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I - GENERALITIES AND COMPLETE EXTRACTION OF AMPLITUDES FRCM Wl!A 

INTRODVCTION 

In this series of lectures we are concerned with the experimental 

determination of tw-body amplitudes and their phenomenology. Even though 

two-body and quasi-two-body processes represent only a small fraction of 

the total interaction, their study is very important in sevsral respects: 

(1) They provide the simplest laboratory for studying the exchange 

forces between hadrons in a rather controllable way: energies, spirs, particle 

identities and quantum numbers can be varied separately. 

(2) Two-body processes constitute a testing ground for--as well as 

inducing--theoretical ideas In hadron dynamics. Concepts like Regge poles, 

duality, absorption have been brought forward in trying to understand ex- 

change processes. In turn these new ideas have been applied to more complex 

situations involving multiparticle final states. 

(3) Even at super-high energies where the cross sections for known 

identifiable two-body processes will become very small--except for elastic 

scattering--we still hope two-body scattering ideas will be relevant. Indeed 

in a multiparticle event subenergies will still be rather smsll and two-body 

exchanges will probably still happen. 

In these lectures we would like to focus our interest on the structure 

of the amplitudes. Father than discussing two-body scattering data in a 

general way, we are going to translate and summarize our knowledge in terms 

of amplitudes. In the first chapters, we shall try to make as little refer- 

ence as possible to our sometimes preconceived theoretical ideas, but instead 

try to extract the maximwe unbiased information from the data. 

1. Generalities on Amplitudes (Spinologyl 

(a) Helicity formalism.1J2 

Consider the scattering process 

1+2-lj+4 

where each particle is labelled by a set of quantum numbers: hi (helicity), 

Ji (spin), ni (parity), mi (mass) and $i (momentum). The naturality 5 is 

defined by: 

6 = (-1)J ‘1 = ‘q 

where T is the signature. The process can be described in either the s or 

the t channel with helicity amplitudes: 

s-channel -- t-channel 

'Ihe amplitudes can be decomposed into amplitudes with well-defined total 

angular momentum 3 using the Jacob-Wick expansion: 



leading to: 

(e,+) s(J) = c (25 + 1) "3h4hl% e 
J 

At high energy amplitudes are built up by exchanges in the 

t(u) channel. Usually a given exchange is characterized by a set of 

quantum numbers: 'I, 7, W(s) quantum numbers, etc. . . . . Althou& t-channel 

helicity amplitudes show simple relations for a well-defined t-channel ex- 

change, s-channel amplitudes ara more widely used now: kinematic copstraints 

are easier to take into account in pole models and more Importantly they 

probably have a more physical interpretation. 

-exchanfle of well-defined naturality in the t-channel3 

Consider an exchange with quantum numbers J, q in,the t-channel. 

Parity conservation at vertex 2&J reads: 

t(J) 
FAhhh 

3i42 

= '12yl( -1) 
J+J4-J2 t(J) 

FA A -A -A 
3i 4 2 

F; A ,, ,, = (25 + 1) <$et) FA 't(J) ,, A ,, 
3i42 3iL2 

A = A -A ) 
i 3 

p = A -A 
2 4 

At high energy (to leading order in 8) we have 

A -A 

= +uJ y12 C-1) 4 * (-1) 

3i42 

where @ = ~(-1)~ is the exchanged naturality. A eimilar relation holds for 

the i3J vertex. An'important consequence of these fonoulae 3s that amplitudes 

with opposite naturality do not interfere in the unpolarized differential 

cross section. 

To see the effect on the (J,q) exchange on s-channel amplitudes, 

one must make use of the s-t crossing matrix. After some more non-leading 

terms in s are dropped, the following relations hold: 

= 5 ylq(-l) 
J4-J2 (-l)h4-A2 Fs 

h3-A)+-Al-$ + o($) 

As an example, let us consider the processes niV -+@ or @IT*. 

At the rrp vertex, for high energies, one has the relation 

“Bh4\ - - -5 dp fAph4$ 

BO that t = +l exchanges contribute only to helicitiee hp = ) 1, while 

t = -1 exchanges populate al& heliclties hP = 0, + 1. 

-number of independent heliclty amplitudes 

Restrictions on helicity amplitudes are impsed by invariance 

under discrete symmetries: parity, time-reversal, charge conJugation. 

df+,(e,) = t-1)’ d;&) + o(i) 



psriy 

= yl$13’1& -1) 
Jl+J2+Jj+J4 ( $l+%+A,+A4 F 

-h3-$-Al-$ 

time reversal (restricts the number of amplitudes only for elastic scattering 

charge conjugation (for charge-conjugate reactfona Like & +ti) 

Using these rules enables one to determine the number of inde- 

pendent amplitudes required to describe a given process: a few simple 

examples are shorn in 'IBble 1. A general remark IS that except for reactjons 

of the type 0 2 l-+0 1 z with only 2 amplitudes, the number of amplitudes 

for proceases of interest is large (2 4) and consequently the separation 

of individual amplitudes is a acmewhat tedious experimental task. 

(b) Invariant amplitudes 

Helicity amplitudes refer explicitly to the centre-of-mass frame. 

When calculating scattering amplitudes from field theory, or when studying 

analytic properties, it is useful to write down explicitly invariant amplitudes. 

If no spins are Involved, the only Iorentz scalars are s and 

t (u) and the scattering amplitude is a scalar 

T = f(s,t) 

When some of the prticles have spin, Lorenta invarianta In 

csn be constructed from 4-vectors and spin tensors: 

where the fn are invariant amplitudes. Invariant amplitudes are related 

linearly to helicity amplitudesr 

where (h) represents a set of helicitles and the A (A) 
are known kinematl- 

functions. 
+ 

-example: 
- 1+ a-+ 'z elastic scattering. 

Using the 2 Mrac spinore, it is possible to form 2 invariants 

and the general form of the amplitudes In terms of the 2 Invariant amplitudes 

A and B Is: 

Assuming ml = mj -CC m2 = m4 = K, one canexpresathe s-chnnnel helicity 

amplitudes in terms of the invariant amplitudea A and B: 

e 
F, = -&- co8 - 

4aL 2 
A+(v- &)B] 

F M e M 
----~~~~2J;; ,-----$-A+TB 

C 
4th - t + 42 4Mv - t 

+- 4sL 1 
where Y = (s-u)/& and the folloving notation has been used: 

F +- = F 
o-- :0; 

do h [/F++12 + b,121 ';ii:= B 

At high a and for t not too large, we have the simpler 

expreesions: 

T = c f,(s,t) In 
n 

141 





11 11 
TH 'BP : the most general density matrix vith correlations will involve 

the tensor products between I, 21 and z2: 

(d) observables in 0 
- 1+ - I+ 

z -iO 5 scattering (such as TN-STN, m+Kc, 

i?N+KA, etc.) 

Ihe amplitude is a 2 X 2 matrix in hellcity space and parity 

conservation gives the form: 

[ 

<- 

M .U9/2) h2 ++ -M e-i(4/2) +- M= M ,i(@/2) 
f- 

M e-i(Q/2) 
++ 1 

(axes convention; @ = 0) 

cos 0 = 9.2 

where iti is the initial 

polarization vector of the 

nucleon. It is straightforward, 

although tedious, to compute the J components of polarization of the final 

bayon. Pefining: 
do 
zz= L [bf++i2 + b+-?I 

s2 

p=- 
2 Im M++ M* c- 

lM++12 + bf+,_l 
c? 

A’ = IY+12 - lM+-12 
b++l* + h-f+-1 2 

R' = - 
2Re M++ MT- 

bf++12 + b'+-12 

one finds the final polarization components: 

P', Tr of = A'P; + P;[R' cos 0 - P sin Q] + Pi [R' sin e + P cos $1 

P; Tr of = - R'P; + A'Pi t A'P1 
X Y 

P; R pf = Pi + P - Pi sin e 

with 'IT pf = 1 - PP: sin 0 + PP: co6 0. 

For a stable baryon, polarization can be experimentally analyzed 

in a rescattering experiment: in this case only the transverse component of 

the polarization is measured and one must consider different orientations of 

the target polarization in order to separate A' and R'. Usually tne 

rotated A and R parameters (corresponding to the transverse polarization) 

are measured: 

A = A' sin 8; + R' co8 9 L 
4 

(lab angle) 
R = -A' co6 8; + R' sin e 

For small t, 3; -~?r/2 and A -+A', R -+R'. P, A and R are 

not 3 Independent obsenrables since p' + R2 + A2 = 1 end in general P 

and R measurements will suffice, except for the sign of A. Figure 1 shows 

schematically the experimental configurations in the scattering plane to 

mee6ure A and R when only transverse polarization is measured for the 

outgoing baryon. 



2. TN Amplitudes at 6 c.ev/c 

l'"nis represents the only case where all observables have been measured, 

therefore permitting the separS.tion of all helicity amplitudes. It is worth 

looking with some detail since it represents, in principle, the only unbiased 

SOUI‘CC of information on individual amplitudes. 

