ll;[n?l-a‘@ui’;'?@ I+ °1J°1®°J]

z
i,i=x,¥,2

+ +
(@) observables in O % -0 % scattering (such as 7N - 7N, 7V - KEI,

KN - XA, ete.)
The amplitude is a 2 X 2 matrix in helicity space and parity

conservation gives the form:

w el(e/2) L -i(e/2)
++ -

%

w A2 i(efe)
++

{axes conventicn; ¢ = 0)

cos ¢ = ¥-00

1+P° ploipt
1 z x Ty

)
W
Pof-

PL4iP  1-P
x 'y z

where ?i is the initial

polarization vector of the

nucleon. It is straightforward,

although tediocus, to coupute the 3 components of polarization of the final

beryon. Defining:

do 1 2 2
®* -2 fm, 15+ v, %)
*
2InM M _
P=-o——7
M, 15+ )

2 2
I, |
Al = 5

M|
++

-IM

R

+ M

3
L

L
2Re M++ M
'2
+

=- 2
(L

one finds the final polarization components:

ke

Pf; Tr o = A'Pi

2t Pi[R' cos ¢ -~ P gin ¢] +P;', [R' sin ¢ + P cos ¢]

P oer of = - R AP 4 AP
x z x y

Porol bt +p- 2l sine
¥ y x

with Tr p =l-PPisin0 +PP§cos 4.

For a stable baryon, polarization can be experimentally anelyzed
in a rescattering experiment: in this case only the transverse component of
the polarization is measured and one must consider different orientations of
the target polarization in order to separate A' and R'. Usually the
rotated A and R perameters (corresponding to the transverse polarization)
are messured:

' L ' L
= +
A =A" sin eh R’ cos Qh
(1ab angle)
R=-A' cos 8° + R' gin OF
= y I

For small ¢, Qi‘—mr/E end A =A', R=R'. P, A and R are
not 3 independent observables since P2 + R2 + A2 =1 and in general P
and R measurements will suffice, except for the sign of A. Figure 1 shows
schematically the experimental configurations in the scattering plane to

measure A and R vwhen only transverse polarization is measured for the

outgoing baryon.



2. 7N Amplitudes at 6 GeV/c

This represents the only case where all observables have been measured,
therefore permitting the separation of all helicity amplitudes. It is worth
looking with some detail since it represents, in principle, the only unbiased
source of information on individual amplitudes.

(a) Deta and observables

In addition to helicity subscripts, we will use the isospin exchange

in the t-channel It to label amplitudes. We have:

I

i
+
]

+ +
o p->7p)

Fr'p - 7o) = Y2 7

In terms of "particle"” exchange ¥° corresponds to {Pomeron + f)
exchange while Fl corresponds to p exchange. To describe the 3 reactions,
one needs 4 independent amplitudes, therefore 8 real numbers for each t

value. The observables for esch reactlon are:

do 2 2
Tl 2 I b
do *
P =2 Im.(FH_ F+_)
dg 2 2 *
-Rgp = [F, |17 -|F,_17) cos 6, +2 Re(F_ F ) sin o
do 2 2 *
AL [|F++] {F, 171 cos 6 -2 FRe(F  F, ) cos o
5-12
The measured observables around PL = 6 GeV are;
ag” do” ad®
at it dat
", P, °
¥ -
R , R

(b) Amplitude extraction

For t ;4 0 amplitudes can be determined up to an oversll phase.
Since FS+ is the dominant diffractive amplitude, thus mostly imagirary,
all other amplitudes are projected on FS+. Therefore at each % walue
there are 7 unknown real numbers to be determined: FS+, (FS_)“, (FS_ I
1 1 1 1 L
(F++)H’ (F++)J_, (F+_)” and (F+_ )y (where 4, | denotes component

orthogonal,collinear to FS+) It follows thet:

+ -
¢} : do do
F++ is mostly determined from Fr + T

(FS_)” is mostly determined from R

0 ) . + dg - dg_
(F, ), 1is mostly determined from P 3— + P o~
- +
1 dg do
(FH)H is mostly determined from T I
+ -
1 s . + dg - dao
end (F,_ ), is mostly determined from P I/ - P o

(F];_)” could be determined from R (do”/at) - R (ao'/at), vut data
on Rt is not good enough to proceed in this way:; so that, in practice,
the remaining two amplitudes (Fi_)” and (F}L_ )}, sare determined by two
quadratic equations involving dco/dt and pC.

In general two solutions for t.he FO amplitudes are found, vhereas
L solutions emerge for (Fi+)_l_ and (Fi_)“. Continuity from t = O together
with the sign of R (do /at) - R'( da+/dt) seem sufficient to remove the
ambiguities. At larger t values (-t > 0.5 Gevz) ambiguitles appear again

because of insufficient information on R.

(¢) Experimental problems

+
Besides the difficult experiments to measure R (it is significant

that only one experimental group has performed that experiment so far), the

determination of the 7wN amplitudes suffer from uncertainties of experimental

origin.
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- +
dg do 1
--it is berd to memsure T - zr— and hence F(++)“.

1t {in m‘b/GeVz), giving a

At 6 geV, do”jat ~ Lo e7'7t and dc+/dt ~ 37 el
crosg-over zerc around tc = - 0.15 GeV2 (spproximately the zero of
(Fi+)“) If normalization uncertainties are 5%, then the error in location
of t, 1s at, = 0.1 GeVz, namely, 1ts accurate position is not known.
T™is situation has been improved by the experiment of Ambatis et al. who
cleimed a normalization uncertainty of + 1.5% between 7r+p and 1r-p,~

giving a Atc error of + .025 GeV2

--measured values of PO are spread over a wide range outside
10

1
quoted errors. Argonne points 1 are typically lower (~ 0.2) than CERN points
(~ 0.%). This particularly affects the determination of (FL_)J_ as its zero
can be moved from t = -0.25 to -0.5 GeV2 sccording to what Po measure-

ments are used.

(d) Results
1316

There have been several analyses, all using essentiaslly the

same sets of data. We are going to discuss the latest analysias by the
+
Argonne group since it uses their new data on do /at.

--I, = O exchange (P + £) (Fig. 2).

F?_+ is large and is the dominant amplitude; it is roughly expo-

nential in t. Fg_ is small, but predominantly imeginary so that g-channel

helicity is approximately conserved. To express the deviation in a quanti-

tative way, it is useful to consider the invarient amplitudes A and A';

0
A M |F_ |
9 -0+ 0.0h, 0.10<-t<0.50CeV
Ao -t 'F++‘

The same ratio computed from t-channel helicity amplitudes ylelds a value

of 1.5.
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It is important to note that P and £ exchanges cannot be
separated since they have the same quantum numbers and consequently they
always appear together in the observables, Tt is only through the energy

0 amplitudes over a large 8 range that P ahd f

dependence of the F
could be disentangled; unfortunately we only have 6 GeV so far.

-1, = 1 exchange (p), (Fig. 3).

N .
(F++)|I has a zero at -t ~ 0.15 GeV® and is strongly peripheral.

A Bessel-Fourier transformation into impact parameter space shows a broad

peek centered at sbout 1 f. (FL-).L also goes through zerc in the same t

range, although at a larger value than (Fi+)| : it occurs at -t ~ 0.25 CeV?

with the Argonne polarization datall while it moves out to -t ~ 0.4 Gev‘2
with the CERN data.’ The modulus of Fi'__ vanishes around -t ~ 0.6 GeVo.
Ambiguities preclude from making & precise conclusion above 0.6: in
particular (although there is a hint in the data) it is not possible

to see if there is a single zero in (Fi_)“ and & double zero in (F+_)J_
as would be expected from a p Regge pole amplitude. The behaviour of the
phase difference between F2+ and F}__ is interesting since it 1s essen-
tially independent of t for -t < 0.k Gevz: i1f p exchange is Regge-
behaved in the helicity-flip emplitude, it therefore meens that the phase
of F&_ ig changing significently with t. This is important to keep in
mind since F‘S+ is the reference amplitude and counsequently the correspondence

between -+ and ” components and real and imaginaery perts is unfortunately

not straightforward.

(e) Future of complete amplitude analyses

In 7N scattering, R measurements already exist at 16 and

7

40 GeV,l but P. measurements do not extend beyond 11 GeV. At 16 GeV

0

some information can be obtained on FO amplitudes:



au [F0 | )
= 0.26 + 0.0
V-t |FO | -
++

i.e. not very much smaller than the value at 6 GeV.
In KN and KN scattering there are 8 independent amplitudes
and therefore 15 unknown gquantities (+ overall phase). Eight independent

observables have so far been measured around 8 GeV:

do gt dg ;.0 0

I (K'p) 5t (Kp - ¥gp)

dg ~ =0 dag + Q

E-t-(Kp—-)Kn) dt(Kn—va)
N -

P(Kp) P(K p —»Eon)

+
while a measurement of P(K n — Kop) is underway at CERN. 8o at least

£ other experiments are needed to measure:
do .t kS
= (K'n) P(K n)
0 0 +
P(K;p —K.D) R{K p)

The complete extraction of KN and KN amplitudes at high energy will

remain a dream still for some time.

3., Hypercharge Exchange Reactions

In hypercharge exchange processes the final baryon is a AO,
):1+ or a Y* deraying into A or I. It is therefore possible to measure
all the components of its polarization vector with the observation of the
angular distribution of the weak decay (we exclude final states with ZO

which decays elec tromagnetically). Examples -of such processes are:

4
TP - K+Z+
K~p N TTOAO
+ %

Tp =K Yl+

L—> Z+1ro y Aon'+

(a) Decay angular distribution of an unstable baryon

Generally the decay angular
distribution is given by:
a A
wWp) = 1 plm) g (%)
A A
(w)
(up

vhere [N

t
i ) is the density matrix
for the finalstate plarization in the
reaction (y refers to the helicity

state of the particles accompanying

the hyperon in the final state).

0 - + N
For a week two-body decay (A~ —p7 , & - pvro) where P con be taken aslong
t

the final proton, the elements BM\ take the following form:

11
B§§=I%;(l+otcose)

B—%-% =B%T-r(l-acos 8)
B% -%=€7—Tem sin 6
B-%%=‘)‘g_,-_ehi¢ sin 0

where a 1s the decay parameter in the parity-violating weak decay, measuring

the interference between 8 and P waves:

- 2 Re S*P
[s1? + |¢[?
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Using the expression used previocusly for the density matrix elements

of a spin 1/2 particle expressed in temms of the polarization vector, we get

Wp) =gz L+ a ¥, B)

where PY is the hyperon polarization vector. Experimentally the situation

is hopeful:

ofa® 4 pr) = 0.65 )
(very good analyzers)

oAz* - pr°) =-0.98 ‘

AE AT ) =-0.39

oA=° o+ an°) =-0.kb

N
oz —wn7r+) = 0,07 {useless)

(b) Application to emplitude analysis

For an unpolarized target experiment, the observation of the hyperon decay

measures the P perameter as defined in Section 1:
w(e,s) = 1 (1 + @ P sin ¢ sin 8)
28) =gy

If the target is polarized along the direction ;’5 with components

5 N ; R
Px =P, cos V¥, P; = P_lL sin ¥, Pi with respect to the reaction plane (¥

azimuthal angle), then the complete observation of the angular distribution

of* the decay measures all three polarization parameters P, R', A':

w(e,s)

1 i, ) 1
-H-T—r[l +O.Pys;n®sin9+P(a51n¢sin6+€xPy)

+ R'(dPir cos 6 - otPjZ' cos ¢ sin 9) + A'(ccP)lc cos ¢ sin 6 + ocPi cos 6)]

We note that P can be measured in two ways: observation of the hyperon decay
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with an unpolarized targetls or left-right asymmetry with a polarized target‘lg

It is comforting that the two experiments asgree well.

- 0,0
An experiment designed to measure R' in the process 7 p =K A

+ .
is planned at CERN.20 Contrary to R in elastic scattering, it is expected
that R can be large in non-diffractive exchange reactions and therefore will

be very useful to sort out the underlying amplitudes.

4. Qeneralization to Several Spins; Resonance Production and Joint-Decay

Distributions

When higher-spin particles are produced, or when several particles in the
final state have spin, the number of observables increases sharply and can exceec
the number of independen_t real amplitudes. For example, in the process v_p -
(spin J meson)o + AO where the a0 and meson decays are observed the mumber of
observables with unpolarized target ie 2(J+1)(2J+1) while there are only
4(2J+1)-1 independent real amplitudes. There is therefore some degree of re-
dundancy in the meaéurements and it becomes extremely important to understand
the relations between all the observables and to define a set of independent
observables to be measured with & minimum use of polarized targets.

Qur purpose in this section is not to derive results in detail but rather
to present a formalism to describe any two-body process with any spins in order

to reconstruct amplitudes from experimental data in the most efficlent way.

(a) Transversity xa.mplitudez-;gl.23

When several particles with spin are involved it becomes more interesting

to use the transversity--rather than helicity--quantization axes.



reaction plane and

center-of-mass of

particle 3

(x. v zs) s-channel

helicity axes
(x,C y z,) t-chammel

(z. x. y ) s-channel

’ transversity axes
(2, %, ¥ ) t-channel

In the s-channel helicity frame the third axis is collinear to the
momentum (£ || ;5), while they are orthogonal (% & i)')j) in the transversity
frame. Going from helicity to transversity fremes only involves a rotation
with Euler angles w/2, w/2 and -w/2.

As we shall see, transversity amplitudes are very useful because they

are much more closely related to the measured observables than helicity amplitudes:

in particular the redundancy between several measurements is easier to see and
it is simple to define a set of independent measurements, both problems not

being very transparent in the helicity quantization.

-parity conservation: E)\ helicity amplitudes

T-r transversity amplitudes
LJ-ZA
H = n(-1) "
AN AN
AL PN NS I WY NS
. s 33 373 R TR 733
for unpolarized initial state T = (-1) N
ANy NN
T, ¥T=T " T
T yroe, = if ()1231&_1
3h1te
T -r%
for unpolarized initial state p_[iﬂl =0 for ToviimeT, odd

-naturality conserving amplitudes

With linear combination of helicity amplitudes, one cen define naturality

amplitudes to leading order in s as in Section 1 of this chapter.

ks 1

= = + N)H
N"jxh?‘l)‘e NEY [H?‘ﬁ)‘h)‘fé E()\} l) ')‘3)‘![7‘17‘2}

with EO‘}M) = exp{im{v + J5 - R kT - xl)]

*]lﬂ3 3

and v = O for boson exchange, v = 1/2 for bvaryon exchange.
Let us write down the transformation from helicity to transversity
amplitudes:
Jl

T L o (@ nl (ol () ot (&)
ST ey A DAty Dx313 N H'}\Blh)\l)\e

where R is the rotation R(la—r , g, - g)
J, J, J, J
1 1.2 73
=3 % D "D “D,"D [ +tn,n, explim(v + J -A +J -\ N
2 AN, o H7‘5}‘13‘17‘2 10 17135

X H
-)\3)\&-7\1)\2}



We therefore have the important result that T amplitudes are naturality-

conserving amplitudes with

&= myn, exp{im(v + Ty - rl)]

In conclusion, transversity amplitudes are simpler to work with because
of the parity relations (some amplitudes are plainly zero) and they correspond
to well-defined naturality in the t channel. These properties make them closer
to experimental data. However, helicity amplitudes have a more physical inter-
pretation and one needs to know all of the transversity amplitudes to reconstruct
any one of the helicity amplitudes.

(b) Naturality of exchange25

“.ince transversity amplitudes correspond to pure naturality exchange,
they constitute the simplest description of a two-body process in terms of ¢
or u channel exchanges. More practically, they tell us what measurements are
needed to extract the different naturalities and their interference.

The transversity density matrix elements for particle 3 when the initisl
state is unpolarized, are:

1 *
P [~ E T T .,
1'31'3 N T, TjTthTE 1'51'1‘_1'11'2
and the only non-zero elements have 13-15 even.
-With unpolarized initial state and measurement of one final polarization,

all observables can be expressed by {superscript = naturelity)

+ 4% - ¥
% [T7\Tu + T7\Tu ]

and are therefore insensitive to the relative phase between opposite naturalities.

-When particle 1 has spin O, Pr g2 is the form
33

+ 4% - ¥
b T7\Tu or z T)\’l‘“
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and isolates the exchénged naturality. In the helicity description, one has

to combine B! elements to project out & gilven exchanged naturality.
: 33

-If both particles 1 and 3 have spins, the naturality separation requires
polarization of 1 and esnalysis of polarization of 3 through its decay or in a
rescattering experiment. When particle 3 decays strongly some polarization
information Is obtained and allows the naturality separation when & meson is
produced (1 = meson, 3 = meson) but not when a baryon is produced (1 = meson,

3 = baryon dec;ying strongly).

-To measure the interference between opposite naturality exchanges requires
polarization measurements at opposite' vertices; for example, measurement of the
double density matrix elements p:h:)t with 71 -1‘5' and 'rh-'r,: both even.

These results are summarized below in a pictorial wayej with diagrams
represcnting incoming and outgoing particles;y lines can be reversed at the same
vertex. All particles have spin (otherwise indicated) and & vertical arrow has

the meaning of a polarization measurement {either incoming polarized particle,

or measurement of an outgoing particle polarization)

amplitudes measured

measurements

i

incoherent sum of naturalities

+,2 -2
Inl + 7]

-T
s AP

spin O

opposite naturalities separstion

+,2
="



(c) Applications
(1)

spin O

Exchanged naturality

£ = ﬂlﬂ3

£ = 'ﬂlﬂ3
N - pN

£ = +1

£ =-1

+

‘l.

| spin 1

Transversity
density matrix elements

H H do
ey * P 0) &

8 dg
Poo Tt

H H | dg
by =P &

interference between opposite

naturalities

+ %
T7\TH

Helicity
density matrix elements

B H
Pr1 TPy

"
Re P15

" exchange

(helicity 1)

W, A2"

"n_n

7  exchange
(helicity O)

"

7  exchange
(helicity 1)

A complication which should be accounted for is due to the presence of
an S-wave 7T which interferes with the p amplitudes. An example of the 3-

amplitude separation is shown in Fig. k.

YN - 7N
The naturality separation is particularly clear in this reaction where

it is achieved by using linearly polarized photons.

do
L
(%E) = (P perpendicular to the scattering plane)
E=+1 v
o ) ~ do
dt at

The separation is shown in Fig. 5 for yp - 7r0p at 6 GeV. Extensive measurements
of that type have been carried out for 'n-t photoproduction (Y - 7N and

2
TN = 7A). 4

(2)

S

A well-known example is vector meson photoproduction with linearly
polarized photons where the meson decay measures the amount of natural and
unnatural perity exchemge.z5 This is particularly striking in the case of
@ production where around 5 GeV both 7 exchange and diffraction occur in

similar magnitude and can be fully separated by this technique.
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(3)

—

T -

An experiment of this type is in progress at CERR26 with w.pf - pou.
The upper vertex determines the exchanged naturallty while correlations between
proton polarization and p0 decay distributions relate to the interference be-
tween opposite naturalities. Even ignoring the S-wave problem this experiment
still does not measure all the helicity amplitudes in this process (see next

section) since the p decay is parity-conserving.

(a) Joint-decay distributions; statistical tensors

If both particles 3 and 4 decay, the joint-decay distribution takes a

'
simple form when expressed in terme of statistical tensors tﬁ.:

(6,0.0,8,) = £ F.(1,) F (L) Ut 35 e ) 1 (0, 0,)
W(6,4.8,¢ ) = PL,) F (L) t Y2 (6,0.) Y, (6,¢
33 Lk LL“B) AN M}Ml+ M3 5750 M, 'y

M5Ml;

where TF(L) sre known coefficients depending of the spin .on the decaying
particle and its decay mode. If parity is conserved in the decay, then
(L) = 0 for L odd.: an important consegquence is that strong decays only
measure even polarization tensors (even Ly and even Lh)' Experimentally

L,L
the elements 1, 34 are measured by evaluating moments:

M3Mh
L.L L L
3L 3 L
Fj(Lj) Fh(Lh) tMBMh = ( YM3(8303) YMu(eh°h)>

e statistical tensors are related to the double density matrix

JL L S —

elements:
AN I N =L+, N ~L L,L
33 RN T e A S e . 1 s 5 h
Pad = L (-1) (J5 - A JB)\B}LBM})(JLL R LM, )ty ",
L7 LBLL\ 3
My,

and have the following properties

normelization t% R SU—
: J(2J3+1)(2J)++1)
LI \® W, LL
) 5Ly M, sl
hermicity ( ): (-1) t o
¢ t“;“u MM,

L,L L. +L, -M,-M;, L.L
helicity frame tMBMh - (-1) 2 MMy t-a;.‘m
parity 3l N

L}Ll+
transversity frame t, =0 M, + Mh odd.
M3M’+ 3
lLet ue see in one example how to use statistical tensors in the trens-
versity frame.
+ + *
Tp K Y (2385)

+

2
2

l-——> I\O'rr+

> pr

Four amplitudes are necesssry to describe this resction and therefore
we have seven unknown quentities to solve for at each t value. Bere, since
A decays weakly, both L odd and even components of tﬁ are non~2ero; hov-
ever due to parity conservation in the production all M = 1 components vanish

in the transversity frame. 8o there are 6 non-vanishing tensor elements:



et eS8

3 phase necessitates the use of & polarized target. When a polarized target is
tT 0 th ot (real)
used, many more observables can be measured, providing constraints for the

(complex) smplitude determination. The situation is summarized in Mable 2 for typical

o
[V V]
o
N

2 * *
reactions. 7 Reactions like 7N - K A and 7N —-KY should be very helpful

To relate the amplitudes let us come back to the density matrix elements
in our understanding of strong amplitudes: analyses of the type described pre-

in the transversity frame. The following elements
viously will involve high-statistics experiments with large solid-angle systems

to observe the decay correlations,

2
p = |T
227 |%2 4
22 2 2
o o 12 (e) polarized proton besms
11”7 ;4
22 22 Experiments are being done at ANL with a polarized proton beam; in
2 28
Py 1= T 11 perticular elastic scattering in pure spin states has been measured. To
2z 22 ' understand the meaning of the datas in temms of the more familiar helicity ampli-
2
Ps 37 T_z l, tudes™) 0 1t 1e necessary to transform spin states [sy =+ —;-) into helicity
2 2 22
1
states ‘sz =* 5):
are linear combinations of the tL components and ylelds the magnitude of the
° D= ls, =22 =2 [ls, = +8) +ils, = - D1
4 amplitudes while the elements 4 Jo z
¥ *
pé 1507 3 =T 1 T 11 Proton-proton elastic scattering is described by 5 helicity amplitudes:
272 22 272 27F
H = (++] M} ++)
* T 'I‘*
p = p =
1
12 21 i1 23 Hy = (++]M]--) overall no helicity flip

H, = {+|M|+)

are linear combinations of the complex t;' components and measure two of the
By = (+={u|-+) double helicity flip

three relative phases. Without a polarized target 1t is thus possible to

(++[m]+-) single helicity flip

j==]
»

separate amplitudes up to an overall phase and to the phase between amplitudes 5

with opposite target transversities.
e & & One cen then express the pure spin states cross-sections shown in Fig. 6 in terms

revi i i : i t
The previous conclusion is quite general: with an unpolarized targe of the amplitudes H, or even better in terms of linear combinations of Hi

1
one can at best (when all com ts larizati sur i ak a
(vhen a omponents of’ polarizations ere measured, in a we isolating pure naturality exchange. It is then easy to show that E‘g (11 = 11),
a - 11t ] L 1 Y]
ece.y) measure N<1 real amp ndes with an arbitrary overall phase convention g% (H - H) and g_:_ (” - H) only involve naturel parity exchange, while
vhen N numbers are needed to extract all the amplitudes: this last unmeasured a
%% (1t = 44) and Ti% (14 ~ #t) correspond to pure unnetural parity exchange.
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The deta at 6 GeV and 't = 0.5 Ge\)’2 shows that these unnatural parity cross
sections are small, typically 10% or less of the dominant natural perity

cross sections,

TABLE 1

Number of helicity amplitudes

no discrete

Reaction type symmetry using P using T using C using PIC
i = 7R 3 2 2 - 2
T - 7TA 8 4 - - I
YN - yK 16 8 10 - 6
o > p8 12 [ - - 6
NN - NN 16 8 10 - 5
fv - ¥y 16 8 - 12 6
TABLE 2
N
ofm:::l measured observables {+ constreints)
Nunber of independent unpolarized polarized target
Reaction type amplitudes  observables target transverse longitudinal
7 - 2 3 1 2 (+0)
KA 2 3 2 3(+3) (+2)
pN 6 11 L 10 ()
K*A 6 11 10(+2) 11(+25) (¥12)
™ L T 4 7(+3) (+2)
»
KXY k 7 6(+2) 7(+17) - (+8)
ol 12 23 20 23(+33) (+16)
* %
KY 12 23 22(+26) 23(+121) {(+48)

203

I - GENERAL FEATURES OF EXCHANGE PROCESSES

We shall discuse almost exclusively non-diffrective two-body processes,
although in some cases the diffractive part cannot be easily separated out, such
as in elastic scattering for It = 0 exchange. We are going to summsrize prop-
erties of data on two-body scattering in order to gather information on the
behaviour of the underlying amplitudes. We heve seen that our knovwledge of single
amplitudes is rather limited; on the other hand there iz a weelth of data on

cross sections and polarizetions which can cast some light on our problem.

1. Kipematic Dependence

() & dependence
~-t = 0

Very useful informetion on the behaviour at t = 0 of the imagiim.ry
perts of the amplitudes can be extracted from total crosg section measurements.
These messurements are rather ccmplete-—ﬂi s Ki and p: on protone and neutrons--
and cover & wide range of s values from threshold to ~ Loo Gt*zv2 It is use-~
ful to project each forward amplitude onto t-chamel guantum numbers, conveniently

labelled by particles’' names:

4
aT('lrp)=P +fTr+p1T
. -
op(K'p) = B + £ *ay + o Ay
(K'n) 5 1
of{(K'n) = B + fie + o Loy - Ay
(pp) =P +£ T Fp +4A
OpiP PJ = Fp T R T TRy Ty
+ -
=P +f +0 + -

og(Pn) = By # £ b0 20~ Ay



Defining sums and differences

a(Ap)

- +
o{Ap) - op{a’p)
- +
Z(ap) = op(A7p) + oi(A7p)
we can express the pure t-chamnel exchanges in terms of the measured cross

sections:

A(p)

n

2
pTr

A(KP) - A(Kn)

oy
b
by

.
AlKp) + A(Xn) and similar relations for P N

Z(Kp) - Z(Ka)

]

Experimental problems are obvious in these extractions: systematic differences
between experiments show up, particularly in different energy regions; also
neutron data comes from deuterium experiments where a Glauber correction has
to be applied. In regard to the last remark it is interesting that a better
determination of the s dependence of o and @, comes from A(Kd) end
ANpd) directly. We are not going to discuss here f and P exchanges
since they cannot be separated simply; we shall come back to this problem in
the last chapter.

The s-dependence of the imaginary part of exchange emplitudes at
t = 0 has some remarkable properties:

(i) from well measured differences, amplitudes are seen to be power-
behaved in s (or pL) after a few oscillations at low energles.: Energies
around 3-4 GeV are typical lower limits for the simple power behaviour. We

parameterize the s dependence in the fom

for example p_=B_s

(11) all the exponents «

Y that can be isolated cluster around 0.5

(: 0.1). Accurate values depend sensitively on low 8 cut-offs, uncertainties
in neutron data and resolution of discrepancies between experiments. Values
found using the data of Ref. 31-35 are shown in Teble 3. A typical example of
the power behaviour is displayed in Fig. 7 with A(Kd) end A{pd).

(i1i) Same exchanges in different processes show & close similarity
in their energy dependence. In particular ag is equal to al; within errors
and is also consistent with the badly determined a‘r;. Also the very accurately
determined otﬁ and O.(I; are the same, as can be seen directly in Fig. 7. One
therefore concludes that,within the limited range of processes and exchanges
afforded by elastic scattering, the power behaviour of a given t-channel ex-
change is not affected in a strong way by s-channel effects (1ike absorption)
at t = 0.

The s dependence of amplitudes at t = 0 can also be obtained from
measurements on differential cross sections, (da/dt)tzo' FExperimentally this
is not always easy: if a recoil particle has to be observed, date will only
exist up to some minimum ft' value and éxtmpo]ation at t =0 will be
necessary with the corresponding uncertainties; if, on the other hand, no recoil
is observed t = QO can be easily reached, if not smeared by resolution effects
or not affected by Coulomb effects, such as in elastic scattering vwhere Coulomb
scattering (v exchange) has to be subtracted out. When well-defined t~channel
quantum numbers can be isolated, information is thus obtained on the s depen-
dence of the modulus of the corresponding amplitude and is therefore complementary
to the information contained in total croes-sections.

Experimental determinations of the s dependence of some (do’/dt)t=o
~ 52%2 are shown in Table 4. An immediate conclusion when results in Tables
3 and 4 are compared is that O values obtained from (da/dt)t=0 snd g are
consistent with one another when the same exchange is involved: this is very
important because it means that the phase of the amplitude at t =0 1is
essentially energy-independent. This, as we shall see in Chapter 3, is a

consequence of analyticity in energy and power behaviour.
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-t 40

Datae on differential cross sections have treditionally been parametrized

using:
"slope" ‘_;% - A(B) eB(S)t
ny ao _ Asgaeff(t)-e
eff dat

The experience has been that s dependence of slopes is not
particularly illuminating for exchange reactions and the Qgpy approach
has been in general more fruitful. However we would like to warn against an

abusive use of aeff: if, in non-diffractive reactlons, it seems that cross

sections are reasonably well power-behaved (see TT.p ->'rr0n in Fig. 8), it is

not the case in elastic scattering and ae determinations depend on the

ieid
energy range considered and can be very misleading.

£F determination cames from ‘n'—p - 1ron over a
very wide s range (with the rew NAL datajg) and shows a slmple linear function

~
aeff(t)jo

The most reliable ae

alt) = (.56« .02) + (.97 + .0t

out to t values arcwmd -1.5 gev® (Fig. 9).

The situstion is not so pretty for the case of A2 exchange where a
crude linear behaviour seems to exist for 0>t > -0.5 Geve but larger lt]
data is too imprecise to pin down unambiguously the s dependence. Information

on the ae is still very primitive.

£f

{b) t dependence end helicity structure

Exchange amplitudes generally exhibit an exponential fall-off in t,
but even some of the crudest characteristies of the t dependence are determined
by the relative amount of the different helicity amplitudes present in a given

process.

In the forward t region the presence of e peak or a turn-over

immediately informs us of the relative importance of overall helicity non-f1ip
amplitudes and flip amplitudes at small t, since flip amplitudes have to

vanish kinematically at t = 0. We observe:

rr_p - 1run: p exchenge mostly helicity flip (confirmed by
complete amplitude analysis)
K p —,I-{On: [} A2 mostly helicity flip
I 0
Kn =X p: (In o,, and ImA__ given by o data and are

small at t = 0)

Kgp 4K§p: from the pesk at t = O, ® mostly helicity no-flip.

Dips for t # O (or absence of dip) provide direct information on
helicity amplitudes, although it is hard to translate the facts into statements
on real or imaginary parts of the asmplitudes:

-fram 7N amplitudes at © GeV, both Re p,_ and Im p  venish for
-t~ 0.6 (}e‘J2 producing & dip in do/dt (v p —-)1ron).

- do/at(r p -+ nn) 1s daminated by A, but no dip 1s seen at 0.6,

so that we do not know simply the behaviour of Re A _ and Im A, _ there.

.]:t = 0 exchange can be isolated in 7N -+ pN:

dag 1[ 4o, - - do ,_+ + dg , - o]

(dt)I_O—Q[dt(wp—'pp)w*dt(vrp—»pp) 5 (TP -oen)
=

and 1t is seen to be almost completely natural parity exchange as given by
(plil + p?_l)(do/dt)I o+ It strongly resembles |p+_|2 (Fig. 10) with a forward
turnover and a dip a:. 0.6 GeVz. It therefore tells us that, because of the
helicity flip at the upper vertex, o exchange is predominantly non-flip at

NN vertex--a fact we already knew from K_gp —-Kgp forward peak.



A summary of our qualitative knowledge on dominant helicity couplings
to baryon-antibaryon is indicated in Table 5.

One interesting phenomenological exercise is to follow the position
of these dips as a function of s. It is remarkable that over a very large 8
range above a few Ge\]’2 their position is essentially at fixed t {or u) al-
though the accuracy to detect a change is somevhat limited: for example the
dip at 0.6 (}e\f2 in ’IT-p - Tron is rather well measured but it is difficult
to assign a precise value to its location at high energies because of the steep
fall-off of da/dt. There are a few cases where a systematic dip displacement
hes been cbserved, all of them in the low energy region. One remarkable example
is given by the dip at u~ ~0.2 GeVE in 1T+p backward scatteringho (see
Fig. 11) vhich shows, not a fixed u position, but a fixed u' =u=-vu . .
More interestingly, the same phenomenon is seen in the crossed channel process
fnp ——)TT—TF+ where the dip appears st larger ‘ul put is well accounted for by
a constant u' position. Such an observation is consistent with a geometrical
origin of this dip since u' is directly related to the scattering angle,

'] ~ p6°.

Measurements of polarization are very useful tools to study the helicity
structure of amplitudes. However, besides elastic scattering, data are rather
poor and most of the time not very informative regarding t dependence. On
the other hand the s dependence has a characterigtic feature:

(i) for elastic processes, fixed-t polarization is generally power-
behaved in s corresponding to the interference between a dominant (P + f)++
amplitude slowly varying in s with a flip amplitude (p+_, A+_) falling
like a pover.

(ii) for inelastic processes, P 1s rather independent of energy, as
expected from the interference between helicity amplitudes falling with s at

similar rates.

2. Quantun Numbers Fxchanged

Tt is an experimental fact that exchange smplitudes are connected
with the existence of particles with the same quantum numbers; in particular
when t or u-channel quantum numbers do not correspond to any known particle

the corresponding amplitudes are always small.

(a) Allowed exchange
We have so far mainly talked about (P + £}, p, ® and A, exchanges.

Let us complete here a rapid survey of meson exchange. N

¥*
K___exchange
A large amount of data exist on hypercharge exchange cross sectlons and

polarizations. Of particular importance, line-reversed reactions such as

- x(5) RN - ()

have been measured over a wide range of energies. Unfortunately the measurements
are not complete yet for an emplitude analysis end only model-dependent studlss
have been made. An interesting fact is the absence of a forward turn-over,

such as in 'rr—p - 7ron and 1r_p —-nn indicating that these reactions will be

in principle very powerful tools to study non~flip amplitude with K; and

*
Kp exchange, and compare them with their non-strange su(3) partners.

7_exchange ;

Good spectrometer date exist at 6 Gevul and 17 GeV.26 Unnatural

parity exchange as given by

E do

9 = Poo at (*, =0)
LG LMy

o_—(pll pl—l) it (7b=j‘_l)

is thought to be dominated by 7 exchange. As seen in Fig. 12, % shows no
shrinkage between 6 and 17 GeV for 0 < -t < 0.5 (}ev2 corresponding to a

constant & .. T 0.
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Naturel parity exchange

H H
L=loy *o )R A, =x1)

also has Xope = 0 for =t < 0.15 GeV2 but seems to behave more like expected

ff

A2 exchange at larger [t] although ae is a bit too large there.

£f
*
Good dats relevant to 1 exchange exlst on KN -K N at 64l end 13

GeV,m r photoproductiongh TN —)TriN, and viA (mostly natural parity ex-
change) and np -» pn, pr —nn.