(a) 'ida and obserrables 

In addition to helicity subscripts, we will we the isospin exchange 

in the t-channel It to label amplitudes. We have: 

~($p -+T’P) = F O ; F1 

F(7;p -a,‘,, = fi Fl 

In terms of "particle" exchange F" corresponds to (Pomeron + f) 

exchange while FL corresponds to 0 exchange. To describe the 3 reactions, 

one needs 4 independent amplitudes, therefore 8 real numbers for each t 

value. The observables for each reaction are: 

g = IF++/* + lF+-t2 
-~%=2 ti~++Fr-) 

-R g = tlF++12 -lF+-1*] cos BL + 2 Re(F++ F;-) sin BL 

A g = [IF++j2 - (F+-12] cos BL - 2 Re(F++ F;-) cos BL 

The measured observables around PL = 6 GeV are: 5-u 

do+ do- da0 
dt' dt' dt 

p+ , P- 7 PO 

R+ , R‘ 

(A-) 

(b) Amplitude extr'action 

For t f 0 amplitudes can be determined up to an overall phase. 

Since Fy+ is the dominant diffractive amplitude, thus mostly imaginary, 

all other amplitudes are projected on Ft+. Therefore at each t nlue 

there are 7 unknown real numbers to be determined: F;+, @'1- )lp (Fy- )I, 
1 1 1 

(F++)//J @++)I' @+-)\I and (F 1 ) (where 1, jl denotes component f- .L 

orthogonal,collinear to Fy+). It follows that: 

+ - 
F:+ is mostly determined from !g+g- 

(F:s),, is mostly determined from X- 

(FY- )I is mostly determined from P + do+ dt + P - au- dt 

(Fl ) is mostly determined from au- + 

++ II 
- - E at 

and (Ft- )I is mostly determined from pc do+ - do- 
dt -p at 

could be determined from R-(&-/at) - R+(da+/dt), but data 
t 

on a is not good enough to proceed in this way: so that, in practice, 

the remaining two amplitudes (Ft-)/) and (Fz-)I are determined by two 

quadratic equations involving do'/dt and PO. 

In general two solutions for the F0 amplitudes are found, whereas 

4 solutions emerge for (F:,),. and (Fk-),,. Continuity from t = 0 together 

with the sign of R-(do-/dt) - R+(da+/dt) Seem sufficient to remove the 

ambiguities. At larger t values (-t > 0.5 Ge?) ambiguities appear again 

because of insufficient information on R. 

(c) Ekperimental problems 

Besides the difficult experiments to measure R' (it is significant 

that only one experimental group has performed that experiment So far), the 

determination of the ?rN amplitudes suffer from uncertainties of experimental 

origin. 
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da- --it is herd to measure dt - $ and hence F(;+),,. 

iit 6 wi, do-/at - 40 eTeTt ana dd/at - 37 e 7'1t (In mb/Ge?), giving e 

cross-oYel zero emund tc = - 0.15 GeV2 (approximately the zero of 

(F;+),,b If normalization uncertainties are 55, then the error in location 

of tc IS Ate = 0.1 Ge?, . wmely, its accurate position is not known. 

'Ibis situation has been improved by the experiment of Ambats et al. who 

claimed a nonnalizatlon uncertainty of + 1.55 betveen ~r+p and - lr Pt' 

giving a ntc error of + .025 ce 3. 

--measured values of PO me spread Over B wide range outside 
10 

quoted ermi-S. Argonne points 11 are typically lower (- 0.2) than CERIi pints 

(- 0.4). This perticularly affects the determination of (P~+)A as its zero 

can be moved from t = -0.25 to -0.5 Ge? according to what PO meS.BUlY- 

ments are used. 

(a) Results 

13-16 lhere have been several analyses, all using essentially the 

s8me sets of data. We WY going to discuss the latest analysis' by the 

Argonne group since it uses their new data on do'/dt. 

--It = 0 exchange (P + f) (Fig. 2). 

0 
p++ is large ar.d is the dominant amplitude; it 1s roughly expo- 

0 nential in t. F+- is small, but predominantly imaginary so that s-channel 

heliclty is approximately conserved. DJ express the deviation in a quanti- 

tative bay, it is useful to consider the invariant amplitudes A and A': 

AO I I -Y= 0.10 < -t < 0.5 Ge $ 

*0 

It is important to note that P and f exchanges cannot be 

separated since they have the Bsloe quantum numbers and consequently they 

always appear together in the observables. It is only through the energy 

dependence of the FO amplitudes over a large B range that P a& f 

could be disentangled; unfortunately we only have 6 GeV so far. 

--It = lexchange (p), (Fig. 3). 

(Fl ) 
++ II 

has a zero at -t - 0.15 Ge? and is strongly peripheral. 

A Bessel-Fourier transformation Into impact pammeter space shows a broad 

peak centered at about 1 f. (Ft+),-also goes through zero in the same t 

range, although at a larger value than (Ft+)il: it occurs at -t - 0.25 Ge? 

with *he Argonne polarization data 11 while it moves out to -t - 0.4 Gd 

with the CEAN data. 10 The modulus of F:- vanishes aroma -t - 0.6 Ge 3. 

Amblgtitiee preclude from making a precise conclusion above 0.6: in 

pertiwlar (although there is a hint in the data) it is not possible 

to see if there is a single zero in (Ft-),I and a double zero In (F+-),- 

as would be expected fmm a p Regge pie amplitude. The behsviow of the 

phase difference between Fz+ and Pi- is interesting since it is essen- 

tially independent of t for -t < 0.4 Ge'?: if p exchange is Regge- 

behaved in the helicity-flip amplitude, it therefore means that the phase 

of F;+ is changing significantly with t. This is important to keep in 
0 mind since F,, is the reference amplitude and consequently the correspondence 

between 1 and I( c0mponents and real ana imaginary parts is unfortunately 

nut straightforward. 

(e) Future of complete amplitude analyses 

In TN scattering, R- measurements already exist at ib and 

40 GeV,17 but PO measurements ao not extend beyond 11 GeV. At 16 GeV 

lhe same ratio computed from t-channel helicity amplitudes yields a value 

of 1.5. 

some information can be obtained on F" smplitudes: 
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*M IF;- 1 
G ,FR, = 0.26 I o-06 

i.e. not very much smaller than the value at 6 GeV. 

In KN and 6 scattering there are 8 independent amplitudes 

and therefore 15 unknown quantities (+ overall phase). Eight independent 

observables have so far been measured around 8 GeV: 

$ (Kip) 

s (K+n -'K'p) 

P(K-p ,i?o,, 

while a measurement of P(K+n * K'p) is underway at CERN. So at least 

6 other experiments are needed to meas'ue: 

g (K'n) P(Kfn) 

P(K;p dK;p) R(K+p) 

The complete extraction of KN and i?N amplitudes at high energy Will 

remain a dream still for some time. 

3. Hypercharge Exchange Reactions 

In hypcrcharge exchange processes the final baryon is a A', 

Cf or a Y* fir-aying into A or C. It is therefore possible to measure 

all the components of its polarization vector with the observation of the 

angular distribution of the weak decay (we exclude final states with Co 

which decays elf-ctromagnetically). Examples-of such processes are: 

rr+p +K+C+ 

K-P 
00 +nA 

lr+p 
+ *+ 

-BK Y 1 

L. , c+np, AOTr’ 

(a) Decay angular distribution of an unstable baryon 

Generally the decay angular 

distribution is given by: 

w(4) = c py BAA’($) 
hh ’ 

where pi:!) ia the density matrix 

for the finalstate plarization in the 

reaction (p refers to the helicity 

state of the particles accompanying 

\ the hyperon in the final state). 

For a weak two-body decay (A0 +p~-, C+ -ip~') where p^ con be taken along 

the final proton, the elements ?A' B take the following form: 

where CY is the decay parameter in the plrity-violating weak decay, measuring 

the interference between S and P waves: 

c1 = 2 Re S*P 

IsI + IpI2 



Using the expression used previously for the density matrix elements 

of a spin l/2 particle expressed in terms of the polarization vector, we get 

w(8) = -&I (1 + a gy;. 6) 

where pY is the hyperon polarization vector. Experimentally the situation 

is hopeful: 

a(~' .+Pr;) = 0.65 ) 

a@+ -BP*@) =-0.98 j 

CY(i -b/m-) -0.39 

a(,d ,AlrO, =-0.44 

a@+ ,Ild, = 0.07 

(b) Application to amplitude analysis 

(very good analyzers) 

(useless ) 

For an unpolarized target experiment, the observation of the hyperon decay 

measures the P mrsmeter as defined in Section 1: 

W(O,Q) = & (1 + (Y P sin 0 sin e) 

If the target is polarized along the direction P with components 

Pi = Pi CO8 $, Pi 
Y 

= Pi sin $,Pi, with respect to the reaction plane (9 

azimuthal angle), then the complete observation of the angular distribution 

of the decay measures all three polarization parameters P, R’, A’: 

w(0, Q) 

=& 11 +a+ sin Q sin 0 + P(CY sin Q sin B + fzP+) 

t R'(aF; cos 0 - cYP', co6 Q sin 0) + A'@'; cos Q sin 0 + CLPi z CO6 611 
We note that P can be measured in tuo ways: observation of the hyperon decay 
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with an unpolarized target 
10 or left-right asymmetry with a polarized target. 19 

It is comforting that the two experiments agree well. 

An experiment designed to measure R' in the process 8-p *K"Ao 

is planned at CERN. 20 contrary to Ri in elastic scattering, it is expected 

that R can be large in non-diffractive exchange reactions and therefore will 

be very useful to sort out the underlying amplitudes. 

4. Generalization to Several Spins; Resonance Production and Joint-Decay 

Distributions 

When higher-spin prticles are produced, or when several perticks in the 

final state have spin, the number of observables Increases sharply and can exceei 

the number of independent real amplitudes. For example, in the procesS TT p --) 

(spin J meson)' + A0 where the A0 and meson decays are observed the number of 

observables with unpolarized target is 2(J+1)(2J+l) while there are only 

4(25+1)-l independent real amplitudes. where is therefore some degree of re- 

dundancy in the measurements and it becomes extremely important to understand 

the relations between all the observables and to define a set of independent 

observables to be measured with a minimum use of polarized targets. 

Our purpose in this section is not to derive results In detail but rather 

to present a formalism to describe any two-body process with any spins in order 

to reconstruct amplitudes from experimental data in the most efficient way. 

(a) !kansversity amplitudes 21-23 

When several prticles with spin are involved It becomes more interesting 

to use the transversity--rather than helicity--quantization axes. 



reaction plane and 

center-of-mass of 

particle 

The following reference frames are defined: 

(x s y 2s) 
s-channel 

helicity axes 
(Xt Y Zt) t-channel 

(2 xs Y) s-channel s 

I 
transversity axes 

(2 t Xt Y 1 t-channel. 

In the s-channelhelicity frame the third axis is collinear to the 

momentum (2 11 ;3), while they are orthogonal (2 1 s3) in the transversity 

frame. Going from helicity to transversity frames only involves a rotation 

with Euler angles IT/~, n/2 and -r/2. 

As we shall see, transversity amplitudes are very useful because they 

are much more closely related to the measured observables than helicity amplitudes1 

in particular the redundancy between several measurements is easier to see and 

it is simple to define a set of independent measurements, both pmblems not 

being very transparent in the helicity quantization. 

-parity conservation: 5, . . _ helicity amplitudes 

T r... transversity amplitudes 

for un-polarized initial state 

T =o if q(-1) 
'l-2-'3-'4 = -1 

73'471T2 

for unpolarized initial state p T3+; _ 1 - 0 for ~3-~;e& odd 
T4'4 

-naturality consenrinp amplitudes 

With linear combination of helicity amplitudes, one can define naturality 

amplitudes to leading order in s as in Section 1 of this chapter. 

with e(h3hl) = "1~3 exp[i?r(v + J3 - A3 + Jl- Al)] 

and Y = 0 for boson exchange, v = l/2 for baryon exchange. 

Let us write down the transformation from helicity to transversity 

amplitudes: 

T = 
T374'1T2 

c & (R) DJ2 
%??3h4 l 1 

(R) 4 
%T2 3?3 

(Rx) &4(R*) "^3A4Alh, 

where R is the TOtatiOn R($, :, - g) 

1 =- 
2 c 

hl?g3h4 A A A 3 4 I. 2 +@b'13 exp[ilr(v + Jl-hl+J3-h3)] 

x H-A3A4-Al?$ I 



We therefore have the important result that T amplitudes are naturality- 

conserving amplitudes with 

5 = q1q3 =P[irr(v + T 3 - rl)l 

In conclusion, transversity smplitudes are simpler to work with because 

of the prity relations (some amplitudes are plainly zero) and they correspond 

to well-defined naturality in the t channel. 'Obese properties make +hem closer 

to experimental data. However, helicity amplitudes have a more physical inter- 

pretation and one needs to know all of the transversity amplitudes to reconstruct - 

any one of the helicity amplitudes. - 

(b) Natwality of exchangee3 

I.ince transversity Bmplitudes correspond to pure naturality exchange, 

they constitute the simplest description of a two-body process in terms of t 

or u ChaMel exchanges. More practically, they tell us what measurements are 

needad to extract the different naturalities and their Interference. 

'Ihe transversity density matrix elements for perticle 3 when the initial 

state is unpolarized, are: 

P 

and the only non-zero elements have ~~-7; even. 

-With unpolarized initial state and measurement of one final polarization, 

all obsenrables can be expressed by (superscript = naturality) 

c [TX* + T;T;*] 

and are therefore insensitive to the relative phase between opposite naturalities. 

-When particle lhas spin 0, p 
?35 

is the form 

and isolates the exchanged naturality. In the helicity description, one has 

to combine p,,3AA; elements to project out a given exchanged nsturality. 

-If both particles 1 and j have spins, the naturality separation requires 

polarization of land analysis of polarization of 3 thmugh its decay or in a 

rescattering experiment. When particle 3 decays strongly some polarization 

Information is obtained and allows the naturality separation when a meson Is 

produced (1 = meson, 3 = meson) but not when a baryon is produced (1 = meson, 

3 = baryon decaying strongly). 

-To measure the interference between opposite naturality exchanges requires 

polarization measurements at opposite vertices; for exsmple, measurement of the 

double density matrix elements T4'11 p, 'I, with 'r3-2; and ?,+-?i both even. 
33 

these results are summarized below in a pictorialway3vith diagrams 

represfntiag incoming and outgoing particles~ lines can be reversed at the same 

vertex. All particles have spin (otherwise indicated) and a vertical arrow has 

the meaning of a polarization measurement (either Incoming polarized particle, 

or measurement of an outgoing particle polarization) 

measurements amplitudes measured 

I 
+ 

I ’ incoherent sum of naturalities 

I / 
spin 0 

1'1 

-5 

I- 

l- 
opposite natural!ties separation 

i$12 

c T;T;* or c T;T;,* 



” 
(c) Applications 

(1) 

spin 0 

--I+ 

spin 1 

interference between opposite 
naturallties 

T+T-* 
AM 

A complication which should be accounted for is due to the presence of 

an S-wave IIT which interferes with the p amplitudes. An example of the 3- 

amplitude separation is shown in Fig. 4. 

T-N -+ TN 

The naturality separation is particularly clear in this reaction vhere 

it is achieved by using linearly polarized photons. 

Exchanged naturality 
Transversity Helicity 

density matrix elments density matrix elements 

5 = ?I?3 
T H H 

PO0 51 + %-1 

5 = -111q3 
T T 

51 + %-1 
H 

PO0 

T 
Re PI-1 

H H 
Pll - Pl-1 

T 
Im Pl-1 

H 
Re PlO 

?7N -s pN 

c = +1 

5 = -1 H du 
PO0 7x "8" exchange 

(helicity 0) 

(P& - “77 exchange 
(helicity 1) 

d*L 
*=+1 = dt 

(Pr perpendicular to the scattering plane) 

5=-l 

The separation is shown in Fig. 5 for yp -PT'P at 6 GeV. Extensive measurements 

of that typehavebeen carried out for T& photoproduction ($4 +nN and 

rN -irA). 
24 

(2) 

A well-known example is vector meson photoproduction with linearly 

polarized photons where the meson decay measures the amount of natural and 

unnatural parity exchange. 25 This is particularly striking in the case of 

(0 production where around 5 GeV both T exchange and diffraction occur in 

similar magnitude and can be fully separated by this technique. 
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(3) 

-I+ 
t I 

An experiment of this type is In progress at CE L¶P with .rrpt -+ pan. 

Ihe upper vertex detemines the exchanged naturality while correlations between 

proton polarization and p0 decay distributions relate to the interference be- 

tween opposite natural3tles. Even ignoring the S-wave problem this experiment 

still does not measure all the helicity amplitudes in this process (See next 

section) since the p decay is parity-conserving. 

(d) Joint-decay distributions.1 statistical tensors 

If both prticles 3 and 4 decay, the joint-decay dlstrlbution takes a 
LL' simple form when expressed in terms of statistical tensors tm,: 

W(Q3Q3e4"4) = c F3+) F4(L4) 
L4* 

*4 
(@)&$) 

v4 

where F(L) are known coefficients depending of the spin on the decaying 

particle and its decay mode. If mrity is conserved in the decay, then 

F(L) = 0 for L odd: an important consequence is that strong decays only 

measure even polarization tensors (even L 
3 

and even L4). Experimentally 

the elements t?: are measured by evaluating mcments: 

L3L4 _ F3(L3) F4(L4) tM M - 
34 

The statistical tensors are rel&ed to the double density WtriX 

elements: 

J 4 -L +J +h -L 
3 3 3 4 4 4(,3-h; J A'~L M 

L3L4 
3 33 33 

)(J~-$+;J~A;, L4%)tM M 
34 

and have the following propertie& 

normalization 

hemicity 

helicity frame 

parity 

M3+M4 odd. 

Let US see in one example how to use statistical tensors in the tram+- 

ver.3it.y frame. 

T+p +K+Y*(L3&) 

d 

!- > hod 
L > plr 

Four amplitudes are necessary to describe this reaction and therefore 

we have seven unknown quantities to solve for at each t value. Here, since 
L 

A decays weakly, both L odd and even components of tM are nrii:-Zero; how- 

ever due to parity consemtion in the production all M = 1 components vanish 

in the transversity frame. SO there are 6 non-vanishing tensor elements: 
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:j 

! I 

< ! 

j j 

0 12 
t0 t0 to 4 (real) 

2 
t2 t23 (complex) 

To relate the amplitudes let us come back to the density matrix elements 

in the transversity frame. ‘Ihe following elements 

are linear combinations of the L 
t0 components and yields the magnitude of the 

4 amplitudes while the elements 

* * ps -; = "-lf = "2 1 T 1 1 
2 -2 -5 -.F 

are linear combinations of the complex components and measure two of the 

three relative phases. Without a polarized target it Is thus possible to 

se-parate amplitudes up to an overall phase and to the phase between amplitudes 

with opposite target transversities. 