Reactions with 7 exchange are rather complex in the fact they
generally involve many exchanges,and it is clear that the underlying emplitudes

can only be uncovered by complete measurements. There is however good evidence

here that the identification of t-channel quantum numbers with "pure” exchanges

fails, presumably because of large sbsorption correction to 7 exchange, spilling

over to ¢ = +1 amplitudes. Of course the proximity of the 7 pole from t =0
makes 7 exchange something unique where some of the Regge character shown by
cther exchanges may be vwashed out. For practical purposes it is very important
to understand T exchange since 1t is one of the most productive areas of
meson spectroscopy through 7r snd K7 scattering, and improved knowledge of
the 7w exchange amplitudes will consolidate the process of extrapolating to

the pion pole.

Baryon exchange

The experimental situstion is rather poor since cross sections in the
backward direction are small at high energy. For allowed baryon exchange, s
dependence vary between a(0) = 0 and {0) = -0.7. Loocking at the s depen-
dence of the backward pesk over a large energy range {for example in Fig. 13),
we notice that s channel effects are still present at energies ~ 5 GeV: a
consequence of this fact is that data at higher energies are needed in order to

see the distinct properties of "smooth” u-channel exchange. It is interesting
prop
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that before the s dependence of baryon exchangeé sets in, the fall-off in s is
fairly steep, 8-7 to s-ll, averaglng over resonances.

The closest we come to u-channel amplitudes is in 7N scattering
around 6 GeV where 'ITip —»p‘n’t, 1r-p -—;mro differential cross sections and
vip _,pn—i polarizetions have been measured. In terms of Iu = % () and

Iu = g- (a) quantum numbers we have (summing over nucleon helicities)

+
g do , + - 1 2
= —du('n'p—op'rr)=-9-12N+A|
d(yo:iq(_"_- —ano)—‘?‘]N‘AIQ
du du P T -9
dg_ _ dg - -\ _ 112
a T (TP o) = ol

and therefore
+ 0 -
2 1 do do [}
Inf” = = [3(_.,.__.- "]

2 du du au
2 a0
lal® = 5
+ 0 -
* do do 1 do
RQ(NA)=ﬁ[E;-2-d—a—+3E;]

From the data {Fig., 14) we see that ]N’Q possesses a dip at u ~ 0.2
GeV2 while iA|2 is structureless. However accurate analyses of the data are
not easy since they rely critically on the relative normalizations of the
different sets of data.

Important information could be gathered from the line-reversed reaction:
observed in f)p two-body annihilstions, i.e., 1-)p - 7ri1r;, allowing one to
separate the different signatures. Deta exist at 4-5 Ge\lh3 but relative normal-
ization with 7N data is difficult and the energy probably not high enough.

In any case s dependence of annihilation dats is genermlly compatible with

the corresponding backward data.



(b) Exotlc exchanges

Two definitions of an exotic exchange can be adopted;

lst kind: when quantum numbers sre different from those of the 1 and
§ SU(3) representations for mesons or 8 and 10 for baryons.

2nd kind: where quaentum numbers cannot be generated by a simple quark
model with qa for mesons and qqq for baryons (more

restrictive definition)

-experimental evidence

I=2, 1= 3%/2 meson exchange

Cross gections for forbidden centre-of-mass hemisphere for the processes:

- + -

- + %o
Tp =K Z Tp-»KY
- + - - 4+ K.
Kpow7mZ KpowY
i)p T
- + -
TP STA
Kp~K Z
Kp-K T

all ghow fast fall-off in 8 (~ 5-6) and are typically of the same order of
magnitude (~ 1 uyb at 5 GeV), with the notable exception of pn —9A—A++
{~ 100 ub at 5 GeV). Almost all of these reactions do not show a peak at
small momentum transfer, thus failing to show the usual distinctive appear-
ance of crossed-channel exchenge: an exception is pp ST et 5.7 GeV/e
although the slope is somewhat small (~ 1 Gev2).

The s dependence of (dc/dt)tNO shows a more interesting behav-
iour (Fig. 15), particulerly for 7P —;_K+Z-,hh although only meagre informe-
tion on t dependence is provided. A significant change in s dependence

seems to occur near 4 GeV/c however from looking at the t dependence it is

still possible that the flattening could come from fluctustions in the angular

distributions (as caused by s channel resonances, for instance). Higher s
dets are needed before a clear-cut conclusion can be drawn. Concerning the

order of magnitude, let us note that at 5 GeV

dg
at
do + +.+
E{(Trp—-)KZ)

(r'p -k'%7) -
~2 10
t~0

In view of the smallness of exotic amplitudes, it seems more fruitful

to look for them through their interference with allowed amplitudes. For example,

OZO)=J%A +J—2:A (a

AMrp =K 1/ 3 A5/ It)

+ + _+ 2 1
Almp »K3%) ='3Al/2+3A3/2

where A is the exotic amplitude. It follows that;

3/2

* do + +_+ do , -~ 0.0
ReAlngB/zq—_l.dt('lrp—»KZ)-E-d—g(vrp—)KZ)

2 7 24dg . * +_+ do , - 0.0
lA]_/Q‘ a‘g("TP—'KZ)+E(1rp—)KZ)

At 3.6 GeV, this ratio is ,025 * .045 with a systematic error of + (017 and
therefore no evidence for It = 3/2 exchange is found at the 5% level if the
two amplitudes are in phase; the limit could obviously be much worse if some
and A

1/2 3/2°
Evidence for It =2 and It = 5/2 exchaenges comes from photopro-

large phase difference existed between A

45

duction ~ comparing the reactions:
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- A+
-7 A

P

-+
m oA ReAlA;

+ 0 —— = 10 + (015
Yp -1 A lAlI2
r‘n—:‘rr+A-

+ 0

*

Tp oKL Re Ay o By
n Sx'E 5~ = 05 % .01

fAl/E ‘

Exotic baryon exchange

Fast. s dependence (~ 5-10) is seen for exotic baryon exchange (see
Fig. 16 for pp —)K+K— and Fig. 17 for K p - pK-) compared with dependence
like 5_3 - 5-1& for allowed exchange. It is interesting that exotic channels
continue the trend observed in the high-mass resonance region with no evidence
of a change in trend observed so far. Nevertheless a backward peak has been

43 in both K p »pK and pp - pp (Figs. 18 and 19) vhich is

observed at 5 GeV
at least a good hint of some kind of exchange. It is unfortunate however that
these healthy peaks have almost disappeared in the preliminary data of Ref. U6
at 6.2 GeV/c. So there again it seems that fluctuations (s-channel effects?)

are occurring over and above a steeply falling s dependence which still pre-

vail at 6 GeV. The ratio:
da - -
oy (K'p »pK')
dg 1o ¥
du (K'p ~>pK") w0

-2 -
is ~ 10 © at 5 GeV/c, but has already fallen to ~ 210 3at 6.2 GeV/e.

-experimental difficulties

Some difficulties in interpreting an exotic peak have been pointed

- + -
ocut when s resonance is produced.lﬁ As an exsmple let us consider T p T A .
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T a
LI
It =2
P o P n

(a) (v)

One would like to describe phenomena with diagram (a); however processcs
(b) can also contribute and reflect into the (mT+) mags spectrum at low mass
simulating a false A peak, It is amusing that to achieve this effect
TF+TI'- - 1T-7r+ scattering has to occur--also an exotic backward process--but it
will do so at & much lower s value and hence the process will still be
dominated by mm resonances. Since these reflections are still badly under-
stood, we think it is safe to use data involving only stable particles, i.e.,

f)p —)E+Z-, K-p —-)pK- and fyp -»pf).

-interpretations.

Real exotic particle exchange is not likely in view of the absence of
a persistent peak at small t (u) although the s dependence of K_p —)pK-

¥*
a ~ -k does not rule out a 2 of mass 2-2.5 GeV for a canonical a' =1

eff
Regge trajectory and a spin of 1/2 or 3/2.

Direct channel effects could be responsible for fluctuations in the
angular distribution around a collective steep s dependence. It is then
expected that at some energy some exchange will take place in the crossed
channel where the most likely candidate is double particle exchange which

certainly is the cheapest way to generate exotic quantum numbers. However

they have not been seen yet.



-violation of quark selection rules

In the simple quark model the ¢ meson is a M system and therefore
couples very weakly to non-strange particles. This is observed for exesmple in
bvackward scattering around 5 GeV where processes like K_p - Ap and K—p - D
occur, but K‘p — A¢ has not been detected yet.

Recent results on ¢ forward production in 7 p - ¢n have been obtained
recem;lyl“8 showing a very fast decrease of the cross sectlon like 5-8 (Fig. 20)

572 . me aifrer-

where & corresponding allowed process 7 p —»un behaves &s
ential cross section is flatter for ¢ (slope 1.k GeV2 at 5 GeV) than © (slope
~3 GeV_E) production. Thie reaction is rather interesting because all channels
are suppressed by the quark model: s-channel non-strange resonances will not

couple to ¢n, u channel exchanges are prohibited by the same properties and

t-channel exchanges are suppressed because they cannot couple to both upper and
lower vertices. The only reasonable candidate to generate some amplitude seems

*
to be two-particle exchange such as K-K  which is not prohibited by the quark

model. Although such an explanation would not be inconsistent with the ratio

drp =) 551072 at 5 Gev, and the shape of do/dt, the steep s depen-
ol p ~an)

dence is somewhat surprising.

(c) 8U(3) symmetry.

We know that SU(3) can only be an approximate symmetry of the strong
interasctions but it is important to see how useful a tool it can be in under-
standing two body reactions. Even though it is not exact, it cean still be help-

ful in organizing our systematic understanding of exchanges.

t =0
The difference between O!p(O) = .57 + .01 and am(O) = ko + .03
ig not accounted for by the p-o mass difference and lineer trajectories

of same slope since it yields oz; = .97 + .0k and O‘zl; = 1.2 + .1. It there-

fore seems that p and o exchanges break SU(3) symmetry, while p exchange

with different external marticles is consistent with symmetry (OLZ(O) ~ OZ;(O)).

On the other hand the residues show a 20% breaking

=1.6 + .1

1

instead of 2 for exact SU(3).
The relationship between the residues of P and cuK cannot be tested

well because, since 011; ;4 C}u() the comperison depends on any scale factor s in

[¢]
(s/5)%

t f 0
SU(3) can be applied to two-body reactions and yields relations inde-
pendent of any dynamics producing the reactions. For example, the following

equalities between amplitudes are predicted:

AK D »k°Z%) = A(KTp »1'E)

A(K'p =K p) Al p »7p) +AKp o7 2)

#

1§

¥4 +)

*
A(K+p =K +p) A(1r+p - p+p) + A(1r+p K Z

J2 A(rp = 7Tn) 33 alrp kA9 - alrp - k'E0)

These relations are in general badly viclated but they do not teach us
a lot about the structure of the breaking. It is more useful to isolate t-
chamnel exchanges in different reactions and relate them using SU(3). Such an
exercise awaits some complete amplitude analysis such as in hypercharge reactions
to compare K* exchange to p &and w exchanges. Before this ig done we can
go a few steps in this direction in writing down SU(}) relations when some
restrictions are imposed on the t-channel exchanges. In particular, if we
assume exotic amplitudes identically vanish, then some new SU(3) relations

can be found: for example, take the general sU(3) relation
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A k%) + VT A p o1 E) =3 AK D 2k ET) - A(Kn »k°F)

vwhere the amplitudee on the right-hand side are exotic in the t-channel and

can be set to zero; we obtein the simple relation:
aa ..+ O ++ do .- ot
dt(Kp—aKA)—jdt(Kp—-vwz)

* *
expressing SU(3) symmetry between (p,Kv) and (A2 ,KT) exchanges. However
this kind of relation 1s expected toc be more reliable when there is & dominant

helicity amplitude such as for p and A2 exchange ¢
da 4.~ =0 dg 4.+ 0 ag , - o] dog 4 -~
E(Kp—'xn) +51—:(Kn-»xp) =c—1€(7rp—;7rn) +5a-€(7rp—»nn)

Such a prediction 1s succesafully compared to experimentug in Plg. 21.

SU(}) symmetry applied to vertices can help us understand the empirical
helicity couplings which we have derived from experiment. The coupling of vector
and tensor mesons to BB is expressed in terms of & symmetrlic octet coupling
(d), an antisymmetric octet coupling (f) and & singlet coupling. Expressing
the fact that ¢ and f£' completely decouple from NN leads to SU(3)
couplings depending only on £ and 4 for each helicity amplitude. Table 6
shows the couplings for vector mesons and thelr numericel values, ag compared
to ppp helicity non-flip, obtained with (f/d)“ = =3 (in order to reproduce
(opp/pp), ), (£/2),  =1/3 (so that (upp), =0) and (pEp), /(ewp),, =3
from 7N emplitude analysis at 6 GeV. We see that, as 1s experimentally
observed, the l(; couplings--also the K;, couplings-~do not show a dominant

helicity transfer.

3. FPhasges
The phase of an emplitude 1s in genersl hard to mweasure experimentally.
At t = 0, the optical theorem give one method while, at t ;4 0, one need some

interference with a known smplitude.
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(e} t =0

Coulomb interference

Existing measurements sre still very fragmentary. 'rrtp ie the only
systematic study from 8 to 20 GeV5 0 and the data can be used to measure the
phase of (P + £) end p exchange at t = 0. It schows that the phase is givén
correctly by dispersion relations, hence checklng the analyticity properties
of the forward amplitude. The phase of the even-crossing part (P + ) is
~ 100°, while for the odd-crossing part no more then the sign is really
measured {Re p/Im p > 0).

At 2 GevV/c in the 1rip system, & new plece of datasl yielda:

Re(P + £) = (6.2 + .U5) mb

(P + £) = 32.45 mb

3

[}

Re 2.25 + .45) mb
{ p = {2.25 + .45) o o= (34 + 6)°

Imp=3.35mb

where the p Regge phase 1s 39°.
+
The situation-in K p 18 still worse, since we have only & few good

lovw energy po:lnt:ss2 and very questionable high energy determinstions. Below
3 Gev, Re(k'p) 1s large and negative (a = Re/Im = -0.4h &t 2.6 GeV) while
Re(K-p) oscillstes in the resonance region and then seems to settle to very

amall values. The corresponding phases are found to be:

P (ev/e) Hlp g A,) oo+ )
1.2 97° . (22 + 5)°
1.8 98° (35 + 2)°
2.6 100° (38 +3)°




where the ® Regge phase (w dominetes over p at t = 0) is 53° for
Ctm(O) = 0.41. Reliable high energy determinations of the forward phases in

t
K p are particularly wanting.

Special Case of I{gp —ngp

- o]
One can use the CP violating decay K_g - 7r+'rr to interfer with KS

regenerated from a hydrogen target. Knowing the decay phase L both the
regeneration smplitude and its phase are measured at t = 0 Dby observing the
interference pattern as a function of the KO decay time. The probability

distribution of events is:

12 exp(-T 1)+ 2}Rr|+_} exp[-(r‘sﬂ"L) %} cos(dt +6- ¢, )

& 1n)? exp(-Tg7) + |n,_ .-

ie i¢

where [A(Kgp —axgp)]tzo N is the CP violating amplitude,

0

o] -0
8 the K%CS mass difference and I‘S end T the KL and Ks inverse

L
lifetimes.
The results show55 that between 10 and 50 GeV:

-¢ is roughly independent of s

=
i

(<131 £ 8)° = o + (49 + 8)°
-O.'eff(O) = 47 + .13 1in sgreement with the s dependence of
oT(K'n) - GT(K+n) related by SU(2) invarisnce to UT(KOP) - UT(KOP), the
imaginary part of Kgp —-)Kgp at t = 0.

Using the optical theorem

Measurements at t = O of do/dt yields (Re A)2 + (Im A)2 and

using the optical theorem {Im A ~ o ) on can deduce the absolute value of

T

Re A. This approach has not been very successful in elastic scattering because

of the smallness of the real parts and problems connected with relative

normelization and possible curvature of do/dt at small t. However the

approach has been most fruitful for odd-crossing amplitudes.

k
N

Im A7 p — 7r0n)

i

lop(mp) - oy 7'p)]

i

In AGKSp ~KJp) = - F= [oy(Kn) - oy(K*n)]
Pigure 22 shows the ratilo o = Re A/Im A for 'n'-p —ovron, yielding a phase
¢ =1+ (k3.5 +2.5)° corresponding to a Regge ap(O) = .52 + .04 4n good
agreement with the s dependence of the imaginary part. In I(gp —yl{gp
the phase is ¢ + (40 + 10)° giving aw(o) = .55 + .11 in accord with direct
phase measurements and the s dependence of the corresponding total cross
sections.

A more interesting exercise can be carried through for the KN sand

KN change exchange reactions:
- 2 1 - . (42
[m(k"p - Kn)]° = 1z [og(K'n) - o (X7p)]
0_ 442 1 + (12
[En(k™n »K°p)]° = 1z= [oy(k"D) - 0,(K"n)]

In Fig. 23 we compere the values of [Dn A]2 to the differential
cross sections at t = O: it strikinély shows that the process K—p -)Kou
is purely imagipary at t = O, while its counterpart K+n —vKOp is purely real.
This result confirms some of the duality ideas that we are going to discuss

in Chapter IV,

(v) £ #£0
A very attractive method which can be used in p and ® production
+ -
is provided by o - w electromagnetic mixing as observed in the w 7 decay

channel, leading to the exciting possibility of measuring the production phase

difference between p and w.
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Corresponding to the production amplitudes:

one can chserve interferences of the form:

(o) w) = & /L w(0) HTW(@ F)
A A A
vhere £ 1is & coherence factor and ¢ 1is the phase Aifference including the
phase of o -o1r+'rr_ (xnown and checked in e+e- production or p and w photo-
production where the hadronic phase difference is small). Ideally if all the
smplitudes were sorted out one could measure the phase difference for each
helicity state; however experiments have not reached that point yet and seversl
helicity states are still summed over so that a coherence factor has still to
be usged.

This method has been used recently by an Argonne group in a rather

elegant way.5h They measured the charge-symmetric processes
- + -
TP-STT n
+ ~ 4
Tn-7w7y¥ b
which should have equel cross sections except for SU{2) electromagnetic break-
ing. The interference pattern is striking in the mass spectrum of Fig. 2k,

showing a constructive interference for 1r'p —-»1r+'rr-n end a destructive one for

+ -+
Tn 77 p. The interference term can be projected out:
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- . - *
A=olnmp =7 7)) - olrn > 1 p) = b4 Re(p )

for different 7\7T'rr and neturalities E&.

Figure 25 shows the t~dependence of the phases and some idea of the
& dependence. The phese of the unnaturel perity exchange Ao is (122 + 6)°
wbere one would expect 90° for 7 - B exchange degeneracy (7 in p productior
and B in o production). The phase A+, the amplitude with natursl parity
exchange, is changing with t golng from 90° at t = O to about 0° at

t = ~0.3, there, p ~ A exchange degeneracy would predict - 90° and so, again,

2
we see a strong departure at small t from the expected exchanges, a dls~
crepancy &lready noticed with the behaviour of O:eff(t).

4 p -~ @ ipterference analyslis has been carried out by the CERN-Munich
group55 cbserving only 7 p - T st 17 GeV/c. Their results for the phase
of the naturel parity exchange 1g in sgreement with the previous analysls, but
they dissgree on the phase of the unnatural parity exchange with )\mr = 0t
with the phase convention of the Argonne group, they find phases below 90°,

showing elther ap unsuspected s dependence or some experimental dlsagreement.

Similar measurements could be extended to other reactions such as
K'p = (p,0)A

where the interference effects could be even more visible due to about equal

cross sections for p and @ production; in constresst p production in =N
+ -

is larger than ® production and the smallness of the decay rate @ -7 T

renders the observations rather difficult.



TABLE 3
Ampldtude P TOTE (v /o) g (mb) o
P 4200 3.43 + 0.07 .57 + .01
Pr 3-200 . 2.16 + 0.12 .57 + .03
@ 3-200 13.0 +2.6 .39 + 0L
Ae 3-200 1.8 +o0.2 48 + .05
AKd) ~ @ 6-200 RS
Alpd) ~ @, 6~200 RS
TABLE b
Reaction exchanges a(t =0) Ref.
TP -»1'n p .58 + .03 36
TP -nn A, b7 107 37
K-p —»Eon g+ A2
K+n —aKOp o - A2
K.:p —'Kgp ptao
Koa - K2a w 43 38

o~

vl
=4
]
i

:

Exchange Dominent helicity coupling to BB
P+f ++
W ++
g
Ae b
T +-
¥ *
X, KT ? (++ important)

TARLE 6

heliclty non-flip

helicity flip

VEE vertex SU(3) coupling coupling coupling
- 1
pED —== (£ + a} 1. 3,
J2
- 1
P ~= (-3 + 4) -5. 0.
Jz
* - 1
K Ap = {3f + d) 2.3 2.6
Jé
* - .
KZp -f+d -2.8 2.1
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III - EXTRACTING AMPLITUDES FROM INCOMPLETE DATA

There is s0 much data in incomplete form and so little information on
amplitudes, that it seems worthwhile to try methods vwhere a few amplitudes can
be extracted out in an approximate way. On the other hand we have treated real
parts and imaginary parts as two independent sets of observables where we know
that anelyticity relates them: so it seems that anslyticity can be used in
amplitude analyses in order to reduce the number of measurements to be carried

out.

1. Projection of One Amplitude: Exchanges ir Elastic Scattering

Amplitude amplyses at 6 GeV tell us that the Ii—, = C, "™ anmplitude is,
to a good approximation, helicity non-flip. This point is alsc established in
pO photoproduction, a process with very similar amplitudes (P + £). Turther-
more, from the energy dependence of elastic goattering we know thai the dominant
part of this amplitude is contributed for by the Pomeron at energies sbove a
few GeV. We also know that the phase at t = 0 is very close to Tl’/2 and we

do not suspect that it will change drastically away from t = O, as long &s we

stay in the very forward region. (We shall come back later on to this assumption. )

With these experimental fzcts (and one assumption) in mind, it is emsy to see
that elastic processes will provide very direct and interesting information on
exchange ampiitudes from their interference with the dominant (imaginery, heli-

city non-flip, I = 0) 4diffractive amplitude.

t

Consider the elastic scattering cf particle A and antiparticle A

b4
on protons, expressed in terms of even and odd-crossing amplitudes F ¢

d15

40 (ry - N N
ac (Bp) =L IRy + R
A
do et -2
H(AP;‘=§!F;\'F‘

49 g0y - 4o =¥ N
at (Ap) dt (ap) = i b Re(F7\F?\ )
40 /¢ L do v 5 +.2 2
e (Ep) + " {ap) =1 L.[]F.}\] + !F‘\} ]

+ X :
At high energy F++ becomes the dominant amplitude and we are going
N -2 .
i prejest all amplitudes onto it. We shall further neglect ]F ] in front

+i'2
|

+ +
of {F and 'E’+ in front of FH_. We have therefore

- - - + -
22 (Rp) - S8 (ap) = b 000 0y B(FL )y (F)y v B(FL) (L)L

dt 4 7
+ -
W (FL)
40 (= da Caet 32 b2 - 1B -2
32 (Bp) + 57 (ap) = 2(F, )" +2l¥,_|" + 2[F_|" + 2[F |
+ 2
z2(F )
Jeading to
do .~ do
- 5 (Bp) - 3 (Ap)
(¢, ) =4
++| A

\J8IS2 (Rp) + 52 (9]

AA can be measursed in 3 processes isoclating the following amplitudes:



+ ™
TP Imp,,
* K X
Kp Im(p + u))++ ~Imw,
4 D
PP Im{p + u))‘H_ ~ Im wf+

* 6
This method was spplied first to K p scattering at 5 Gev/c5 and
clearly shovwed that Im w]ir had zeroes at t = -0.2 apnd ~ - 1.3 GeV‘2

(Fig. 26) and could be fitted rather well to an expression

-

K Bt
ma, = F(t) = Ae JO(RJ-t)
with R~ 1f. It is rather illuminating to transform the amplitude into impact

parameter space using a Fourier-Bessel transformation:
F(v) =f at F(t) 3.(v Jog)
0

With the parametrization for Im u)f{_, we find

“Te 4 B+ b2 Rb
Im o, =3 oxP (- B I0(2—1'3;)

where Io(x) ie a Bessel functicn of an imaginary argument. Im wxf_+ hes a
strong peak around b ~ R and most of i1ts strength is given by the impact
parameters around this value. Alternatively, it is probably better to use
the exact Legendre expansién at lower energiles:

K 7

J
Imw,, =—52 (J+3z)d1
++ keJ 2 5

The partial wave amplitude a_. 1s then given by

J

1 f X 8 . .
B = e—— dt Tm & cos ¢ (P! - PL4)
'l‘"' JH5 -3
J T (27 + 1) ++ 2 J+5 J-=

amplitudes from the data of Ref. i3: the peripheral

Figure 27 shows the 8y

nature of Im wf is very dramatic. This is to be contrasted with the impact

+
parameter structure of the Pomeron amplitude which is best approximated by the

+
K p amplitude itself.56 Figure 28 shows that the Pomeron smplitude receives

contributions from all partial weves up to the most peripheral waves, con-

o
sistent with an optical picture of diffraction. Notice that Im m§+ in

Fig. 28 appears as a relatively minor correction to the dominant diffractive

term.

More information can be gathered from the systematic data betw2s
and 6 GeV obtained by the Argonne group,5 an example of which can be seen in
Fig. 29. All the measured "amplitudes"” &y g,p °re fitted well with the form
P JO(R J=%) for 0< -t < 0.8 cev™ (Fig. 30). Of course, &, ie suall end
and its t dependence is not well measured and suffers most of all from
systematic uncertainties between 1T+ and T data. Beyond ~t > 0.8 GeVe
the data devliate considerably from the low t fit especially at lower energies:
we ascribe these failures to helicity-flip amplitudes and real parts and expect
the effect to decresse with energy. Already at 6 GeV, the fitted form for &
works well up to -t ~ 1.2 Geva, namely, the second crosg-over zero. It is
hard at these rather low energies to make acuantitative study of the s depen-
dence of Im (ui_ and Im wf+ since s-dependent offects affect the extraction
of the amplitude. Qualitatively we have the following behsviour:

~R 1is approximately constant at about 1f and does not change too
much between the three processes.

-The shrinkage question is not settled (s dependence of B).
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-Im u§+ and Im w£+ are becoming more and more similar in shape as
the energy increases, up 1o a constant factor of 3 predicted by the quark
model.

It is interesting that the peripherality of the « exchange amplitude
has the consedquence that total elastic cress secqions for K+p and K“p on
one hand, and pp and ip on the other hand, are nearly equal, althcugh the

differentisl cross sections are very different. Indeed we have:

#fét [S% (Ap) - 22 (ap)] = hAA'd{.dt [(BHB)E JO(R~f€)

dat
where
2R 0+ F ) zar T
giving

Tanerically at 5 GeV the difference smounts to .3 mb for K p (8%) vhile
+ \
it ig 3.3 mb for p p (23%).

This method of extracting the imaginary part of the odd-crossing
amplitude through elastic scattering has limitations of both thecretical and
experimental origins.

-on the theoretical side, limitations cccur from 2 opposite directions.

- +
On one hard, if Tm F£+) is small (as in 7 p), then its extraction becomes
sensitive to neglected amplitudes (flip)s on the other hand, if Im Fi;)
(-)2
becomes tooc large, one can no longer safely neglect {Fk )]

(-)

KNCwW r
kncwledge of Re o

involving the

in particular. Therefore we can say that gualitatively
the method will work best for Kip, will improve with energy for ptp and
could be questionable for w:p. It is fortunate that the worst case of nﬁp
can be tested against the results of the complete amplitude analysis at

6 GeV: in Fig. 31 we see that & agrees very well with the "exact”

e

o

1 -
smplitude (F++)” giving us some confidence in the method. For N hovever,
one does not need even to neglect IF(_)|2 in the sum since it is measured by
do/dt (7 p —*an) and can be subtracted out:
do , - - dg , _+ + dg , - 0 (+),2
e (rp —7p)+ Y {(r'p -7 p) - Fr {r’p w7 n) =2|F
-on the experimental side, relative normalization between Ap and

Ap measurements is of crucial importance for measuring the shape of Alt) aund

in locating the position of the zerces. The uncertainty in the cross over

poesition tc is

n,o= 7.1, v o= 7.7 (in Ge¥ 7Y
- N N 2 -
yielding an uncertainty £mc = .0k GeV™ for e 2% relative normalization

uncertainty.

Detailed studies of elastic scattering will teach us several important
features of the peripherality picture we have of TIm Fg;). To see that, let us
consider the successful parametrization Im FS;) = AeBt JO(R J;b: the peak
position in b space is determined by R and the width of the distribution
is controlled by B. Then for a given amplitude, say Im Fi;)(Kp), one would
1«ke to know the s dependence of R and B: for example, if B increases
»'th s (shrinkage), does R also increase, thus preserving the peripherality
pi:ture? Also the comparison cf n;, Ki and pi at an energy higher than
& .2V would be very interesting since these processes have diffcrent inter-

action volumes, as Indicated by the wide range in the total c¢rcss section

values., The indications, at © GeV, are that thers does not seem to be any



simple relationship between the absorption radius R and the interaction -rN scattering

radius as measured by the total elastic slope. New experiments are in progress (F;__ )J_ is approximately equal to Re Pyr in excellent agreement with

at SLAC and NAL and it is interesting that, from the preliminary measurements, the complete amplitude analysis, as seen in Figs. 33 end 3L. It has a double zero et

- + + 2
the method of extracting Im FL) will probably work in K'p and pp up -t ~ 0.6 GeV , like a pure Regge pole amplitude

to rather large energies (~ 100 GeV) since the difference in slopes does not Re p - tan m im p
+- 2 +
decrease too fast with s (Fig. 32).
where both Tm p,_ end tan(m/2) venish &t -t = 0.6 GeV®. The energy

(b) Polarizations in elastic scattering

dependence of (F;_) L between 3 and 14 GeV shows a slightly faster fall-off

Let us consider polarizations for elastic scattering of particle A
than given by the p trajectory as messured in charge-exchange scattering.

and antiparticle A on protons and isolate leading terms in the sums and the - - o}
However (F+_ )J_ is not quite Re F+_ since the phase of F++ can be changing
differences. -
P N _ N o ox with t, hence inducing a false t dependence in (F+_ )_L'
P2 (Bp) = - 2 mi(F,, + F)(F,_+F )] +
g + +- - (®,. ), is obtained from the exact relation between polarizations and
io . . . shows no clear structure (Fig. 35); an £ Regge pole would not have structure
P8 (ap) = -2 m[(F', - F _)F, -F )1
at s A - either since
mx
Re f, =-—cot =5 Im T
. p 39 a9 = 2 7 e
ap = =2 (Ap) - P 37 (ap)
% _ A t 1
N Im{FL_ F+ N FH F:*] ccurate polarization data at 10 end 14 GeV seem to indicate a single zero
- - 2
. . N around -t = 0.8 QeV™. It is not clear whether this is due to the Pomeron,
= - WL (F )+ (P )y (P - (P ()]
/L S, -
o + ” +-k ++0k M “ f exchange, or both.
+ o, -
- F (F ) -KN scattering
(F;_ )J. is dominated by p exchange since ® is mainly helicity non-~
o p % (Ap) + P % (Ap) flip; it is rather poorly determined from the data, but it is consistent with
Re p"  data scaled using SU(3) symmetry (Figs. 36 and 37).
+ ¥ - _¥ : -
= - b InfF_ F, +F F 1 i
- + - Contrary to N, the amplitude (F _); is large indicating a large
4’
+ ot - - - -
= - LL[F‘”(FJF_ )J_ + (F++>|| (F.,._ Jy - (F_H.)_L (F+_)“] coupling of A2 exchange to helicity-flip (as we already knew). The data

~ -yt (FY) clearly show that Re A does not vanish for 0 < -t < 1.2 GeVe unliike
4 e ke +-

-

Re o, (this is consistent with the Regge phase even if ImA__ =0 at
- o

-0.6 Gevz).

+
In the case of 7 p scattering, one gets the exact relation:

dg - do + dg - o) + +
P {rp) + P33 (r'p) - P = (rp =mn) = -brF++(F+_)_L
+ +
These relations can be applied to 7p and Kp data and teach us the

following properties:
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2. Making Use of the Analyticity Properties of Amplitudes

Fixed -t analyticity provides in principle a very powerful constraint

on amplitude analyses. This constraint is generally expressed as a dispersion

relnatic: satisfied by the invariant amplitudes where the real part at s = S
is releted to an integral over the imaginary part as a function of s. Thus

knowing Im F(s,t) over a large range of s values from threshold to 8 ax
determines Re F(s,t) for s << S pax’ therefore halving the number of inde-

pendent real amplitudes in that interval.

Dispersion relations have been experimentally tested at t = O only

and in a few cases: w;p between 8-20 Ge¥ and pp over a larger energy range.

We will assume the validity of the analyticity properties of the amplitudes at

all t wvalues.

57-69
{a) Application of dispersion relations to 7N amplitude snalyses’z 77

The main idea is to develop an iterative procedure using the datz on
da/dt and the dispersion relations. Starting from the fsct that do/dt is
predominantly {Im A;)E, one can use JE;7E% as & zercth order input to the
dispersion integral, which result is used to correct dc/dt and so on.

Schematically,

l

A,(O) Dispersion relation
.

(0)52
do ., (Im A+ )

Re A'

PN < mmmmmsmme ImA‘(l)JJ\( REIA 0)2

For the A' even amplitude, the dispersion relation reads:
+ P s iY
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+ o 1 [
VF_(v,t) 2 , Imal(v',t)
B L2y dav +
Re Al(v,t) = —Dmrm + C (t) 4 =P f =2 a

t v
1-—x Ve -
5
L Yo
ith am 4
Wi Yo = Ty T T
5 - u t
AR TRl S T
_14' 02 v
rB(s,t) =% B 5 {Born term)
vy -V
2
e otm, L
VBT T EM T

2 5 T
and where g is the 7NN coupling constant (g~ /hw ~ 14.6) and C+(t)

sustraction function.

=
[
@

These aralyses make use only of do/dt (r'p), do/at (7 p),
agfat (v p '?WQH), P(n'p) and P(w p). They do not use any date on
P(Wfp —ewon), nor do they rely on A and R measurements. The main conclu~
sions reached by these studies are:

~the t dependence of Re AL shows & slow variation with t of
the phase: ¢++ increases from 101° to 117° when -t increases from O to
O.h GeV2 (Fig. 39) corresponding to a flatter t dependence for Re A; as
compared to Im A; (Fig. 38). Uncertainties in Re A; arise mainly from the
low-energy part of the dispersion integrals.

~the determination of Re B+(s,t) is not so reliable and does involve
some assumptions. However good agreement is found with Rt data at G GeV.
It is interesting to note that, in general, only using P and du/dt data
leaves an ambiguity between flip and nonflip amplitudes; this problem is solved
here since in the phase shift region the full amplitudes can be reconstructed

and propagated to hiigh energy.



-Re A_’ shows a zero much closer to the cross over zero of the imaginary
part than indicated by amplitude analysis; this effect could come from the t

ey

dependence of ¢ since conventional analyses assume ¢ = Tr/: independent

++ 4+
of t. This shows a much closer similarity between the t dependences of
Re Fi+ and Im Fi“ with both zerces around -t = 0.15 GeVe. Also, since the
behaviour of Re Fir was mostly derived, in the 6 GeV amplitude analyses,
from the charge exchange polarization--g wesk measurement--we suspect this new
result to be more reliable., Actually this analysis can be used to predict PO
and it is seen in Fig. 30 that it prefers the Argonne results to the CERN
results (in agreement with our discussion of amplitudes at & GeV).