The previous conclusion is qtite general: with an unpolarized target 

one can at best (when all components of polarizations are measured, in a weak 

decay) measure N-l real amplitudes with an arbitrary overall phase convention 

when N numbers are needed to extract all the amplitudes: this last unmeasured 

phase necessitates the use of a polarized target. When a polarized target is 

used, many more observable6 can be measured, providing constraints for the 

amplitude determination. The situation is summarized in l&ble 2 for typical 

reactions.27 Reactions like TN *K*A and ti dKY* should be very helpful 

in our understanding of strong amplitudes: analyses of the type described pre- 

viously will involve high-statistics experiments with large solid-angle systems 

to observe the decay correlations. 

(e) polarized proton beams 

Ebcpzriments are being done at AM. with a polarized proton beam; In 

particular elastic scattering in pure spin states has been measured. 28 To 

understand the meaning of the data in terms of the more familiar helicity ampli- 

tudes2v-30 it is necessary to transform spin states into helicity 

states (sz =+: 

I:' = Isy = + ;) =& [[sz = + 6' + ilsz = - $1 

Proton-proton elastic scattering is described by 5 helicity amplitudes: 

Rl = (++lM/++) 
1 

H2 = (++jMj--) 

H3 = (+-jMj+-) 

H4‘= (+-/Ml-+) 

overall no helicity flip 

double helicity flip 

H5 = (++IMl+-) single helicity flip 

One can then express the pure spin states cross-sections shown in Fig. 6 in terms 

of the amplitudes Bi or even better in terms of linear combinations of H i 
isolating pure naturality exchange. It is then easy to show that g (tt -3 tt), 

+a&) and -) t-l) only involve natural prrity exchange, while 

g/ dt ,tt + (4) and 4 $t) correspond to pure unnatural parity exchange. 
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‘Ibe data at 6 GeV and t = 0.5 Gd? shows that these unnatural parity crow 

sections are mall, typically lO$ or less of the dominant natural p?.rity 

Cxv66 sections. We &all discuss almost exclusively non-diffractive two-body processes, 

although in same casea the diffractive part cannot be easily separated out, such 

TABLE1 as in elastic scattering for It = 0 exchange. We are going to swrize Prop- 

Number of hellclty amplitudes erties of data on two-body scattering in order to gather InforTsatim on the 
no discrete 

Reaction type syrmaetry using P using T UEing c using Iv2 behaviour of the underlying amplitudes. We have seen that our knovledge of single 

lrN+TN 4 2 2 2 amplitudes is rather llmited; on the other hand there is a wealth Of data On 

TN -~lrA 8 4 4 crows sections and polarizations vhich can cast some light on our problem. 
I-N +rA 16 8 10 - 6 

TN - pN I2 6 - - 6 

NN-tNn 16 8 10 5 1. Kinematic Dependence 

I.6 8 I2 6 (e) g dependence 

--t = 0 

pABm2 
Very useful information on the behaviour at t = 0 Of the imagi=rY 

Number 
of real measured observable8 (+ constraints) 

tiberof independent unpolarized polarized target 
Reaction type amplitudes observable8 target transverse longitudinal 

lrN-rnN 2 3 

KA 2 3 

PN 6 11 
IC*A 6 11 

KA 4 7 KY” 4 7 

P* 12 23 

K*Y* 12 23 

1 2 

2 3(+3) 
4 10 

10(+2) 11(+25j 
4 7(+3) 

G(+Q) 7(+17) 

20 23(+33) 

22(+26) 23( +=I) 

(+o) 

(+2) 
(+Q) 

(+=.I 

(+2) 
(4) 

(+16) 

(+J+8) 

pert8 of the amplitudee can be extracted from total cro8s section measurements. 

'These measurements are rather caaplete--n*, K4 and p* on protons and neutrons-- 

and cover a tide range of s values Pram threshold to _ 400 Ge??. It is uae- 

ful to project each forvard amplitude onto t-channel quantum numbers, conveniently 

labelled by partlclee' names: 

o,(K'p) = PK + fK g "k T 4( + & 

oT(Kfn) = PK + fK 5 * + 4( - AK 

mT(dP) = Pp + fp ?- up 5, Pp + Ap 

qJ**n) = Pp ‘fp’“p’p -A 
P P 
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Defining sums and differences 

A(Ap) = oT(A-p) - sT(A+p) 

C(Ap) = a&A-p) + $A+P) 

we can express the pure t-channel exchanges in terms of the measured cross 

sections: 

2% = A(m) 

4% =A(KP) - A(Kn) 

4w( = A(Kp) + A(Kn) 

4pk = I - R(Kn) 

and similar relations for p'N 

Experimental problems are obvious in these extractions: systematic differences 

between experiments show up, particularly in different energy regions; also 

neutron data comes from deuterium experiments where a Glauber correction has 

to be applied. In regard to the last remark it is interesting that a better 

determination of the s dependence of SK and 0) p comes from A(Kd) and 

A(pd) directly. We are not going to discuss here f and P exchanges 

since they cannot be separated simply; we shall come back to this problem in 

the last chapter. 

The s-dependence of the imaginary part of exchange amplitudes at 

t = 0 has some remarkable properties: 

(1) from well measured differences, amplitudes are seen to be power- 

behaved in s (or pl) after a few oscillations at low energies. Energies 

around 3-4 GeV are typical lower limits for the simple power behavior. We 

parameterize the s dependence in the form 

for example PII = B, 6 

(ii) all the exponents ai that can be isolated cluster around 0.5 

(+ 0.1). Accurate values depend sensitively on low 8 cut-offs, uncertainties 

in neutron data and resolution of discrep%icies between experiments. Values 

found using the data of Ref. 31-35 are shown in Table 3. A typical example of 

the power behaviour is displayed in Fig. 7 with A(Kd) and A(pd). 

(iii) Ssme exchanges in different processes show a close similarity 

in their energy dependence. In particular a: is equal to 
G 

within errors 

and is also consistent with the badly determined a:. Also the very accurately 

determined $a and gw are the same, as can be seen directly in Fig. 7. One 

therefore concludes that,within the limited range of processes and exchanges 

afforded by elastic scattering, the power behaviour of a given t-channel ex- 

change is not affected in a strong way by s-channel effects (like absorption) 

at t=O. 

The s dependence of amplitudes at t = 0 can also be obtained from 

measurements on differential cross sections, (do/dt)t=O. Rxperimentally this 

is not always easy: if a recoil particle has to be observed, data will only 

exist up to some minimum ItI value and extrapolation at t = 0 will. be 

necessary with the corresponding uncertainties; if, on the other hand, no recoil 

is observed t = 0 can be easily reached, if not smeared by resolution effects 

or not affected by Coulomb effects, such as in elastic scattering where Coulomb 

scattering (r exchange) has to be subtracted out. When well-defined t-channel 

quantum numbers can be isolated, infonaation is thus obtained on the s depen- 

dence of the modulus of the corresponding amplitude and is therefore complementary 

to the information contained in total cross-sections. 

Experimental determinations of the s dependence of some (dU/dt)t=O 
_ s2cl-2 are shown in 'Pable 4. An immediate conclusion when results in %bles 

3 and 4 are compared is that a values obtained from (do/dt)t=C and oT are 

consistent with one another when the same exchange is involved: this is very 

important because it means that the phase of the amplitude at t = 0 is 

essentially energy-independent. This, as we shall see in Chapter 3, is a 

consequence of analyticity in energy and power behaviour. 
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using: 

--tL.Jh 

IBta on differential cmss sections have tmditionally been parametrized 

do -= 
at A(s) eB(s)t 

me experience has been that s aepenaence of slopes is r!ot 

particularly illuminating for exchange reactions and the aeff approach 

has been in general more fruitful. Howver we would like to warn against an 

abusive use of a eff: if, in non-diffractive reactjons, it seems that cross 

sections are reasonably well power-behaved (see r--p +r"n in Fig. 81, it is 

not the case in elastic scattering and aeff determinations depend on the 

energy range considered and can be very misleading. 

The most reliable aeff determination cmes from IT-P -BT'~ over a 

very tide 8 range (with the fiew NAL dat.aljg) and shows a simple linear futlction 

aeff(t)36 
ap(t) = (.56 2 .ce) + (.g7 + .o4)t 

out to t values around -1.5 Ge ? (Fig. 9). 

The situation is not so pretty for the case of A2 exchange where a 

crude linear behaviour seems to exist for 0 > t > -0.5 Ged but larger It] 

data is too imprecise to pin down unambiguously the 8 dependence. Informtion 

on the u) a eff is still very primitive. 

(b) t dependence and helicity structure 

Exchange amplitudes generally exhibit an exponential fall-off in t, 

but even some of the crudest characteristics of the t dependence are determined 

by the relative amount of the different helicity amplitudes present in a given 

In the forward t region the presence of a peak or a turn-over 

immediately informs us of the relative importance of overallhelicity non-flip 

amplitudes and flip amplitudes at small t, since flip amplitudes have to 

vanish kinematically at t = 0. We observe: 

r-p -+7r"n: 

K-p -+I?',: 

I{"* +KOp: 

P exchange mostly helicity flip (confirmed by 
complete amplitude analysis) 

P, A2 mostly helicity flip 

cm p++ and Im A++ given hy flT data ar,d are 

small at t = 0) 

from the peak at t = 0, 0 mostly helicity no-flip. 

Dips for t # 0 (or absence of dip) provide direct infommtion on 

hellcity amplitudes, although it is hard to translate the facts into StatSwatS 

on real or Imaginary mrts of the amplitudes: 

-from TN amplitudes at 6 GeV, both Re p+- and Im 12,~ vanish for 

-t- 0.6 Ge? producing a dip in do/dt (7-p -+~'n). 