-Re B_ shows a remarkable Regge phase (Fig. 38) as ve already knew
from just looking at AP.

This method using analyticity appears most interesting in that it pro-
vides solld constraints for amplitude analyses and does not use the weaker and
most controversial sets of data. However the use of dlspersion relations is
cumbersome, really dependent on low energy data, suffering from inconsistencies

between different sets of data over these large energy ranges and finally not

very transparent.

(b) Derivative analyticity relations

We will show that at high energy the nonlocal connection between real
and imaglnary parts can be replaced by a quesilocal relation between the real
part and the derivatives of the imaginary part at the same energy.

-derivationéo

Consider an even-crossing amplitude F+(s,t) normalized to

.
Tm F+(S,O) = 80,

It satisfies a subiracted dispersion relation where the subtraction constant

«

+(t) and Born terms have been omitted for simplicity:

t

Re F+(s,t)

27
K SO s s - S‘;J
s-€ . f oo \
262 . 4s' mF(s't) . f s’ mF (s,
T en—n-)O e’ 8'2 - 52 g s'c ~2
+€
(e >0) " %0 s

Integrating by parts, we get

P 4er I F(s%,8)
f s 2 2
. st . 8
0O

. s-¢

1 . ot ImF+(s ,t)
T T oes ls-s"] 57
%o

8~€
1 ds'’ s+s’ [ 1 d } v
= - = t
t s f? ey - s g | mEGLY
s

vwhere the first term disappears when teking the principal value except fcr a

—Lln<s+so>1mf’(so)

2s s - By 8¢

term

which is negligible for s >> s.. The dispersion integral then reads:

0
o0
. 5 ds’ s+s ' a 1 ot
Re F*(S,'«) =T—T'_P/—;r in ——-—I—) [(—i"s‘r—s, } Ixnr+(s ,t)
ls+s']
o

Introduce the rapidity variasble e = s

y - ! ! a
e ¥ {y-v'] 1 i
Re F(y,8) =S P f ay' e 1 (coth > ) [dy, 1] In ¥, (yit)

Yo

More generally we can rewrlte this last equation as:

)

Re F+(y,t) = e Pf dy' e(Ohl)y| In (coth -LL;:'—L) [Ot -1+ 'E‘r] (Im F+(y;t)e-ay|)

T ay
Yo
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which is very useful since it allows us to use Im F(s,t) s_cx as our working

function and vwe can choose «Q in order to minimize its s <dependence

v = 3 (com L'l )

Yy

!
i
!
!
|
!
!
{
”

The reet of the derivetion is tedious, but straighiforward. We expan

In F {y',t) in power series of (y'-y) and ve extend the lower limit of the

integral to -« (for y large enough). We finally get

\ a -
e ¥ (y,t) = e tan Tla-1+ &)1 (e A F (y,%)

2y -
= L (¥ (y,0)e™Y

canTZ (e IR CTIR D I L . -
tan[z (-1 Im F+(/,t/ + 5 COSQ[E Py 3y
2 s

For an odd-crossing amplitude we would have instesd:

Re F_(v,0) = e¥ tanld (@ + 21 (¢ I F (1))

ay -
= tan(F) I F_(y,t) + § —5>—r ad— (T P_(y,t) &™) + oo
cos (mfay

These relations should not apply at too low an energy since the lower
limit of integration Yo vas moved to -« and threshold terms have been
dropped. On the other hand, pole terms can be added to the final answer.

We can choose the parameter « to minimize the s dependence of the functio

to be differentiated. Conveniently we take

b

\

JEREN

9}

Im P
1itude a=1 Re F, = & ten(Z < ks
even amp . 2 ay =
. T da
odd amplitude a=0 Re F_ = tan(g E};) Im F_

Whereas an integrael dispersion relation is a sum over the imaginary
part involving a large range of energies, these new relations necessitate
the knowledge of the derivatives of the imaginary part taken locally. In
practice, however, one will need some range of energies to measure the deri-
vatives. It is obvious that this approach will only be frultful if only a
small number of terms can approximate the true answer--a result to be investi-
gated or the data.

Before going further, let us present a more intuitive way of deriving
these derivative relmtions. Anslyticity in energy allows one to write the
amplitude in terms of a Mellin transform in the complex J plane {t-channel

[
analyticity) 1:
+
M (s,t) =fdJ[sJ * (-s)J] ™J,t)

with Im M = saT

J oo

8"+ (-8)" = 58" + (se 2

-i7r)J N ,)e—i('lr/’E)J sJ ‘

Any real constant can be incorporated into the real function (T, t):
4 -i( +
M (s,t) = }H fdJ KR L TR

For an even amplitude;

+ - . 3
M (s,t) _ de I3 e~1(ﬂ/2)J L)
S -

{J-10y -+

P S - B . N 7
s-ifare (5t {3 - 1 tan {5(0-3 111



N
Re M (s,8) _ -f a7 &I %54 tanll (3-10)

i

- tan(¥ d—‘;)f ar TV oty

leading to

+ +
Re M T 2 Im M
s tan(e dy) ( 2

For an odd amplitude:

M (s,t) = ifdJ ¢F T(a,) (1~ d tan(g M

- g -
Re M (s,8) = f a5 &7 (3,0 tan(Z )
= “t;an(%r Ed})fdJ ") ?(J,t)

giving

Re M = tan(g (—%;) Im M

-application to total cross sections.éo

Separating into symmetric and antisymmetric parts we have:

_‘+_ I__ii..__ +
Re F = s tan(2 o s ) UT(S)

b=}
Y
=
il

a4 -
= tan(z 7irs) sope)

Above the resonance region a;(s) is a swooth function and retaining
only the first derivative is a good approximation (Fig. 41). Good agreement
is found with calculations using dispersion relabtions.

We have seen in Chapter II that in general 0;,(5) was power-behaved,

- -1
UT(S) ~ ¥ and consequently:

R_e__g‘_: = tan(™®)
Im F 2

a result generally labelled "Regge" bvut in fact following direct}.y from power

behaviour and anslyticity.

If asymptotically cx,; ~ (1n s)B (B <2) it follows that:

Re 7 - hijz)
+ 2 1In s
Im ¥ 2 1ln s

showing that (i) if O rises asymptotically, then the real vart becomes
positive (as observed in pp scattering above 300 GeV) and {1i) the resl

pert increases with In s opne power down compared to the total cross section.

(c) Avplications of derivative apalyticity relations to amplitude

.62
enalysis

With quasi-local analyticity relations, we are now in a position to
incorporste the anslyticity constraints in a convenient form, mest suited . to

amplitude analyses.

Let us consider for simplicity a process with one even amplitude:

2 do 2 2
L. i3
T (Re F)° + (Im F)

X o
Re F_ B tan(E a ) Im ¥
s 2d1n s 3

s

The iterative method outlined in parsgrarh {a2) on dispersion relations
can be implemented now in its most convenient form. For our purpcses it ig
scmevwhat more practical to use a phase-magnitude relation. Writipg the

amplitude explicitly with modulus and phase:

i¢+(s,t)
F+(s,t) = R+(s,t) e

the relation between R and ¢ reads:
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R 3
¢, (s,t) = 23 in s (1n R
or
e T 4 (o4
¢, =-F-ggy R s N
similariy for an odd amplitude:
o (s,8) =2 - T8 (nR)
-7 2 24 1n s -
or
T T 4 -0
¢ = = + o) - == 0 E
. 3 (1 03, z &y lin(R N

For amplitudes with pure power-beheviour we find the "Regge" phases:

R~s ==>9% =~ o

+

Q)

(1~ a)

E-2
i
SIS

corresponding 1o Regge smplitudes {e” +1).

In the single amplitude case we have, for positive signsture:

AVl R+(S,t)
T _md +
o st) = -5z (B g)

These simple eguations have the following important physical consequence for
elestic scattering at sufficiently high energy where Pomeron exchenge {even
a:\:plitude) dominates. One sxpscts the differential cross sections tc increase

in the forward direction and the t-slope to increase also. This means that

a finite vaiue of t at which the fu (RW/E) ig esgertially

T "o : 21
constant. ‘This “cross over' in the same amplitule at diifer

ue that the real part has & zerc st thle 2 valus [(see Chepter V).

Let us now turn to a case with two helicity amplitudes, where both the

differential cross section and polarization are measured. It is always possible

to combine the different measured quantities in

with well-defined signature.

PH_ and }'+_

equations:

Using the derivative relations, R,

equatis - is obtained for R+

sle

Given data as a function of

A 1 /
e sin”
A

)
2R, \/A - R

order tc project out amplitudes
Therefore consider two even-signatured amplitudes

, ¢ . We have the two
++ +-

)

;

can be eliminated and a differential

A2P

\
____;/

s, Als) and P{s), this equation can be

solved numerically at each t vslue end F and F+_ cen be reconstructed.

There is an arbitrary integration constant which depends only on t and must

be determined at one energy velue from

R measurements. Ap even

more attractive approach is to extend the analysis down to energies where

complete phase-shift solutions exist and ampli

tudes can be fully reconstructed.

Tt is well known that the arbitrary constant is related to an arbitrary

rotation in the flip no~flip plane which arises as a consequence of using only

do/dt and P as input.

and solve for

o see that explicitly, let us define

no-flip rotation angle)




If the polarization is small (one amplitude is swmall or they both have the same The simple phase method gives good results except where ¥ _— has zeroes

s dependence) then one has the approximate solutiocn (Fig. 43), Since Re M+ is quite small, it is sensitive to detalls o the

procedure and is reconstructed quite well except for the point vhere

9{y,t) = 8 (t) - .:L.fy ay' P(y") and the differential cross secticn bave & dip and vary rapidly
) o k)

Y

0 The above twe examples are of value %o show that o7
where Go(t) is tixe s-independent integration constant which corresponds sble and particularly to help develop an intultion aboult Lo W
physically to 8 rotation In the helicity plane and must be determined at real date.
¥ o= Y

0 ~applications to data

9]
o,
o

The amplitude for this process has oid =

. ¢]
-mathematical examples (1} Kb =K

Before using this method on real data, it is very instructive to test

it on a few examples in order tc learn about possidble pitfalls. fore 1t is straightforward to use our method.

{1) difference of two Regge poles have ‘heliecity flip and non-flip parts, res

o —i(Tr/i.’)ot1 a, ~i{m/2 )&? exchange and, sinze no polarization data
M-i- = Bls e - ;32 s € i

However the he

genersl ampldtude anal

2

at t = O end presumebly t o~ -2.5 G2V

A numerical compariscon of the exaci phase with the approximate one is shown
the phase of the helicity non-flip am:

in Plg. 4@ for the values By = 1, B. = 0.5, o, = 0.9 + t and o, = 0.5 + 0.6%.
At t = 0 ther: are actually

The zeroces of the amplitude are at PN : .
phase:s (L1} from the -  dependsnce of fdo it

[o;
bl
+
n
5
e

or (2) from the s dependence of the imaginsr

One sees that the approximately reconstructed amplitudes follow quite

. given by the opiical theorem
well the input functions except vhen the latter have dips which have been

s

completely smeared out, Away from the zeroes, the procedure is quite accurate. Ly {-} + e
— In P, - UT<K n) - 9.t a}<¢

l

W

(i1) absorbed Regge pole (Pomeron)

(-)

=0 +4

. It is remarkable that experimentally ooth {do/dt} _ snd In F
M, - e (772 [EB’C A e(l’th/A«‘B)J xpe ¥ (ao/at)
* A+B are pover-behaved from a few GeV/c to 60 GeV/c (see Chapter II) and therefore

. the phase can be obtained most easily. The results for methods (1) snd (2)
with B = 0.5(lns -~ 1 5) and A = 4, This amplitude is predominantly imagi-~

are shown in Fig. L4 and are in good agreement with independent measurements

§]

nary and the differential cross section resulting from it somewhat realistic. o
uc.ng KL - KS interference or optical point extrapolations.
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At t =~ 0.5 GeVK we haveé5

(-) T d da T
= Tay gD - f (2 x 22

indicating a very small real part in qualitative agreement with Re Py in

7N  scatiering.

(it) vp =7p.

Compton scattering is a nice example with an even-signatured
amplitude. The helicity non-flip amplitude is large and dominated by P and
f exchange, while the flip amplitude is much smaller. In the forward direc-
tion, I, = 1 exchange (mostly Ay, flip) has been measured to be small by
comparing yp and yd Compton scattering. There is no direct experimental
information on the helicity structure of It = 0 exchange, however, we know
from 7N scattering and yp —apop that it is helicity non~flip to a good
approximation and we expect Yp to exhibit the same character. We therefore
neglect helicity-flip contributions and assume the phase we obtain from da/dt
ig that of the dominant helicity non-flip amplitude. Using the data of Ref,
64-66, the resl part is obtained at mean momenta of % and 10 GeV (Fig. 45).
The comparison between. the twc momenta shows a marked energy dependence, in-
dicating that probably f exchange dominates the real part at these energies,
as one would expect a priori. Compasring Im Fo. and Re F at 10 GeV

++

(Fig. %6) reminds us very strcngly of the ¥, It = O amplitudes at the same
energy (Fig. 58). Between t = 0 and -t = 0.8 GeV2 the phase ¢+* changes

from 102° to 110°, in good agreemwent with 7N scattering.

{111} further applications in progress

The 7N cystem is currently beilng investigated using only

+ - [s AN
1 p), (dofdt) (v p —aan) and P(7 p). The {lip no-flip ambiguity

=
s}
S
1
o
~
~

{6_(t)) can be fixed at € GeV using the known amplitudes or at lower energies

Hypercharge exchange reactions constitute an interesting area for
applications since signature can be dealt with using the appropriate line-

reversed pairs of reactions. Denoting even-signatured amplitudes by 13

* *
(mostly Ko exchange) and odd-signatured amplitudes by 7, (mostly KV

exchange) we have

dg . _ m 2
I (- xKY) —;: 11% + v}\|
do (3 _F ir -y |
i (KN —»7nY) = }i T, v)\l

leading to the four equations:

1 2 2 2 2
zL= ‘T++l + fT+-i * !V++[ * IV+_1
l * *

zh= Re(T++V++ * T+_V+_)

1 * *
g (2P) = Im(T T +V V)

1 * *
¥ (ap) = Im(T++V+_ * V++T+-)
When the phase-magnitude relations are taken into account, one obtains
a system of 4 differential equations which can be solved numerically at each
t value, giving back the amplitudes with some ambiguities.
We have tried to show how analyticity can, in a powerful and very

practical way, improve cur tocls to extract amplitudes from incomplete data.



IV - DUALITY AND ABSORPTION

In this chapter we are going to briefly review some of the most impor-
tant ideas and concepts in the phenomenoclogy of two-body scattering, as they
relate in a relevant way to the experimental facts we have gathered through

the course of the preceding sections.

Duslity

(a)

Two descriptions of two-body scattering

At low energy Qj;ng 2 GeV), our knowledge of two-body scattering is
embodied in s-channel phase-shifts describing the data with resonant and non-
resonant (background) waves. As s increases this description ceases to be
practical because of 100 many waves.

At high energy we have seen that amplitudes are clearly related to
t-chamel exchanges and that, in general, only a few exchanges are required
to describe the experimental situation.

If at low energy there is little uncertainty in the analytical descrip-
tion of s-channel resonances, the gltuation is less clear at high energy:
we know most amplitudes manifest some kind of Regge behaviour, with the phase-
energy relation and trajectories approximately related to the particle spectrum.
HBence, as a starting poict, it is not too unreasonable to assume that t-channel
exchanges are mediated by Regge poles. lLater, considering some of the diffi-
culties encountered, we shall come back on this assumption.

&7

} Relating low and high energy descriptions: FESR

(v}

There must be scme relation between low s and high s regions since

the scattering amplitude is analytic in energy. Using analyticity and Regge

behaviour for high energy one can derive a finite energy sum rule (FESR).

Consider a scattering amplitude F({y) which is supposed to be a real

analytic function of the variable v every where in the v plane except for

to

inelastic cuts from ~-o to Vo and from Yo o and some isolated poles
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on the real axis.

We assume & Regge behaviour at high energy:

~imy
1+ Tk e Gk

L )
F{v) ”Eﬁk 510 oy, v

[vl > N, Bk, Ok functions of 1.

Now if we apply Cauchy's theorem

Im v to the closed contour T
FPv) VW av =0
T
T
i/ x@ -
T g v
Yo Yo /
-y W o vl
n n T N T . (-1 .
f Im F(v) v dv+fImF(v)v av + L gy T v, - (171 =0
v v ® :
o]
where pole terms are Tormally included in the dispersion integrels. Tae
expression becomes simpler if F(y) has s well-defined signatuxe; 1f Tl
ig odd
Flv) = -F(-v) and 7, = -1

then the FESR reads

Qk+n+l

Ny
ak+n+l

H

(s

even)

N
d/F Im Flv) V" dv = % B
k

Yo




Thus 1if we know {from phese-shifts) the behavicur of Im F{v) below
v = 4, we have a way to use snslyticity in order to get some information on
high ensrgy parameters, provided {i) the ssymptoticl form chosen was correct
and  {iz :e cut~off N 15 taken high enough for this asymptotlc form to be
velid., This procedure has indeed been applied with some success.

Tue limitetion that phase-shifts deta exist only for low s, well
below the "msymptotic" Regge region has been actually a rether favourable
situstion elnce it led to the concept of duality. Dolen, Horn and Schmid68
investigated the 7H charge exchange emplitudes teking N = 1.1 GeV as
their cut-off: they were able to reproduce the main feetures of t-chamnel
¢ exchsnge {dominance of B, p trejectory, zeroes) even though N was
low and rescnence behaviour wes still scen at higher energies at t = 0
{Fig. &7): the high energy amplitude is behaving like the average of the
s-channel resonsnces. An important aspect of the result is that s-chsnunel
resonances actually dominate the left-hand side of the FESR with no nectice~
able background, leading to the powerful idea that, s-chanpnel resonences or

t-channel poles are alternate descriptions of the same process with the smooth

high s, t-channel pole amplitudes averaging out the s-channel resonant structures.