- dU/dt(r-p 4~") is da&x&d by A+- but no dip is seen at 0.6, 

so that we do not know simply the behaviour of Re A+- and Im A+- there- 

-It = 0 exchange can be isolated in fl +pN: 

($ 
It=0 

= $ [g (r;P 4P-p) + g (Tr'p -+p+p, - g (?rp -+pon, 1 
and it is seen to be almost completely natural parity exchange as given by 

(p;l + p~-l)(do/dt)It=O, It strongly resembles l~+-]~ (Fig. 10) with a forward 

turnover and a dip at 0.6 Ge ?. It therefore tells us that, because of the 

helicity flip at the upper vertex, (u exchange is predominantly non-flip at 

G vertex--a fact we already knew from <p +Kip forward peak. 
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Natural plrity exchange 

also has a eff - 0 for -t < 0.15 Ge? but seems to behave more like expected 

A2 exchange at larger ItI although Ueff is B bit too Large there. 

Good dats relevant to T exchange exist on kN -sK*N at 641 and 13 

GeV, 42 24 v photoproduction ySN -,dN, and ?r'A (mostly natural parity ex- 

change) and np +pn, $p -+rin. 

Reactions with 'TT exchange are rather complex In the fact they 

generally involve many exchanges,and it is clear that the underlying amplitudes 

can only be uncovered by complete measurements. There is however good evidence 

here that the Identification of t-channel quantum numbers with 'hure" exchanges 

fails, presumably because of large absorption correction to v exchange, spilling 

over to 6 = +l amplitudes. Of course the proximity of the T pole from t = 0 

makes B exchange something unique where some of the Regge character shown by 

other exchanges may be washed out. For practical purposes it is very important 

to understand T eXChange since it is one of the most productive areas of 

meson spectroscopy through sv and Kv scattering, and improved knowledge of 

the n exchange amplitudes will consolidate the process of extrapolating to 

the pion pole. 

Baryon exchange 

The experimental situation is rather poor since cross sections in the 

backward direction are small at high energy. For allowed baryon exchange, s 

dependence vary between cf(0) = 0 and a(O) = -0.7. Iooking at the S depen- 

dence of the backward peak over a large energy range (for example in fig. 13), 

ue notice that s chsnnel effects are still present at energies - 5 GeV: a 

consequence of this fact Is that data at higher energies are needed in order to 

see the distinct properties of w smooth" u-channel exchange. It is interesting 

that before the B dependence of baryon eXCha& sets in, the fall-Off in s is 

fairly steep, s -7 to s-y averaging over resonances. 

The closest we come to u-channel amplitudes is in TIN scattering 

around 6 GeV where 
f * - 0 lTp'plr,lrp'nB differential cross sections and 

7TL* + PIT' polarizations have been measured. In terns of Iu = i (N) and 

I =2(A) u quantwn numbers we have (summing over nucleon helicities) 

da" = g (7;rp -+p.rr) = $ 12N + A\ 2 
x 

da- da -=- 
du du (T-p -+p?r-) = /Al2 

and therefore 

IAl* = $$ 

Re(R*A) z f [$ - 2 $ + $ !$j 

From the data (Fig. 14) "e see that ]NI 2 possesses a dip at u - 0.2 

Ge 2 while lAl2 is structureless. However accurate analyses of the data are 

not easy since they rely critically on the relative normalizations of the 

different sets of data. 

Important information could be gathered from the line-reversed reaction: 

observed in pp two-body annihilations, i.e., $p --t T'T+, allowing one to 

separate the different signatures. Data exist at 4-5 GeV 43 but relative normal- 

ization with TN data is difficult and the energy probably not high enough. 

In any case s dependence of annihilation data is generally compatible with 

the corresponding backward data. 
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(b) Exotic exchanges 

Two definitions of an exotic exchange can be adopted: 

1st kind: when quantum numbers are different from those of the 1 and 

2 SU(3) representations for mesons or 8 and g for baryons. 

2nd kind: where quantum numbers cannot be generated by a simple quark 

model with qi for mesons and qqq for baryons (more 

restrictive definition) 

I = 2, I = 312 meson exchange 

Cross sections for forbidden centre-of-mass hemisphere for the processes: 

T-p -BK+C- 
+ *- 

IT-p +K Y 

K-p +IT+~- 

pp -+z+z- 

7;~ --) ?;iA- 

u-p -iK"E*o 

K-p -rK+s*- 

K-p -+,+Y*- 

all show fast fall-off in 8 (- s -6 ) and are typically of the same order of 
- ++ magnitude (- 1 @b at 5 GeV), with the notable exception of pn -+A A 

(- 100 pb at 5 GeV). Almost all of these reactions do not show a peak at 

small momentum transfer, thus failing to show the usual distinctive appear- 

ance of crossed-channel exchange: an exception is pp +pC- at 5.7 GeV/c 

although the slope is somewhat small (- 1 GeV2). 

Ctbme s dependence of (du/dt)t_O shows a more interesting behav- 
-+-44 iour (Fig. 15), particutirly for r-p +K .X , although only meagre informa- 

tion on t dependence is provided. A significant change in 6 dependence 

seems to occur near 4 GeV/c however from looking at the t dependence it iS 

still possible that the flattening could come from fluctuations in the angular 

distributions (as caused by s channel resonances, for instance). Higher s 

data are needed before a clear-cut conclusion can be drawn. Concerning the 

order of magnitude, let us note that at 5 GeV 

F $ (K-P +K+Z-) 1 - 2 10 -4 

In view of the smallness of exotic 

to look for them through their interference 

A(7;p +K°Co) = & 
5 %/2 

&- 
+ T A3/2 

A(T+~ -+K+C+) = - g A 
3 

lA 
l/2 + 7 312 

amplitudes, it seems more fruitful 

with allowed amplitudes. For exsmple, 

CAIt ) 

where A3/2 
is the exotic amplitude. It follows that: 

* 
Re A1f2 A3f2 1 $ (a+~ -tK+C+) - 2 s (7;~ +K°Co) 

jAlf2j2 = - 'g (?r+p +K+C+) + g (v-p +K°Co) 

At 3.6 Gd, this ratio is .025 2 .045 with a systematic error of + .017 and 

therefore no evidence for It = 3/2 exchange is found at the 5% level if the 

two amplitudes are In phase; the limit could obviously be much worse if some 

large phase difference existed between A 
l/2 ana q/2' 

Evidence for It = 2 and It = 3/2 exchanges comes from photopm- 

duction45 commring the reactions: 
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- ++ 
r-~-+sA 

y-n -+,a' * 

l-p -+,,+A' 
Re AlA 

m +?r+A- 

lAllP = -10 f: .015 

yp +K+C" * 

yn +K+C- 
I 

Re Al/2 AT/2 

b t 
2 = .05 + .Ol 

l/2 

Exotic baryon exchange 

Fast 6 dependence (- s -10 ) is seen for exotic baryon exchange (see 

Fig. 16 for pp +Kk- and Fig. 17 for K-p +pC-) compred with dependence 

like s -3 _ 8-4 for allowed exchange. It is interesting that exotic channels 

continue the trend observed in the high-mass resonance region with no evidence 

of a change in trend observed so far. Nevertheless a backward peak has been 

observed at 5 GeV 43 in both K-p +pK- and ip +pp (Figs. 18 and 19) which is 

at least a good hint of some kind of exchange. It is unfortunate however that 

these healthy peaks have almost disappeared in the preliminary data of Ref. 46 

at 6.2 GeVjc. So there again it seems that fluctuations (s-channel effects?) 

are occurring over and above a steeply falling s dependence which still pre- 

vail at 6 GeV. lhe ratio: 

is - 10 -2 at 5 GeV/c, but has already fallen to - 210 -3 at 6.2 GeVfc. 

- e xperimental difficulties 

Some difficulties in interpreting an exotic peak have been pointed 

out when a resonance is produced. 47 As an example let us consider n-p +?r'A-. 

lr- IT+ 

I 
It = 2 

P 
(a) A 

P n 
(b) 

lr+ 

lr 

One would like to describe phenomena with diagram (a); however processt!s 

(b) can also contribute and reflect into the (*r+) mass spectrum at low mass 

simulating a false A peak. It is amusing that to achieve this effect 

Tr+lr- -I IT-li+ scattering has to occur--also an exotic backward process--but it 

will do so at a much lower 6 value and hence the process will still be 

dominated by TT resonances. Since these reflections are still badly under- 

stood, we think it is safe to use data involving only stable particles, i.e., 

pp *T%-, K-p +@C- and fip *pp. 

-interpretations. 

Real exotic particle exchange is not likely in view of the absence of 

a persistent peak at small t (u) although the s dependence of K-p +pK- 

a eff 3: -4 does not rule out a 2* of mass 2-2.5 GeV for a canonical a' = 1 

Regge trajectory and a spin of l/2 or j/2. 

Direct channel effects could be responsible for fluctuations in the 

angular distribution around a collective steep s dependence. It is then 

expected that at some energy some exchange will take place in the crossed 

channel where the most likely candidate is double particle exchange which 

certainly is the cheapest way to generate exotic quantum numbers. However 

they have not been seen yet. 



-violation of quark selection rules 

In the simple quark model the 8 meson is a h7Y system and therefore 

couples very weakly to non-strange particles. This is observed for example in 

backward scattering around 5 GeV where processes like K-p +Ap and K-p +I%D 

occur, but K-P +A@ has not been detected yet. 

Recent results on 0 forward production in IJ-P + +n have been obtained 

recently48 showing a very fast decrease of the cross section like 6 -8 (Fig. 20) 

where a corresponding allowed process r-p +(u1 behaves es 6 -2.4 . me differ- 

ential cross section is flatter for 9 (slope 1.4 Ge v2 at 5 GeV) than m (slope 

- 3 GeVe2) production. This reaction is rather interesting because ~11 channels 

are suppressed by the quark model: s-channel non-strange resonances will not 

couple to @n, u channel exchanges are prohibited by the same properties and 

t-channel exchanges are suppressed because they cannot couple to both upper and 

lower vertices. The only reasonable candidate to generate some amplitude Beems 

to be two-particle exchange such as K-K* which is not prohibited by the qwrk 

UlOdd. Although such an explanation would not be inconsistent with the ratio 

da P + @n) _ 3.5 lo-3 at 5 GeV, and the shape of do/dt, the steep s depen- 
47r-p -+un) 
dence is somewhat surprising. 

(c) su(3) symmetry. 

We know that SU(3) can only be an approximate symmetry of t&e strong 

interactions but it is important to see how useful & tool it can be in under- 

standing two body reactions. Even though it is not exact, it con still be help- 

ful in organizing our systematic understanding of exchanges. 

t =o 

The difference between a,(O) = .57 + .Ol and CX(UCO) = .40 + .O3 

is not accounted for by the p-u, mass difference and linear traJectories 

of same slope since it yields a; = .97 2 .04 and a; = 1.2 + .l. It there- - 

fore seems that p and CL exchanges break SU(3) symmetry, while P exchange 

with different external prticles is consistent with symmetry (a:(G) _ 

On the other hand the residues @how a 20$ breaking 

P 
e!L = 1.6 + .I 
% 

instead of 2 for exact SU(3). 

!lBe relationship between the residues of p, and "k cannot be tested 

well because, since ai f I$ the co mperison depends on any scale factor so in 

( s/so)a. 

tf 
SU(3) can be applied tc two-body reactions and yields relations Inde- 

pendent of any dynamics producing the reactions. For example, the following 

equalities between amplitudes are predicted: 

A(K-p +K '5') = A(K-p +r+C-) 

A(K-p "K-p) = A(¶-p -BT-p) + A(K-p -T-C+) 

A(K+p .+K*+p) = A(7;cp -a p+p) + A(r+p -aK*+C+) 

-6 A(yp -I ~r+n) = fiA(yp -+K+A') - A(yp 4K+C") 

these relations are in general badly violated but they do not teach us 

a lot about the structure of the breaking. It is more useful to isolate t- 

channel exchanges in different reactions and relate them using SU(3). Such an 

exercise awaits some complete amplitude analysis such as in hypercharge reactions 

to compare K* exchange to p and (u exchanges. Before this is done we can 

go B few steps in this direction in writing down STJ(3) relations when some 

restrictions are imposed on the t-channel exchanges. In particular, if we 

a.ssume exotic amplitudes identically vanish, then some new SU(3) relations 

can be found: for example, take the general SU(3) relation 
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A(K+p +~‘a”) +$TA(K-~ +v-c+) =J;;A(K'~ -3~+5-) - A(K-II -+KOZ') 

vhere the amplitudes on the right-hand side are exotic in the t-channel and 

cm be set to zero; we obtain the simple relation: 

g (Ktp -BK'A++) = 3 $ (K-p -+IF-C') 

expressing N(3) symmetry between (p,<) and (A*,<) exchanges. However 

this kind of relation IS expected to be more reliable when there is a dominant 

heliclty amplitude such as for p and A2 exchange: 

g (K-P +sn) + g (Ktn -+K'p) = g (v-p +,'n) + 3 g (sip -,,-,n) 

Such a prediction is successfully compared to experiment 49 in Fig. 21. 

N(3) symmetry applied to vertices can help ua understand the empirical 

helicity couplings vhich we have derived from experiment. Zhe coupling of vector 

and tensor mesons to R% ie expressed in tenna of a symmetric octet coupling 

(d), an antiaymmetric octet coupling (f) and a singlet coupling. &pressing 

the fact that 4 and f' completely decouple from 1 leads to SU(3) 

couplinga depending only on f and d for each helicity amplitude. Table 6 

show8 the couplings for vector ntwons and their numarical valuea, aa compared 

to pip hellcity non-fUp, obtained with (f/d)++ = -3 (in order to reproduce 

(PIP/+)++), (f/d)+ = l/3 (80 ti-& b&p,+- = 0) ad (~frp),~/(~irp)++ = 3 

from nii amplitude analysis at 6 GET. We see that, as ia experimentally 

observed, the < couplings--also the < couplings--do not show a dominant 

helicity transfer. 

'lhe phase of an amplitude is in general hard to measure experimentally. 

(a) t=o 

Coulomb interference 

Existing measurements are still very fragmentary. v'p is the only 

systematic study from 8 to 20 GeV 50 and the data can be used to measure the 

&me of (P + f) and p exchange at t = 0. It shove that the phase is given 

correctly by dispersion relations, hence checking the analyticity properties 

of the forward amplitude. The phase of the even-crossing part (P + f) is 

- loo*, while for the odd-crossing part no more than the sign is really 

measured (Re p/Ire p > 0). 

At 2 GeV/c in the v*p system, a new piece of data 51 yields: 

I 
R~(P + f) = -(6.2 2 .45) mb 

Im(P t f) = 32.45 mb 

ib p = (2.25 + .45) mb 

liu p = 3.35 mb 
4 = (34 2 6)” 

where the p Regge phase is 39". 

The situation in kp 16 still worse, since ve have only a few good 

low energy points 52 and very questionable high energy determtnations. Below 

3 GeV, Re(K+p) ia large and negative (a = Re/Im = -0.44 at 2.6 GeV) while 

Re(K-p) oscillates in the resonance region and then seems to settle to very 

smell values. The corresponding phases are found to be: 

pL(cev/c) O(+)(P t f +A2) 4%l + “4 

1.6 98” 

2.6 100° 

At t = 0, the optical theorem give one method while, at t # 0, one need 8cme 

interference with a known amplitude. 
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where the 0) Regge phase (u dominates over p et t = 0) is 53" for 

am(o) = 0.41. Relieble high energy determinations of the forward phases in 

K+p are particularly wanting. 

Special Case of Kpp +K,"p 

One can use the CP violating decay c 4 lr"Tr- to interfer with KS" 

regenerated from a hydrogen target. Knowing the decay phase O+-, both the 

regeneration amplitude end its phase are measured at t = 0 by observing the 

interference patter" as a function of the K0 decay time. The probability 

distribution of events is: 

-2 =lR12 d-rs~) + h+-t’ exp(-PLT)+ 2jRq+-j exp[-(l?S+rL) $1 cos(6r + 6- "+-) 

where [A(<P -+K$)l,=, = Reio, q+-e i4+ 
is the CP violsting amplitude, 

6 the K$s" mass difference and rS end PL the < and KS" inverse 

lifetimes. 

The results show53 that between 10 and 50 GeV: 

-0 is roughly independent of 6 

4 = (-1312 8)" = B + (49 + 8)" 

-a,,,(O) = .47 2 .13 in agreement with the 8 dependence of 

q&K-") - o&K'") related by SU(2) invariance to aT(Kop), the 

Imaginary part of cp +K;p at t=O. 

Using the optical theorem 

Measurements et t = 0 of do/dt yields (Re Al2 + (Tim Al2 and 

using the optical theorem (Im A - uT,) on can deduce the absolute value of 

F+e A. This approach has not been Vera successful in elastic scattering because 

of the smallness of the reel parts end problems connected with relative 

normalization and possible CWvature of do/dt et small t. However the 

epproach has been most fruitful for odd-crossing amplitudes. 

ImA(7;p *TO", = - - k 
4&a 

Lql;P) - ++P)l 

Im A(+ +K;p) = - gT &(K-n) - o&K+")] 

Figure 22 shows the ratio a = Re A/Im A for IT-P +~'n, yielding a phase 

4 = T + (43.5 2 2.5)" corresponding to a Regge apt01 = -52 + .04 in good 

agreement wit@ the s dependence of the imaginary port. In ep -BK$ 

the phase is 0 + (40 + 10)' giving CX,(O) = .55 + .ll in eccord with direct 

phase measurements end the 6 dependence of the corresponding total cross 

sections. 

A more interesting exercise csn be carried through for the K?i end 

6 change exchange reactions: 

[Im(K-p +$")I2 = & [o&K-n) - c~,(K-p)]~ 

[Im(K+n -'K'P)]~ = &y [o&K+p) - o,(K+=)]~ 

In Mg. 23 we compare the values of [L~I Al2 to the differential 

cross section5 at t = 0: it strikingly shows that the process K-p +pn 

is purely imaginary et t = 0, while its counterpart K'n -+K"p ia purely real. 

!&is result confirms some of thg duality ideas that we are going to discuss 

in Chapter IV, 

b) tfo 
A very attractive method which ten be used in p and o production 

is provided by p - o electromagnetic mixing as observed in the T+T- decay 

chennel, leading to the exciting possibility of measuring the production phase 

difference between p and cu. 
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Correopondlng to the production amplitudes: a = tJ(7;p +?T-lr+n) - .(,‘;* -3 $rrp) = 4 Re(p*Lc) 

one ten observe interferences of the form: 

vi-en? f is B coherence factor and 0 is the phase difference including the 

phase of o -+~+?r- (known and checked in e+e- production or p snd m photo- 

production where the hadronic phase difference is small). Ideally If all the 

amplitudes were sorted out one could measure the @se difference for each 

hellcity state: however experiments have not reached that point yet and several 

heliclty states are still sumned over so that s coherence factor has still to 

be used. 