A poverful use of FESR 1g realized when both s and t channel
descriptions make use of the same singularities; in this case it provides & way
of bootstrapping these singularities. Consider, for example, the process
1r+7To - 1rO1T+ vhere p exchange occurs in both s and t channel: requiring
the first zero of both amplitudes to coincide leads to 1/a' ~ % mi or
o' ~ 1.1 GeVe, a value rather close to the experimental number.

Many applications of FESR have followed for 7N, KN, photoproduction
etc, .... It would be very interesting to have reliable FESR analyses to
learn about those amplitudes not easily accessible at high energy in the t
chennel. For example we know very little about even crossing amplitudes

(in particular, £ exchange in N elastic scattering, £ and A2 exchanges

in KN, KN elastic scattering). In principle we can learn about AE exchange
using FESR and lov erergy KN and KN date: however, in practice, this is
somewhat unreliable since Kin low energy data are not yet very complete,
nor very accurate and consequently the phase shifts with proper guantum numbers
cammot be completely trusted.

For exsmple s recent FESR zmalysisb9 of KN and KN srattering with
a cutoff pL = 1.% Gev/c shows the expected features for the dominant amplitudes
like Im @, and Im o, while Im A+1~ and Im A+_ seem to behave differ-
ently from Im ., and Im P, respectively. Oue must keep in mind however
thet the cuboff is rather low, the phese shifts sciutions not slweys relisble
and zome of the amplitudes are quite small in magnitude and subject o un-
certainties, Such methods will be nevertheless very useful, as the quality
of o XN phase shifts improves, to study specific exchanges in the intermediate
energy region.

Let us emphasize at this point the dominance of the FESR integral
by resonences is expected to make sense only for the lmaginary part of the
amplitude, while real parts of resonances can contribute to very distant

energies, even outside the physical domain.

(c) Two-component duslity

The generalization of the duality concept to elastic scattering has
been made.7o‘7l While s-channel resonances are dusl to t-channel exchanges,
the background under the resonances builds up the diffractive amplitude~-the

exchange of the Pomeron.

s-channel resonances <===> t-channel exchanges

s-channel background <===> Pomeron exchange

The consequences of this principle are well known:



--if the s-channel has exotic guantum numbers, nc resonances will

contribute and high energy exchanges will only involve Pomeron exchange, at

least in the imsginary part

Im F ~ Im P
5 large —

Tn order to achieve thet, allowed t-channel exchanges have to cancel each
other {exchange degeneracy). For example K+p scattering is exotic in the

s-channel and we expect that, at high energy,

Ime:ImcuK

IIDpK=ImAK
so that .
+ .
Im A(K'p) ~ P
ImAKp) ~ P +2 In o + 2 Im of

This result is only exypected to‘hold for the imaginary part since the
real part of K+p scattering can receive contribution from the distant Y*
resanances of the s-u crossed channel and is seen experimentsally to be large.
Tt is amusing to see that for Regge exchenges with some aft) we have

K

Le K o
2(8@ + fjp\ s

U

N
Re AR(K D)

m A (K D) = ¢
[m R ) =0

- K
Re A (K p) = 2(§ regaK) cos Fo & (~ 0at t =0)
R w [} -
N " (Y Ky s (03
Im & (K p) = - 2(pg" + B) sin 100 8
R W p

K
Ir Fig. 48 it is shown that indeed the low energy part of Im(g + A)
is large and dominated by resonances while Im(p - A)K is much smaller and

structureless.

--1f the s-channel is exotic and no Pomeron exchange is ellowed, we

expect the scattering amplitude to be essentially real. This is the case in
K+N charge exchange scattering: we have seen in Chapter TI that the phase
of the forward smplitude for K+n -41{09 vas very close to zero. We expect
similar results for K+p —*KO/AHL, pn -»np and pp -011A++. At the same time
the corresponding non-exotic chamnels are expected to be mostly imaginary,

. - =0
as observed in K p - Kn.

--imaginary parts of amplitudes for non-diffractive scattering should be

dominated by resonances. This is observed ia 7N scattering 2 vhere clean
Argand loops show up in I, = 1 amplitudes (no Pomeron) (Fig. 49); the aspect
of I‘t = ¢ dimgrams is different with a large imeginary background (Pomeron)

superimposed to resonance patterus.

(4) application of duslity; exchange degenerscy (EXD)

The following set of assumptions {duality) leads to very strong conse-

auences for t-channel exchanges:

]
(1) analyticity {

g FESR
(2) asymptotic Regge behaviour

(3) absence of exotic amplitudes {(for lwaginary

parts only in non-diffractive chanmels)

--trajectories

Consider exotie -rr+1r+, K+K+, K+KO scattering. Ixchange degeneracy
tells us that the p and f trajectories should be the same and the seme
result should hold for (f,®) and (p,Az) leading to a unique trajectory for
o, w, £ and A2 exchange. A look at the Chew-Frautschi plot shows that it

is rather well satisfied by the particle spectrum (Fig. 50). From the mass
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A and A_ are Tr/2 out of phese and consequently

spectrur alone we would deduce a linear trajectory: +
;
a(t) = 0.46 + 0.9t (gg) - (ﬂ)
dt 1 \ dt o
when comparid to experimental trajectories at) =q(0) + @'t measured in the with
space-like region 2 s 2
& T N A T O
dt 2 + = - + -
71,2 [
a(0) a'
- 2 This result follows uniquely from the identity between the twe tra-
o .56 .97 -t < 1.5 GeV
5 2 jectories «, and «Q .
A, 48 9 4 < 0.4 GV J * -
let us now explicitly show heliicity amplitudes:
@ ho ?
f 7 7 ++ irlofe ++ ++ )
A:_ = 2e mle/2) & B:- cos TE_VO_C + iﬁj— sin %Y]
we see thet the agreement is not cvervheiming. In Fig. 51 we directly compare jesiiog to 8 polarizations
a {t) end o ft) from Ty ——w_'rOn and TP - 0.
o A p 80 _ R0 [ttt gty
= in 7 : -
Yy sin 7Y B, B B_ B,
--resgidues
e L Lo
Dunlity imposes equality between residues in exotic chanmels. The equality of residues, B:- = .E\b, imposed by duality, leads %o no polarization

. in both processes.
--line-reversed reactions

Tt is interesting tc compare processes involving the ssme EXD exchanges
Consider the pair of s-u crossed reacticns:

and one expects;:

a+boc+d (1) .
do 24 Tyt tat
- - =2 (ab = cd = (a'p' =c'a')
c+b-a +4 (2) dt( )=gt(
do ;= = agd =iy Stal
it (cb —ad) 3t (c'p! —wea'da')
asymptoticelly the two amplitudes have to be equal, but EXD makes some very
strong requirements at any s (sufficiently large). Let us sepasrate out odd --experimental tests of line-reversal
and even amplitudes: We have experimental information on:
- - dag /- =0 + (0]
A, = ﬁ+(1 +e im)sa =28, e inr{a/2) cos % & ko (K'p »Kn, Kn ->K'p) (Fig. 52)
- - do =
A =p(1-e L NC 21p_ < imlafe) o g_ot & 89 (33 kY, KN - 1)

P(Xp - ﬁon)
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P(mN ~KY, KN - 1Y)

%fcl (X'p +7%, Kn »K°A)
4g ¢+ 0 + 0, ++ (Fig. 53)
EE(KnﬂKp,Kp-eKA)

Agreement with EXD is not good in general. However one does not have to blame
duslity 2s a whole since some other assumptions weve used in particular the
assumed Regge pole behaviour with its factorization properties. Since we have
numerous examples where the simple Regge-pole description breaks down, mostly
through factorization, oune may still hope to retain basic dual properties

ouce the structure of the singularities i1s better understood. Along this di-
rection it is instructive to compare the non-zero polarizations in K—p —aﬁon
(duality + Regge pole behaviour predicts zero polarization) and in Tr.p - Tron

{Regge pole assumption leads to zero polarization).

--dip wechanisms
In a Regge amplitude

1+ e ™ o

A+='+ sin 7

the residue function 5+(t) must have zeroes to cancel the possible poles

of sin mwQ.
a=0 gin 7@ = 0 == g (a=0)=0
Then exchange degeneracy forces the same zero on the corresponding exchange

Blax=0)=0

where the pole is already cancelled and therefore the amplitude has a zero.

For example, at ozp =0 = 0 we have

A2
Im P = ¢
Re P, = 0

but Re A, £ O
These results are in good agreement with experiment for the flip
amplitudes. The follow:ing processes are dominantly helicity-flip and should

be related by ¥XD and SU(3):

do ¢ - 0 2 2 2 70
o (mp smn) ﬂTT sin 5 2 sin” 3
da ,_- 2 21 2 2 1o
Et—;(wp——.\nn) NB’\COS T v3cees H
do - -0 2

E(Kp—)Kn) 2% ~ 1

In Fig. 54 these relations are compared to experimental data; we see that
there is good agreement between the shapes (& statement about duslity and
Regge behaviour for flip amplitudes) and even in magnitude (SU(}) symmetry).

73

The same qualitative agreement is found in vector meson production
* - %
KN »K N, KN -KN, 1N -pN

vhere I, = 0 exchange (f,w) can be isolated.
This nice systematics obviously will not work for helicity non-Tlip

amplitudes with their zerces completely uncorrelated with wrong-signature points.

(e) duality and gquarks

Duality and the absence of exotic states leads to properties usually
attributed to the quark model;
~-1in meson-meson scattering with SU(3) symmetry, duality leads to
nonet structure for t-channel exchanges.
+ + + 0
--considering K X and K K~ scattering, we find the canonical guark-~

model wixing angle between w - ¢ and f - f'
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cosek =

N

7h-

This intriguing correction has been exploited in the duality diagrams,

but will not be developed here.

(f) semi-local duality?

It is interesting to see how resonances can aversge and bulld up the
smooth Regge behaviour: in particular let us find experimentally what is a
typical momentum range for cancellations to occur. For example, consider
backward K—p -aﬁon scattering76 which has exotic quantum numbers: Fig. 55
shows the energy dependence of the imaginary part of the amplitudes showing
resonance-produced oscillations around the zero value predicted by duality.

A typical range APL ~1 GeV/c corresponds to the short-range cancellation
between resonances.

This semi-local duality can be exploited as a method to learn about
t-channel amplitudes. Having a complete description in terms of phase-shifts
over some (low) energy domain, we can reconstruct s-chammel helicity amplitudes
with well-defined t-channel guantum numbers in a local sense. Then, by
observing the s-dependence of these amplitudes over some range of momenta

(~ 1 GeV/c) we can hope to learn about them.

7

--example: KN scattering

Tis type of study is particularly interesting and important for KN
scattering where phase-shifts exist and are usually parametrized in terms of
resonances superimposed to a background: each partial wave is taken as the

sum of background and resonant parts

The amplitudes reconstructed from the background shows dominance of

the helicity non-flip, I, = O, imaginary part in accordance with Pomeron

t
exchange properties (Fig. 56). It is remarkable tbat the background only
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contributes a negligidle amplitude to It = 1 exchange in strong support of
the Harari-Freund proposal.

Helicity‘amplitudes reconstructed from the resonant parts of the KN
partial wave amplitudes are shown in Fig. 57. Even at momenta 1-1.3 GeV/c the
features of high energy t channel exchange are well established with a zero
at t ~ -0.2 GeV2 for Im F++ (both It =0 and It = 1) and a zero at
t ~-0.5 for ImF,_ (I, =0, 1).

As a final remark, let us note that a linear separation between back-
ground and resonances

In F = Im P + Im R
does not obey unitarity. Indeed for a given partial wave P, we have the S-matrix:

Sl

£ 4
=7SB i§‘§\
background resonance
and consequently

£ £

z 2
= +
T ™ TR(l + 21TB)

2 2 2.2
Im T =ImTE+ImTR+2Re(TRTB)

The last term is generally ignored in most analyses.

2. Absorption

(a) classical absorption

In a scattering process, both the incident and outgoing waves can be
absorbed out and it is convenient to describe the overall scattering emplitude

in the impact parameter space:



. -1 N
F M(s,t) Typically c¢p = 25 uwb, B = 7 Gev leading to cT/uvB ~ 0.7; so that
in order to absorb completely the central waves one needs gome additicnal

AN el ~—
:fb av T;glp(b,s) 8% (b,5) 7 (6 1) "
’ absorption. For example it has been suggested“ that all the inelastic

diffractive states should be included as intermediate states leading tc an

el, s
where S (b.s) is the transmission at
increase in sbsorptioa.
the impact parsmeter b, and A\ the
For strong enough an
overall helicity change.

absorption the t-distribution

el can present dips due to the inter-
1+ 3T (v,s)

r
o
m
—
i

N \\ ference between the bare pole
D H
1 - 5 (e,s)

it
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™ amplitude and the cut resulting
| } o “E‘t R }CQ P from the convelution integral.
P { T B Therefcre the dominant effect of P suplitude
\\, pole' ' ‘; N The cut is destructive at 1t =0
absorption is the removal of low partial i pole R .
\{ t since ‘TeT is imaginary.
‘\ waves leading to peripherality of the
| \ Abscrption has a qualitatively
§ . . .
- [ absorbed amplitude in b space.
‘ different effect on dlfferent
For a purely lmaginary elastic
Y - .
| . helicity amplitudes due to the kinematic zerc at t =0 Tor flip amplitudes.
} amplitude with M = 0 ) .
+ Schematically we haves
|
ig,
! P L(B/2)t
} SN
) R*_‘ P
! :
i we have
] ® cut large
T {b}
| (e
[ o ~—
) 3 — o
n\ Fiv) - fJ-t ANt F L (t) 3 {oNE)
I J; el C
A ‘ 6]
i3 [ \\ B
ig 2 R
7B
R b
A
and therefore total absorption of low @ cut less
{less overiap]
partial waves if
o e e -
1
LB



This can also be seen by transrforming the pole input into impact
parameter space: one then finds that helicity flip asmplitudes are in general

alremdv v:ripheral and therefore absorption of low waves is of little effect.

~-general form for an absorbed amplitude

Fa(t) = fb db (b} T (b J3)

(b) if T(b) = s{b-R)

Fap(8) ~ I (RYE)

! if T{b) peaks at b ~ R wita

&b
some width b, then F . (t)
Lh
i b retains the zeroes of JA)\(R -t
R
for Ab aot too large
7T L
N-T b
PN . ‘o 1 , n .
A realistic form is FM(L) = AEB J\)\(R\Et) where R is the pesak value and
DN A

B is related to [b.
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() absorpvion zerces versus signature zeroes

Wrong signature occur typically for t ~ -0.€ GeV2 where t) passes
through zero. Experimentally helcity-flip amplitudes have zeroes around
& 2 . - o
0.6 GeV™; however absorption can also produce similar effects: J.‘(R -t)
vaplsnes at the same place for R = 1f, & very realistic value. Therefore

we have the following dilemma in trying to explain these dips:

wlure zeroes

§ Regge pole amplitude with si

? structureless pale Qg absarption ~ S {R~-1)

For AMh = 0, there is no juestion: we have to iuvoke sirong absorption

3

there is no irace of Regge zeroes,

A possible way to distinguish between absorption and wrong-signature
zeroes arises if R shows some variation with s: in that case the Jl Zero
will move with energy while the Regge zero, being a t-channel effect, should
stay fixed.

"

{¢) "dual" sbsorption

We know that s-channel resonances will produce dips in angular distri-
butions duetc their well-defined angular momentum. Since duallty relates these
resonances to the t-channel exchanges, we are interested in the relationship
between these dips and the high energy t-channel dips {with or without
sbsorpticn

first of all let us see how resonances can produce dips at fixed

This will oceur if there is a definite relationship hetween the mass

snd the spin of the dominant resonances. Ag an example, consider ww scatler-

- O
ing with no Pemeron (Tr+rr - TTLWO):
) = 7 {(cos O
R(s,%) ZEAJPJ( os 0)

For J>> 1 and € < 0 < mee

PJ(cos 9) ~ 2(2rJ sin 9)—1/2 cos [(J’ + %)6 - %J

and the first zero of the angular distribution is at:

It

(3430 =91

gince © =24 (1 - cos 8), a Fixed + dip will cccur if



Thus the looked-for relationship is:

g~

leading trajectory

—
J ~~Ns

N

Above the curve J ~ J? we expect angular momentum barrier effects,
while below the amplitude is suppressed by absorption of low partial waves lead-
ing to the overall peripheral picture.

This behaviour can be checked against the observed N* and Y*
baryon spectrum in Figs. 58 and 59. It seems satisfied although the deviation
from the leading trajectory is still not clearly perceived. There is neverthe-
less a noticeable lack of low spin resonances at large mass: it seems that one
should look experimentally & little harder into this guestlon of low-lying
"daughter” resonances, in order to pin down the idea of peripherality.

In Fig. 60 we plot the location of the first zero of the M =0 snd M =1
helicity amplitude from the prominent Y* resomncés: fixed t structures occur
already in the lower mass states.

We have seen therefore that the dominance of "peripheral" resonances
leads to a peripheral Im R while no insight is gained on the real part. On
the other hand, classical absorption has for consequence that both real and

imaginary parts are peripheral.

~-discussion
It is an experimental fact that known resonances (log J } contribute

a zero at 0.2 GeV2 in Im RH and that Im R++ at high energy alsoc possesses

such a zero (at least for the observed vector exchanges) as a result of absorption.