This method has been used recently by an Argonne group in a rather 

elegant way.54 They measured the chsrge-symmetric processes 

for different hrrrr and nsturalities 5. 

Figure 25 shows the t-dependence Of the phases and SOS,‘? ides Of the 

s dependence. 9be phase of the unnatural parity exchange 6' is (122 + 6)" 

where one would expect 90” for 1~ - B exchange degenemcy (n in p productiur 

and B in u) production). The phase A', the amplitude with naturs.1 parity 

exchenge, Is changing with t going from 90" at t = 0 to shout 0' at 

t = -0.3, there, p - A2 ex&mge degeneracy would predict - 90" and so, again, 

we see e strong departure at small. t from the eqected exchange.?, a ais- 

creps!lcy elxeady noticed with the behaviour of OLe,,(t). 

p. p - w interference analysis has been carried out by the CEIL-Munich 

gro~p'~ observing only i~-p -PT+T-II at 17 &V/c. 'Pheir results for the phase 

of The natural prity exchange is in agreement with the previous analysis, but 

they disagree on the phase of the unnatural parity exchange with h, = 0: 

vith the phase convention of the Argonne group, they find phases below 90", 

shoving either BD unsuspected 8 dependence or some experimental disagreement. 

Similar measurements could be extended to other reactions such as 

K P -4 (IwJdA 

where the Interference effects could be even more visible due to about equal 

cross sections for p and (u production; In constrast p production In *I4 

is larger then (II production and the smallness of the decay rate (u +d7r- 

renders the observations rather difficult. 

wfiicb should have equal cross sections except for W(2) electromagnetic break- 

ing . Ihe Interference pattern 1s striking In the mass spectrum of fig. 24, 

shoving a constructive interference for IT-~ +~'dn and a destructive one for 

lr+n 4,,+p. The Interference term can be projected out: 
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Amplitude 'L ="(GeV/c) B (mb) a 

PTr 4-200 3.43 + 0.07 .57 2 .Ol 

% j-200 2.16 + 0.12 .57 2 .Oj . 

"K 3-200 13.0 2 2.6 .3y + .Ol 

4c 3-200 1.8 + 0.2 .48 + .05 

a(Kd) - "k 6-200 .41 

a(@) - up 6-200 .41 

TABLE4 

Reaction exchanges a (t = 0) Ref. 

P 

h2 

p 'A2 

P - A2 

P+m 

u) 

.5a + .0j 

.47 + .07 

.43 

36 

37 

Y3 

Fxchetme Eminent helicity coupling to Bg 

P+f 4-b 

(u ++ 

P +- 

A2 +- 

T f- 

si 7 (+timportant) 

VETi vertex m(3) coupling 
helicity non-flip 

coupLbg 
helicity flip 

coupling 

Pm; 2 (f + d) 1. 3. 

-5. 0. 

A (sf + d) 
42 

-f+d 

2.6 2.3 

-2.8 2.1 
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III - EPTRACTING AMPLITUDEi FROM IXCOMPLZTE PATA 

'?%ere Is so much data in inconoplete for= and so little information on 

mp:it~Les, that it s?ems worthwhile to try methods where a few amplitude6 can 

be extracted oilt in an approxirwte way. On the other hand we bfwe tre&ted real 

prts and imaginary parts as two independent sets of observables uherr we knuv 

+&at analyticity relates them: so it seems that analyticity can be used io 

clmpli?.ac3e analyses in o:'der to reduce the n-xmber of measurements to be curried 

Oilt . 

i. 'iV;~&tion of One Am@ituSe: I-. . ..1_1 Exchanges jr RLwt: c ScRt~terin~ 1_1- --__ 

Anpiitude an~.lyses at 6 GeV tell us that the .I$. z c, ?I% mplit,ude is, 

to a good approximation: helicity non-flip. Ttlfs point is also estabLished III 
0 

P photoproduction, a process with very simiI.ar amplitildes (P 'r- f) . li'c.rt,her- 

imre, frm tile er:ergy dcapendence of elastic s:-:attcrlng we know Us: the dominant 

pal-t of this amplitude is contributed for by the Pomeron at energies above a 

few GeV. We also know that the phase at t = 0 is very close to lrf2 and ue 

do not suspect that It w:ll change drastically away from t = 0, 88 long 86 we 

stay in the very forward region. (We shall come back later on to this assumption.) 

With these experimental facts (and one assumption) in mind, it is easy to see 

that elflstlc processes vi11 provide very direct ana interesting information on 

exchange ampiitudes from their interference with the dominant (imaginary, heli- 

city non-flip, It = C) diffractive amplitude. 

(a) cross-over effect -.--__I 

Consider the elastic scattering of particle A snd antiparticle i! 

on protons, expressed in terms of even end odd-crossing amplitudes F : 

leading to 

(F;+),, = 
$f 6~) - f$f (AP) 

= ‘aA 

+ $ (AP)] 

4 
can be measured in 3 processes isolating the fol!.owing amplitudes: 



This method was applied first to K'p scattering at 5 GeV/c 56 and 

clearly showed that Iru u:+ had zeroes at t = -0.2 and - - 1.3 GE2 

(Fig. 26) md could SC fitted rather well to an expression 

Inl c(+ = F(t) = AIZ*~ JO(Rfi) 

with R-U. It is rather illuminating to transfczm the amplitude into impact 

perem?ter spnce using a Fourier-Bssel transformation: 

T(b) = P 0 
dt F(t) JO(bfi) 

With the wrametrization for Im CL:+, we find 

Lf 
where I,(X) is a Bessel function of an imaginary argument. Im ut+ has a 

strong peak around b - R and most of its strength Is given by the impact 

parameters around this value. Alternatively, it is probably better to use 

the exact Legecdre expansion at lower energies: 

Figure 27 shows the aJ amplitudes from the data of Ref. ':4: the Fcripheral 

neture of Im of+ is very dramatic. This is to be con-trasted with aLhe im$%-i. 

prameter structure of the Pomercn ampli-tude rihich is best approximated by thp 

Kfp amplitude itself. 56 Figure 28 shows that the Pomeron .amplitwZe weeLves 

contributions from all partial waves up to the most peripheral ULZY~B, eon- 

sistent with an optical picture of diffraction. -K Notice that Im o+~ in 

Fig. 28 appears aa a relatively minor correction to the domlnaot diffractive 

term. 

More information can be gathered from the systematic de-a be"uzn 3 

and 6 GeV obtained by the Argonne group, 5 en example of which can be seen i.r, 

Fig. 29. All the measured Itamplitudes" 
%K,P 

are fitted well vith the form 

Ae 3R JO(R\G) for 0 < -t < 0.8 Ce? (Fig. 30). Of course, 4,. if small and 

and its t dependence is not well measured and suffers most of all fr<m 

systematic uncertainties betweer, T' end 7r- date. EEyxl:nd -t > 0.8 WV2 

the data deviate considerably from the low t fit especially at lower ewrgies; 

we ascribe these failures to helicity-flip amplitudes and real parts and expect 

the effect to decrease with energy. Already a% 6 GeV, the fitted fclm for A 
2 works well up to -t - 1.2 GeV , nemely, the seccnd CIOSE-OVer iem. It is 

hard at these rather low energies to make aquntitative study of tie s depen- 

dence of I53 a;+ and Im u.f+ since s-dependent effects affecC the extraction 

of the amplitude. Qu&itatively we have the following behaviour: 

-R is approximately constant at about lf and does not change too 

much between the three prccesses. 

-The shrinkage question is not settled (a dependence of B). 

'BE partial wave amplitude aJ is then given by 
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and 31 >++ &re becoming more and more similar in shape as 

the energy il;creases, up to a constant factor of 3 predicted by the quark 

model. 

It Is interesting that the peripherality of the (I) exchange a!plitude 

has the conseqznce that total elastic cross sections for K+p and K-p on 

me hand, and pp and pp on the other hand, are nearly equal, although the 

differential cross sections are ve~f different. Indeed we have: 

,rdt [$ (r;p) - g (Ap)] = 4A4'Jdt e(B+B')t J&R& 

vhere 

This method of extracting the imaginary part of the odd-crossing 

amplitude through elastic scntteririg has limitations of both theoretical and 

experimental origins. 

-on the theoretical side, limitations occur from 2 opposite directions. 

c)n one harid, if IJD F++ (-) is ~1~311 (as in + TT p), then its extraction becomes 

sensitive to i;eglected aroplitudes (flip); on the other hand, if Ln FL;' 

beconies too large, / I-) 2 one CBS no ionger safely neglect ,F / involving the 

knc*xledge of Re 3':;) in particular. Therefore we can say that qilaliiatively 

the method will work best for Kfp, will improve with energy -for p% and 

couid be questionable for 
t 

i: p . It is fortunate that the worst case of YT'~ 

can -be tested against the results cf the complete smplit~lde analysis at 

6 GeV: in Fig. 31 we see thar. 4, agrees very well vith the "exact" 

8&-itude (F1+)j~ g iving us some confidence in the method. For rrN however, 

one does not need even to neglect l&)1* in the sum eince it is measured by 

da/dt (r-p .+,'n, and can be subtracted out: 

g (1;p -4 T-p) + g (TICI) .+*+p) - 2 (T;p 41pn) = 2$++2 

-on the sxperimental side, relative normalization between Ap and 

J?I, measurements is of crucinl importance for measwin@: the shape of n(t) and 

in locating t‘ne position of the zeroes. The uncertainty in the cross over 

poaiti.?n t is t 

yielding an uncertainty Arc = .gL GeV2 fcr fi 2% relative normal.izztion 

uncertainty. 