The most logical connectlon between these two facts is to assume that resonanceg

are dual to Regge poles + absorphtion cuts.79

Alternatively one could still have resonances dual to poles alone.
If central resonances continue to be excited, dips can occur at hrgef -
{~ 0.6 Geve) corresponding to the signature zeroes of Regge poles. Alsc at
high energy absorption moves zero down to 0.2 (}eV2 thereby breaking duality.
This alternative seems much less natursl, but cannot be completely excluded at
the present time.

This situation has an immediate consequence for exchange degeneracy:
in the first case EXD will be satisfied at the same level than duality itself
while in the second case there will be strong violations of duality due to
absorption corrections.

Even though we are not yet seeing overwhelming evidence for peripberal
high-mass resonances (in the J ~~,rs- sense), the low mass resonances do exhibit
striking peripheral properties im b space:so see, for example Fig. 61 where

the KN rescnant partial wave amplitudes are used to reconstruct Im R The

;e
peripheral rescnance contributions pesk around 1f in & clear way almost outside
the diffractive impact parameter distribution (Fig. €2). This feature is not
unique to KN scattering and is also observed in wH phase shifts: Flg. 5
shows the full amplitude Im RH\ + Im P where the resonance contribution is

clearly visible on the edge of the diffractive background distributicn of central

character. From the same KW analysis it is interesting to follow the zero

) 2 ) (1=0)

positions at 0.2 and 0.5 Ge of the resonant amplitudes Im R++ end
(1,=1)

Im R, _ which are essentially constant within the accuracy of the different

phase-shift analyses (Fig. 64).



V ~ MODELS AND SPECULATIONS

1. Models for Two-Body Scattering

From what we have seen in the preceding chapters it is clear that any
model for high energy scattering should incorporate or possess the following
properties:

-some Regge features, in particular in A\ = 1 amplitudes

-strong absorption of the bare exchanges by Pomeron cuts

-duality for the imaginary parts

-approximate SU(3) symmetry for residues

Different models will have their emphasis on a few properties and
will generslly try to "explain" the remaining pfoperties. Pure pole models
are not reliable, except for flip amplitudes, and cannot yield a complete
description of two-body processes. Strong absorption appears to be an impor-
tant ingredient which has to be included in any realistic model.

We are not going to review all potentially successful models but
rather select two of them in order to illustrate different assumptions and
problems: on one hand, the dusl absorptive model where duality and absorp-
tion are strongly linked together; on the other hand the strong absorption
model where the accent Is put on calculating strong-absorption cuts with no

_ relationship to duality.

(a) Dual absorptive model (HarariSl)

--rules
The imaginary part of a non-diffractive t-channel exchange is built
up by peripheral resonances. The J ~+«s peripheral resonances are dual to

the sum of poles and their absorption cuts:

Resonances <==> R + R @ P

For a change M\ of helicity the imaginary part of an amplitude has a zero

structure approximately given by JAA(R‘J_t) where R is around 1 f

o
N

Im F, ~ JN\(RJ:':)

BN
For .M = O the cut correction is large while it is mwuch smaller for o =
The structure of the real parts is not given by duality requirements

. [o4
but oné can invoke analyticity: if Im F ~ s then

- cot (even exchange)

&
'y

¥
o

(odd exchange)

:
PR ofd

These crossing relstions are claimed to work only for LN = 1 ampli
tudes where the sa dependence is not perturbed too much by cuts; in L =
amplitudes strong cuts can introduce log factors in the amplitude and the
crossing relation could fail.

The Pomeron amplitude is assumed to be structureless in t, central

in impact parameter space, mostly imaginary and helieity no-flip.

--comparison with experiment

(1) dips in inelastic processes {A\ = 1 amplitudes)

Imaginary parts behave like Jl(R N-t) while real parts are

tan (1’2_0‘) Jl(Rsf:_t—) or -cot (%0!_) JlfR J:)

according to the signature:



odd AN do 1
CY Ay e cos ?

N5

ever)l dg 1
(A, dt 2 m
2 i t sin )

2
The most simple way to produce dips at -t ~ 0.6 GeV in differential

cross sections is when A\ = 1 amplitudes with zero domlnate. If ofher
nelicity amplitudes are important they are likely to wash out any indication
of a dip; for example [JO(RJ:E)]Q has & bump in this t region. In order
to see if a given process will have a dip or not, it is sufficient to apply
the helicity coupling rules derived empirically in Chapter II and find out if
AN = 1 dominates. If this latter condition is true, a dip will be observed
if the exchange is odd under crossing since dg/dt has the zero of
L, (rV0)P°.

The dip is predicted and observed for the processes:

- Is

3
B D T, TN = 7, Yp —-)'TTO'p, €0 —»pN)I -0
t

For reaction dominated by AN = 1 even exchangess, no such dip is observed:.
7o oyn, w7 - aA. This is also true when both even and odd exchanges

: - =G * G . AV
ag in K p =2Kn, X n ~Kp, KN 2KA and KN - KA.

When A =1 does not dominate, no dip is expected as in TYp — 1p,
7N - afl, despite a strong p exchange.
The behaviour of elastic polarizations is also in good agreement with
the dual absorptive model, as a test of Re RM:I’
(11) elastic scattering (AN = O amplitudes)
The (dominant) imegeainery part of an clastic scattering amplitude
receives contributions from resonances (or t chennel poles) and the Pomeron.

+
For exotic channels, cnly the Pomeron term survives, as in K N end NK scattering:
Fr~P~InP

while for non-exotic procssses, such as K'N and W scattering, we have

the complete form
ImF=ImP+ImR

For s high enough, the &M\ = 0, lmaginary Pomeron amplitude dominates so

that the leading terms in the differential cross section are:

do
e (exotic) ~ P

do o 2
it {nonexotic) ~ P + 2P Im R0

where Im RA?\:O

the following pattern:

beheves like a JO(RJ«ti function. We therefore sxpect



do
- exotic dg non-exotic

at dt

This behaviour is cleerly seen in the data in the intermediate energy
region for Trip {both non-exotic), Kip and up to ~ 10 GeV for pip vhere
the resonance contribution is larger. Obviously as the contribution from the
resonences slowly decreases as the energy goes up, we expect the two patterns
to become more and more similar and the "dip" in the non-exotic channel to
fade away. We can translate this effect in terms of the exponentia.l slope
of the forward differential cross section which energy dependence comes from
the propez" 3 dependence of the Pomeron slope (which shrinks according to
K+p and pp data) and the disappearance of the Regge term (producing an
apparent anti-shrinkage). The following trends are theréf‘ore expected in

the dual absorptive model:

do Bt
dat

& + large R(}Bp)

- +
P + small R(K p, 7 p)

/P (pp, K'p)

and are in good agreement with experimental data.

n
L

-~guestions and problems

Dips at t ~ -0.6 Ge\(2 in M\ = 1 amplitudes are explained by zeroes
of Jl(RJ-Tuj; at the same time the complepe systematics of the dips requires
some connection with wrong signature zerces (0 = 0): in particular for even
exchanges there is a delicate cancellation between J‘l and sin(TrO/'Z) where

the J zero is completely determined by the ebsorption radius R. In order

1
for this effect tc happen at every energy, @ and R should have the same s
dependence. Now experimentally o is pretty independent of s at least for
p exchange for -t <1 Gev2 and other excha: ges at t = 0. It then follows
thet R should be more or less constant with s and it is hard to correlate
this fact with the expanding radius of the shrinking Pomeron.

The peripherality picture receives also a warning from the new NAL
dat-a§9 on TP - Tron, sti1l showing a dip at approximately the same value

-t ~ 0.6 GeVQ. A flip amplitude
In 7 (t) = Ae™ g (RV)

corresponds in b space to:

3

In Fy(b) = 35 exp (- (“jgg“—i) Il(gg)

12
&l
3|
8
]
N’

for b >> 2B/R.
If B showe shrinkage as in the TT‘.p —-91ron data, the impact parameter
distribution becomes wider and the peripheral character slowly disappears.

In Pig. 65(a), Im E+_(b) is plotted from the exact formule and

B(s) = By + a' In s a' ~1 Gev™?



Since for a flip amplitude Im Fl(o) vanishes kinematically at b = 0,
peripherality is maintained in an artificial way. ff the same shrinkage
occurs for & A\ = 0 amplitude where no kinematic suppression operates

at emall b, peripherality is lost rather quickly (see Fig. 65(b)). It

will be of crucilal interest to check whether A\ = 0 aniplitudes show shrink-
age properties.

Another possible problem is connected with even exchanges (T, AQ, IC;)
which are predicted to be peripheral. There is no model~independent analyses
of these amplitudes for M\ = 0 and therefore it is very difficult to makeé
any sensible statement; however there exist now some evidence from FESR analyses
in KN and hypercharge exchange reactions indicating that tensor eychanges .
may be less peripheral than vector exchanges. It would be very important to
confirm this experimentally by a direct test: this could be done for A2

exchange by studying the differences

K _dg /.+ do ;.- dg .+ dg .~
& =g &p) + 57 (Kp) - 3¢ (Kn) - 33 (K'n)

2 a
a0 =% (rp»ep) - 32 (m —an)

It 1s remarkable that It =0 exchange in 9N scattering can be

82
explained ~ by a peripheral f

5
mf =-A. el 3(RYE)

if the Pomeron amplitude shrinks. There 1s then a nice consistency between
TTip and Ki‘p elastic scattering, all being described with peripheral ex-
changes and a shrinking Pomercn at energies 3-20 GeV (Fig. 66). This har-
monious situation is unfortunately shaken by data83’8b' on ¢ photoproduction

where Pomeron exchange is expected to dominate in the t channel since non-

strange exchanges do not couple strongly to ¢: the data shows essentially

no & dependence for do/dt (yp =+ 4p) st -t = 0.6 GeV". Even including
some s dependence for @"/dt)t:o, leaves little shrinkage

apx 0.1 - 0.2 Gev™?

in the range 2 to 19 GeV. This 1s to be contrasted with Fig. 66 where in the

same energy range a}; ~ 0.6 Gev_g. Regardless of the ¢ data, it is also

-2

possible that a slope az') ~ 0.6 Gev leads to some inconsistencies in the

t
dual absorptive model snalyses since it corresponds to a sizeable real part
of the Pomeron amplitude st larger t values-- ~ 50% of the imsginary part

at -t ~ 0.5 GeVQ

8
(b) Strong absorption models (Kane et al. 1&)

-=-calculating R ® P cuts

In these models the cut is calculated explicitly as & convolution

integral over the pole asmplitude and the Pomeron smplitude:

_ Vo Vo . "
Rabs(s,t) = Rpole(s,t) + 3 Jat' at" K{t,5,,8") Rpole(s,t ) P(s,t™)

where Rpole(s,t) is a structureless amplitude, having no relationship to
exchange degeneracy or duality and K(t,t',t") 1s a real pcsitive function.
All dips seen in differential cross sections are explained as absorption
zeroes coming from the destructive interference between pole and cut.

In its eaxily forms the model. suffered from not representing corre.c‘bly
real parts. If P is an imaginary é.mplitude, both thg real and imaginarxy
parts of the pole term are equally strongly absorbed giving & ~ Jl(RJ—-Tb)

behavior for both:
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+
Such & form for Re p,_ is ruled out by polerization dats on 7 p so that

a new version of the model was developed.

--8 new model
Since the trouble seemed to come from the assumption of é purely
imaginary Pameron (believing the procedure to compute cute) an easy cure 1s

to allow for a Pomercn resl part. This was originally motivated by the

ateepening forward differential cross section observed in pp scattering at

the ISR: peremetrizing the imsginary Pomeron amplitude with a dominant

central part and & peripheral part with expanding redius
In P = Ae™ + ce™ 5 (RVT)

R~ROJ1n s =Rofy—

one obtains via analyticity a real part proportional to the derivative of JO

a
Re P~ - 3 (RY=8) ~ 3, (rRYE)

Im P Re P

0.6/_'*

-t

-t

" It is easy to understand how the real part of P changes the con-

clusions about real and imaginary absorbed amplitudes:

Re Ry =R P -ReP Q® (mpl+m Roole ® |re p|
IRy =R ., - R P @ lrepl-mr, @ = Pl

The result of absorption will now depend on the relative sign of Re Ppole

and Im P, , leading to & qualitatively different conclusion for odd and

pole
even exchangesg

\ Re ’ Tm
odd
M =0
0.2 _
= \/ T
even
M =0
0.2 o
‘\’/ -t -t




Terefore real parts of even exchanges and imaginary parts of odd
exchanges are peripheral (first zero around 0.2 GeVE) while imaginary parts
of even exchanges and real parts of odd exchanges are rather central (with
a broad minimum around 0.4 Gevg).

Using these prescriptions, a zeroth order fit to the available data
can be obtained with a few parameters, SU(3) symmetry and some asgumptions

of simplicity.

--problems
First of all duality is never satisfied at any level and would sadly

appear as a mere accident. At the end the absorbed amplitudes have some
kind of resemblance to exchange-degenerate amplitudes, but it is only approxi-
mate, at any rate worse than the date actually shows: for example da/dt
for Kip are not too different with K+p showing a sizeable curvature which
is not supported by the data.

The rise in K+p total cross section {also pp) is explained by
different energy dependences of f and o amplitudes. Since Im ® is

more peripheral than Im f, the model predicts that

o pp(0) > ai;ff(o)

The data from NAL and ISR indicate that P is & rising term as well and
there seems to be little evidence for a large effect from f-w energy
dependence.
Since absorption has a larger effect in non-flip amplitudes, one
expects in this model
eff eff

%0~ Fma1

since

Rabs - Rpole - Rcut

|

| .

| o A

| ~ 8 [l " In s]
|

!

a+e

1
4o (x'p,ep) !
UT P, PP : (E S o)
|
']

(f-w) > 0’ (2-0) < © P for & limited s range

|
|
1
]

- +
where data on T p —;npn and A(T p) do not seem to indicate a significant
effect. It is interesting to see that the cut term has & strong effect on

the phase of the amplitude at t = 0: if

. q
In R =Asa[l-l7\ J =Aeay{l-?-\-]
n 8 y

<> Re R~ 2 tan(m) 1-2+ A
- 2 y ay?

A
_— t&nF%) [l +W]

So that one expects a larger real part at low & from the pole term alone:
while the data show a small effect in this direction (see Fig. 22) it seems

too small considering the large size of the absorptive cut. It is instructive

2ho




to notice that the phase of an amplitude, being related to derivatives of the
modulus with respect to 8, is a rather sensitive indicator of any change
in the s dependence.

At & more fundamental level, the magnitude of Re P required to fit~
the data may be too large. In Chapter III we have seen that the real parts

*
of I 7 p and yp elastic scattering were strongly s-dependent and

t=0
probably related more to f exchange rather than Pomeron exchange. It does
mean of course that f exchange should be not lgnored in cealculating cut
diagrams but the whole problem has to be investigated separately--whether

and how to compute R ® R' cuts. We bave seen that for exotic quantum
numbers these amplitudes are rather small and this should be understood
before engaging in a systematic program to include pole-pole cuts in two-body
processes. The half-success of the strong absorption models seems to indicate

the need for real part effects in rescattering and R ® R' cuts are likely

to play a role in them,

2. Speculations on the Pomeron

We have seen in many occasions that it is crucial to learn more about
the Pomeron amplitudes at lower energies since it relates to the problems of
understanding of elastic smplitudes, separation of f exchange, exchange
degeneracy and absorption. Since experimentally the Pomeron is most accesible
at very high energies, we shall try to start there and gather the relevant

properties of Pomeron exchange.

(a) Pomeron from high-energy pp dats (ISR)

8
We take the following polnts as clear experimental facts: 5

o Im P(s, t = 0) is rising with s

Re P(s, t = 0) 1is small, crossing zero and becoming positive

Im P(s,t) is dominantly central, but has a distinct peripheral piece
may be a good parameterization)

N
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* Im 1;‘ceutral
* Im Pperipheml

The stronger shrinkage seen at small ¢t

effects or a mixture of them:

- the growth at t = O

- the shrinkage of the peripheral part

= an expanding radius R in JO(RJ—t)

(s,t) is growing

(s,t) changes very slowly with

s (o' small)

can be induced by any of 3

Since the first effect we mention is already clearly observed in the dats,

i1t is interesting to see if, by itself, one can achieve a good description

of pp elastic scattering with other parameters only slowly varylng. In

this simple model we write

Im P(s,t) = AePt + cis) &t JO(R'J—_t_)

with A, B, D and R are slowly changing with

dence comes from C(s), growing with

Analyticity requires that

8.

8

and the main s depen~

Re P = tan(

s

. d
Qdy)ImP

ac Dt [
-&;e JO(R -‘t.)

vith dC/dy > 0.

If C

= Coy, then Re P

1s essentially s~indepen~

dent while

in s.

Im P grows ke



An excellent fit to the avallable ISR data yields

B = bk Gev_e
D= .7 Gev S
R = k.7 Gey 2

~1f

showing & rather broad peripheral distribution in b space. Let us note at

8l
this point that our picture is quite orthogonal to Kane's

5 dependence comes from the s dependence of R

where the main

in the J

) argument.

At lower energies we expect real parts from Regge exchange to con-

tribute since, although Im R 1is not very large, Re P can be quite sub-

stantial--as seen in Chapter IV.

re(pp) |

-t

fincreasing s values

We expect the same qualitative behaviour for meson scattering with

R scaled geometrically with -~ \lcT

and the peripheral plece will lead to

some curvature in do/dt at high energy.

(b) Can we extrsct Im P(s,0) at lower

s?

We can isolate the combination

(p + 1)

scattering. How to eliminate f exchange? Let us recall the following

preperties of exchange amplitudes:

in oN, KN and NN elastic

-p, @ and A exchange is power~behaved st t = 0 and probably

2
the same will hold for £ exchange.
-within the experimental uncertainty it appears that 0) for a givven
exchange is independent of the process; for example, ag(o) ~ (}:(0) ~ GE(O)
’ -sU(3) symmetry is approximately true for residues at the 20% level
(pﬂ/pK for example).
Guided by these facts we shall assume that the f amplitude hes

similar properties at t = O:

af~l
e Imf = fs

£ N
. aTr:'a}f(.(:th)

® 2fr = fﬂ_ as given by SU(3).

K

+ + +
It is then possible to use cross sectlons data on wp, Kp and X'n
to eliminate the f amplitude and obtain a "Pomeron" amplitude. The relation

is

- P

5 [5(kp) + E(Kn) - E(vp)] = 2B - P

and is evaluated using total cross section data in Fig. 67. Since we do not
a priori expect a marked difference between the s dependence of PK and
Pv’ it is fair to assume that we are seeing in Fig. 67 the s dependence of
either PK or Pwr: data shows a rising Pomeron contribution from a momentum
of 3 GeV up. Thus the asymptotic behaviocur seen at the TSR for pp scattering
and alse for Ktp scattering at lower energies (2 20 GeV) seems to persist to
quite low energies, once Regge terms have been removed.

Before going further we must check the stability of our result against

the most crucial assumption of an SU(3)-symmetric f coupling to pseudoscalar

mescns. From the branching ratio

T(f - KK

m: .OQSi .01



obtained from an analysis% including & proper treatment of f-A, interference

in the KK channel, we cbtain

2f
—j—}ﬁ= gk + .2
m

in good sgreement with SU(3). Since this last result is only accurate to + 20%,
it is important to see the effect of such variations on the g dependence of

L T
uile romero

i1s evaluated for different values of afK/fw =1 + .2. Within this range of
values, our result stands that the Pomeron amplitude 1s rising with s, the
rise being more linear in 1In s for the values of the ratic closest to
symmetry.

More quantitetively there is internal consistency between a linear
in s growth of the Pomeron term and the ratio f}(/fv given by SU(3).

Parsmetrizing cross sections as

, o {ap~1)y
= I = + + f
2 (me) P’.'T Pwry f'n'e
(a.-1)y
1. (¢}
§1(m)=PK+Péy+fKef :
yields reasoneble values for the parameters;
B_= {1h.2 v+ 2.5) + {1.k + .3)y
B = {(11.3 + L.4) + {13k + .2)y
£ o=39.4 + 1.1 21,
"T £ =130 5 .05
fK = 21.6 =7 s
= J4h o+ 07
ap .0

to be compared to

uk = 13.0 x 2.6

a, "~ 0.4

The fact that P_,T # PK indicste that Pomeron exchange is not a pure

3u(3) singletb7 in egreement with vector meson photoproduction:

2
82 (yp = o) 2, ( o,(¢p) ) N

~ - &
49 (rp -5%) £ 2 ©
=7 7 $=0 e

leading to oT( ¢p) ~ 10 mb around 10 GeV. Experimentally cT( ¢N) has been
88

directly measured by nuclear absorption to be 12 mb at 6 GeV  showing a large

reduction compared to O'T(QN) ~ UT(TrN). Assuming the SU(3) breaking occurs

through octet exchange
P=Plcosoi+P8 sin o

measured by a mixing angle @, we can evaluate the Pomeron contribution to

forward elastic amplitudes;

P = (cosa*-'i—sina)?o

Jz©

pseudoscalar nonet

P, =
K
1
b |
e i
H
{ vacLor noned
3
N o tan S e arele 13 (oY ~ a {10
where we have used the canonizal w~¢ mixing arngle. OSinee  JpleH LA

we kncw that P{) ~ Pl and conseque



o(2W) ~% [%(kp) + £(Kn) - £(mp))

~ ’EPK - Pﬂ_

This serves as an independent check of the fK/fw ratio since values for
cT(®N) in agreement with data occur for the sU(3) ratio (Fig. 68). We
therefore expect UT(¢>N) to show a linear rise with 1ln s from as low a
momentum as 3 GeV and up; this cen be experimentally checked by studying the
s dependence of (dc/dt)tsc {yp — ¢p) &nd would be clear-cut confirmation

of the Pomeron behaviour at low energles.

(c) Application to Yp = ¢p

¢ photoproduction is dominated by Pomeron exchange and the study
of the t distribution of this process should have some similarities with
pp elastic scattering as seen at the ISR. Let us parametrize the $ photo-

production amplitude in the same way

F~1In P = AeS + ofs) & F 5o (RV=E)
where
-~ B, R and D are scaled geometrically from pp scattering leading
to R~ 3.5 (;‘.eV_l (less peripheral than pp)

-- c(s) is given by 20T(KN) - UT(Trp)

In Fig. 69, the above parameter-free description (except for overall
s independent scale approximately given by vector dominance and ff"’ from
e+e- colliding beam date) is compared favorably with the data on yp - %p
from 2 to 12 GeV. There is shrinkage at small -t < 0.3 (}eV—2 while the
large t cross section is dominated by the central part and is guite inde-
pendent of s (Fig. 70} in agreement with experiment. In Fig. 71 we show

the different amplitudes making up the full Pomeron contribution at 12 GeV.

It is clear that the effects are not very large and that we need
new accurate experiments measuring forvard ¢ photoproduction down to t = o]
and concentrating on the careful study of s dependence. At an easier level
it should be verified that the integrated cross section is a growing function

of s.

(d) Implications for exchange degeneracy -

-t = 0
A Pomeron s dependence of the form A + B In s implies a brea_king
+ .
of exchange degeneracy since cT(K p) and aT(pp) show some extra contri-

butions at lower energies. At s ~ 10 Ge‘\f2 we have approximately

Im R(K p) ~ Im(f + ©) ~ 10 mb

il

tm R(K'p) ~ Tmf{f - @) - 1 - 2 mb

it

indicating a small violation < 20% of exchange degeneracy. If the breaking
comes from absorption effects, then the f cut is weaker than the « cut,
as expected from the new strong absorption model (see Section 1(b) of this
chapter); but breaking could also come from the pole terms, since the respec~-

tive values for a{0) are not too different where a étrong absorption differ-

ence would have an important effect.

-t £0

If exchange degeneracy is broken in K+p and pp elastic scattering,
Im(f - @) 1is going to contribute to the shape of do/dt since it interferes
with the dominant Pomeron amplitude;

-if Im f++ and Im w have zeroes at the same t value
(~ - 0.2 Ge¥), then dg/at (K'p) will be of the form o+ 2p."5," with

noou

a JO term about 5 times smaller than in K p. Sirc. the P term is

nwo o n

essentially non-shrinking for -t > 0.2-0.3 GeV2 the effect of the JO
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produces a slight anti-shrinking, at variance with the trend of experimental

date showing a pronounced shrinkage.

~if Tm f++ and Im w_H_ have different zeroes the shape of :{:m(f«-cb)++

will depend on the separation between their zeroes.

b m(r-o)

b\f zZero at .3 GeV2

. 2\____,/& -

f zero at .2 GeVa (1ike w)

Even for slightly displaced zerces (0.2 and 0.3 GeVZ), Im(f - m)H_

can be very different from a JO shape, leading to a much flatter emplitude.

This results in an apparent shrinking of the K+p differential cross section

since this rather flat amplitude is decreasing with energy:

-2
t slope — P -t > 0.2 GeV

-2
P -t < 0.2 GeV

.
K p, pp data
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It is interesting to notice that such a small change in the first zero has
important consequences for the peripherality of the amplitude: 1f Im f++ =0
at -t ~ 0.3 GeV’2 it means that (R} ~ 0.5 f rather than (R} ~ 1 f for

Tm o, and that Im f+ - is qualitatively central in agreement with strong

+
absorption with important real parts, a convincing mechanism for which being
still lacking.

It thus seems that our picture of a mostly central Pomeron with very

slow energy dependence with a growing peripheral (but wide) part leads to a

consistent description of elastic processes and vector meson photoproduction.
Small breeking of exchange degeneracy follows and has significent effects on

the slopes of the differential cross sections; the breaking of exchange
degeneracy is strong enough to allow the imaginary part f exéhange to become
significantly central. To verify these coneclusions it is important to earry out
accurate measurements of Yp - ¢p, and also have some model-independent look

at the even exchanges such as in hypercharge exchange reactions and may be

Yp »wp and yn - uan.



QUTLOOK
There has been a qualitative change in understanding two-body réactions
when experiments have been geared to extract individual amplitudes instead of
just bi-linear products such as cross sections. Information gathered so
far is very limited and new experiments should expand our knowledge considerably.
Ma jor areas are:
1) energy dependence of 7N amplitudes
2) getting closer to KN, KN complete amplitude separation
%) measuring even-crossing amplitudes through th, yN -»wN and hyper-
charge exchange reactions .
%) production of resonances observing their correlated decays; mostly
for lower spins
5) accurate elastic scattering and polarization measurements at high
energy (up to ~ 100 GeV) to determine the energy dependence of a
few important amplitudes
6) improving experimental knowledge of the Pomeron amplitude at lover
energies, mostly through detailed measurements of yp - ¢p
7) determine the importance of non-exotic Regge C) Regge cuts through

accurate couparison of processes sensitive to interferences.

We also need to develop methods to incorporate the constraints of analyticity
into amplitude analyses: while the derivative analyticity relations look promis-
ing, one has to understand their limitations more fully. Tt is possible that a
clever use of analyticity will relieve some of the burden of carrying out com-
plete experiments--a task out of sight in most cases. »

When unambiguous experimental measurements of even amplitudes are done it
will become essential to understand absorption effects, the structure of Pomeron

amplitudes and the importance of Regge cuts.

The present picture of & high energy amplitude is aesthetically not
particularly pleasing; for example SU(3) symmetry and concepts like exchange
degeneracy are only appproximately verified by experiment to about 20%. How-
ever we feel that much will be learnt when the breaking mechanisms are under-

stood and then, may be, a simpler picture will emerge.
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2.

Table Captions

Number of independent helicity amplitudes for typical processes

Observables and measured quantities for reaction types with and

without a polarized target.

Energy dependence of forward t-channel amplitudes from total cross

section data with a parametrization le—a.

Energy dependence of forward differential cross sections parametrized

with s2a_2 .

Dominant helicity couplings of mesons to baryon-antibaryon as deduced

from experimental data.

SU(§) symmetry for VBB vertices and helicity couplings.
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Figure Captions

scattering with a

N
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i

Recoil baryon polarization in O

polarized target.
I, = O 7l amplitudes at 6 GeV/c from Ref. 5.

I

0 7N amplitudes at 6 GeV/c from Ref. 5.

Neturality amplitudes in 7N - pN at 17.2 GeV/c from Ref. 86,

using data from Ref. 89.

Separation of naturality in yp 1r0p using linearly polarized

photons {Ref. 90).

pp elastic scattering at 6 GevV with measurements of 2 or 3 spins

(Ref. 28).

+ +
Differences of total cross sections between K d and P d using

data from Refs. 31, 33, 34, 35 and 91.

do

oy (r'p —a'rron) at fixed t values (Ref. 36).

s dependence of

p Regge trajectory from data on %% (rp > 1ron) (Ref. 36).

Separation of It = 0 exchange in 7N - pN; data from Refs. 92,

93, 9“ and 914'

+ + - - -
Location of dip for nucleon exchange in T p = PT and pPp =T T

from Ref. h0.

Differential cross sections for T p -)pon with well-defined

neturality in the t channel at 6 and 17.2 GeV/c {Ref. b1).

s dependence of the differential cross-sections for fap - mr at

fixed t (u); data from Ref. 43,



Figure

Figure

Figure

Figure

Pigure

Figure

Figure

Figure

Figure

Figure

Figure

Pigure

15.

17.
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19.

20.

21.
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23,

2k,

Differential cross sections for backward uN scattering around

6 geV/e (from Ref. 101).

- +
Cross sections for exotic quantum number exchange in 7 p =K &

and K p s (Ref. Lk},

- -+
5 dependence of the differential cross section for pp =K K

at fixed t (u); deta from Ref. 43.

+
s dependence of backward K p differential cross sections {u = 0)

from Ref. 43.

+
Complete angular distribution for K p elastic scattering at

"

5 GeV {(Ref. 43) and "exotic” K p backward pesk.

Complete angular distribution for f>p elastic scattering at

5 GeV (Ref. 43) and "exotic" backward peak.
Energy dependence of the cross section for Tr-p.—-) ¢n  (Ref. 48).

Test of SU(3) symmetry for amplitudes dominantly helicity flip

(from Ref. 49).

Ratio of real to imaginary parts in Tr_p —)‘H‘Ol‘l at t =0 as

a function of beam momentum (Ref. 36).

Differential cross sections at t = O for Kfp qKOn and
K—p —)ion and contributions of the imaginary parts obtained from

total cross section data.

+ - - + -
p - @ linterference In the w 7 mass spectrum for wp-wwn

- + -
(c”) snd 7o a7 TP (u+); dats from Ref. 5.

Phase differences between p and o production amplitudes in

N - (p,w)}N, for different t-channel exchanges (Ref. Si).

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2¢.

29,

0.

31,

32,

33.

3.

35.

36,

37.

0dd-crossing helicity non-flip amplitude parallel to Pomeron
+
exchange (~ Im w§+) in Kp elastic scattering at 5 GeV

(Ref. 56).

Impect parsmeter distribution of amplitude shown in Fig. 26,

: t
Impact parameter profiles in K p elastic scattering at 5 GeV

(Ref. 56).

Differential cross-sections for particle and antiparticle elsstic

scattering at 5 GeV/c from Ref. 5.

+ +
Difference A(s,t) as defined in the text for 7 p, K p and

+ .
p p elastic scattering at 3, 3.65, 5 and 6 GeV/c (Ref. 5).

(Fi+)” amplitude obtained from cross-over data only and compared
+
to result of complete amplitude analysis; data from w p at

6 Gev (Ref. 5).

+
Difference between exXponential slopes In K p elastic scattering

as a function of beam momentum; data from Refs. 5, 96, 97 and 98.

*
Difference of T p polarizations at 10 GeV as & function of t

(Ref. 9).

1 (]
(F__); and (F, ); obtained from polarization and cross section

data only and comparison to results of full amplitude analysis.
+
Sum of # p polarizations at 10 GeV {Ref. 9).
+
Sum and difference of K p polarizations at 1C GeV (Ref. 9).

+
Sum and difference of K p polarizations at 1k GeV (Ref. 9).



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

39.

Lo.

41,

L3,

Lk,

Ls.

47.

Eyen-crossing non-flip amplitudes in m elastic scattering at

10 GeV; real and imaginary parts are separated using analyticity

through dispersion relations (from Ref. 58).

Fhases of FO
++

(from Ref. 58).

and Fi in TN elastic scattering at 6 GeV

predicted 7N charge-exchange polarization from Ref. 58.

Resl and imaginary parts of elastic processes at t = 0 using

derivetive analyticity relations (Ref. 60).

Derivative analyticity relations; difference of 2 Regge poles
reconstructed with first 3erivative only. The solid curve is

the input amplitude while the dashed curve represents the recon-
structed amplitude. (a) real pert (v) imaginery part as &

function of & (Ref. 62).

Same as Figure L2 for an ebsorbed amplitude, as & function of t.

Phase of !(gp —!Kgp at t = 0. Hatched area is the result of

derivative relations; data from Refs. 63 and 53.

Real parts of helicity non-flip amplitude in Yp - TP scattering
at b and 10 GeV using derivative analyticity relations and data

from Refs. 64 and 65,

Real and imeginary parts of heleity in non-flip amplitude in

yp -»Yp 8t 10 GeV.

Tm A' for wN charge exchange st % = 0 from Ref. 68.

Figure

Fligure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure 6

kg,

50.

52.

57.

59.

+
In{p % Ay),, Trom o (K'N) dsta (Ref. 91).

7N phase shifts projected on t-channel It = 0, 1 exchanges

(Ref. 72)-
Meson spectrum and exchange degeneracy of Regge trajectories.

p and A trajectories in the scattering region (Refs. %6 and

2
37).

- = +
Test of exchange degeneracy in Xp —yKon and Kn —aKOp

(Ref. 100).

+ 0 ++ - =0, -
Test of exchange degeneracy in K p-oKA and Kn »K&

(Ref. 99)-

Test of exchange degeneracy (aips) end su(3) for processes

dominated by helicity flip smplitudes.

Test of local duality in backward K p —»ﬁon scattering (Ref. 76).

Helicity amplitudes reconstructed from the background in KN

phase shifts (Ref. 7).

Helicity amplitudes reconstructed from resonances in KN low

energy scattering {Ref. 7).

*
Chew-Frautschi plot for N  resonsnces; the number inside the

circles is equal to 10 times the elasticity of each resonance.

*
Chew-Frautschi plot for Y resonances and peripheral curve

(Ref. 80).

*
First zeroes in the decay angular distribution of ¥ resonances

as contributed to helicity flip and non~-flip amplitudes.
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Flgure

Figure 63.

Figure 64.

Figure

Figure

Fivgure
Figure
Figure
Figure

Figure

61.

62.

65.

66.

67.

68.

69.

70.

T1.

TImpact parameter profile for the imaginary part of the helicity
non-flip amplitude reconstructed from the background in KN
low energy phase-shifts; the 3 plots corresppnd to analyses in

different energy regions (Ref. 80).

Same as Fig. 61 for the resonant part of KN scattering.

Same as Fig. 61 for the sum of background and resonances in 1N

scattering at low energy.
Zeroes of helicity amplitudes in KN 1low energy scattering (Ref. 77).

(e} Impect parsmeter profile of Im F+_ from 1r-p -)von using
experimental shrinkage; (b) same distribution for Im F -+

agsuming similar shrinkage and eonstant zero location,

Slope of Pomeron amplitude from a dual ebsorptive model analysis
of 7N elastic scattering (Ref. 82); the hatched region corresponds

to the slope of K+p elastic scattering.

Total cross sections and s dependence of Pomeron emplitude.

Dependence of Pomeron amplitude on the ratio QfK/fTr.

Differential cross section for yp -» ¢p between 2 and 12 GeV.

' do

It (yp - ¢p) at fixed t.

s dependence of

Central and peripheral Pomeron amplitudes in yp -+ ¢p at 12 GeV.
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