Detailed studies of elastic scattering will teach us several important 

C-1 feetures of the peripherality picture we have of Im F++ . To see that, let us 

C-1 consider the successful parametrization Im F++ = AeBt ,Tg(R&): the peak 

position ia b space is determined by R and the width of the distribution 

is controlled by B. %en for a given amplitude, ssy Im F,, (-)(KP) , one would 

Lke to know the s dependence of R and B: far example, if B increases 

i.th B (shrinkage), does R also increase, thu3 preserving the peripherality 

pi ture? Also the comparison cf T', Kf and pr at an energy higher than 

t: .PV would be very interesting since these processes have diffcreiit irttF-r- 

acr.ion volumes, as indicated by the wine range ic the total CL-CBS seczion 

values, The indjcations, at 6 GeV, are tbar, ther.- does not seem co be any 





2. Making Use of the Pnslyticity Properties of Amplit~~des 

Fixed -t analyticity provides in principle a very powrful cow3xaint 

OU ~FlitUde r%IdySeS. This constraint is gr~erally expressed as a dispersion 

xl-, j(-. stitisfied by the invariant mJplitudes where the real. pal-t at 5 = so 

is relered to an integral wer the imaginam pa-t as B function of s. l%us 

knowing Im F(s,t) over 8 large range of s vati~es from threshold to srcxx 

determines Re F(s,t) for s << smax> therefore haluing the number of inde- 

pendent ;esl. amplitudes in that interval. 

Dispersion relstions have been sxperimwtally tested at t = 0 only 

Find in a few casts: ?fzp hctween 8-20 GeV and pp over a larger energy range. 

We will ~sswne the validity of the an&.ticity properties of the amplitudes at 

ail t values. 

(a) Application of dispersion relations to fl amplitude snalysrs 
5'7-53 

The main ides is to develop an iterative procedure using the data 01; 

do/dt and the dispersion relations. Starting fro3 the fsct that do/d: is 

predominantly (Im A:)*, one can use G es B zernth order. input to the 

dispersion integral, which resclt is used to correct do/at and so on. 

Schematically, 

Im A,(C) Dis ersion relstiz + P Re ii;(O) 

. . . 

with 

vF;( v, t ) 2 
Re A;(v,t) = 7 

l-2 
+c+(t) +$-p 

- dv, Im A;(v',t) J 7 $2 - ,2 
4M VO 

v. = m * +& 

(Born term) 

dU/at (7-Z 4 &I), P(Tl+F) and P(,r-p). l%ey do not use any data on 

?(r-p d~On), nor do they rely on A and R measurements. The r&n conclU- 

sions reached by these studies are: 

-the i dependence of Re Ai shows a slow variation with t of 

the phase: Q++ increases from 101' to 117' when -t increases from 0 to 

0.4 cd ( Fig. 39) corresponding to a flatter t dependence for Re A; as 

com~pared to Im A; (Fig. 381. Uncertainties in Re A; arise nutinly from the 

low-energy part of the dispersion integrals. 

-the determination of Re B+(s,t) is not so reliable and does involve 

sane assumptions. However good agreement is found with R' date at. 6 GeV. 

It is interesting to note that, in general, only using P and do/dt data 

leaves an ambiguity between flip and nonflip ,uplitudes; this problem is sol-cd 

here since in the phase shift region the full unplitades can be wax:;tructed 

ana prqxpted to high energy. 



-Ke A' shows a zero much closer to the cross over zero of the imagineyy 

part than indicated by amplitude analysis; this effect could come from the t 

dependence of 'b++ since conventional analyses assume @++ = n/2 independent 

Of t. This shows a much closer similarity between the t dependences of 

Rr Pi+ and In Fl ++' with boLh zeroes around -t = 0.15 Ge?. Also, siiice the 

behaviour of Re Fi+ was mostly derived, in the 6 GeV amplitude analyses, 

from the charge exchange polarization--a weak measurement--we suspect this new 

result to be more reliable. Actually this analysis can be used to predict PO 

and it is sren in Fig. 40 that it prefers the Ar&onne results to the CEPJ 

results (in agreement with our discussion of mplitudes at 6 GeV). 

-Re B- shows a remarkable Regge phase (Fig. 38) as we already knew 

from just looking at &F'. 

This methnd using anslyticity appears most interesting in that it pm- 

vides solid constraints for amplitude analyses and does not use the weaker and 

most controversial sets of data. However the use of dispersion relations is 

cumbersome, really dependent on low energy data, suffering from inconsistencies 

between different sets of data over these 

very transparent. 

large energy ranges and finally not 

(b) Derivative analyticity relations 

We will show that at high energy the nonlocal connection between real 

and imaginary parts can be replaced by a quasilocal relation between the real 

part and the derivatives of the imaginary part at the same energy. 

Consider an even-crossing amplitude F+(s,t) normalized to 

Im F+(s,O) = s0,; 

It satisfies a subtracted dispersion relation where the subtraction constant 

c+(t) and Born terms have been omitted for simplicity: 

2 - de, rm F+(s',tl 

Be F+(s,t) = %- P T I -$T 
sO $I2 - s2 

= 2s2 lim 

i 

S-f 

s 
ds ' Im F+(s',t) 

Ti E 40 -7 812 - s2 
(c > 0) so 

Integrating by mrts, we get 

m 

J- 

dS’ 
Im F+(s',-c! 

-7 92 2 s -8 SCt I 

where the first term disappears when taking the principal value except fcr a 

term 

which is negligible for s >> so. The dispersion integral then reads: 

w 

ReF+(s,t)=;P 
s 

% ln(""l- 
lS+S'/ 

) [$ - f ] Im IJ,!a',t) 

sO 

Introduce the rapidity variable ey = s 

2 cm Re F+(y,t) = 7 ? / d)” .-‘I ln j&h w) [-& - I] h F,(y:t) 
YO 

More generally we can rewrite this last equation as: 

dy' .(a-l)y' In (coth _ 

YO 
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which is very useful since it allows us to use Im F(s,t) s-a as our working 

function and we can choose 0 in order to minimize its s dependence 

Y' -)-> k, - &-IY-Y1/ 

The rest of the derivation is tediow, biit s?raig!-,tfOrward. we expand 

Jm F,.iy',t) in power series of (y'-y) and ue extend the lower limit of the 

integrsl to -m (for y large enough). We finally get 

Re F'+(y,t) = eq 'ant; (CY - 1 + -&,I (e- Im F+(y,t)) 

= tani$ (a-l)] Im F+(y,t) + g 
euj' 

For an odd-crossing amplitude we would have instead: 

= tar@) Im F-(y,t) + ; eq 
ms2(Tra/2) 

$ (Im F-(y,t) e-w) + '*' 

These relations should not apply at too low an energy since the lower 

limit of integration yO was moved to -= and threshold terms have heen 

dropped. On The other hand, pole terms can be added to the final ansver. 

3, can rhocse the pi-ameter 01 t., minimize the s depefidence of the function 

Lo be differentiated. Coiivenientiy we rake 

eve" LUDFlitUde a=1 Re F+ = 

odd amplitude a=0 Re F = tan(- ;&I JZIII F,. 

Whereas an integrel dispersion relation is a cum over the imaginary 

part involving a large range of energies, these new relztions necessitate 

the knowledge of the derivatives of the imaginary p?.rt taken locally. In 

practice, however, one wili need some rage of energies to measure the deri- 

vatives. It is obvious that this approach will only be fruitful if only a 

small number i,f terns can approximate the irw .SI~WPI'--.a -e-suit to be investi- 

gtitei: 3r. 'he data. 

&fore goir+ Further, let us present a more intuitive way of dwiving 

l,h*r,- &ri-ativF relations. Anslyticity in energy a:lows one to write the 

"r;i?: irude iri CL_ i=~ns of a Mellir! transform in the complex 3 plaue (t-channel 
61 analyticity) : 

M'(s,t) =j-dJ[sJ 2 (-s)~] T( J,t) 

with ?in M = soT 

sJ J J I 1 cos ; J 

+(-s) =s + cse-i~)J = 2e-i(7d2)J sJ 
1 i sin ; J j 

Any real constant can be incorporated into the real function T(J,t): 

I?(s,t) = 1:; J 
dJ sJ e-i(li/2)J i T (J,t) 



!i?d$k& = -/do etJ-ljy T'+(J,t) tan@ (J-l)! 

= - tan(; $,/dJ ecJ-lJy T'+(J,t) 

leading to 
Re M+ -= 

s 

For an odd am litude: 

M-(s,t) = ij+ dJ sJ T-(J,t) [l - i tan(/$ J)? 

Re M-(s,t) =SdJ sJ T-(J,t) tan(; J) 

= tan(; $1 
/ 

dJ sJ T-(J,t) 

giving 

Re M- = tan(- ; $, Im M- 

-application to total crow sections. 60 

Seprating Into symnetriu and antisymmetric parts we have: 

Fv.2 F+ = s tan(; &--) 02;(s) 

Re F- = t+ A) ,u,(s, 

Above the resonance region o;(s) is a smooth function and retaining 

only the first derivative is a good approximation (Fig. 41). Good agreement 

is folund vith calculations using dispersion rektions. 

We have seen In Chapter II that in general $6) was power-behaved, 

and consequently: 

a result generally labelled 'Regge" but in fact following directly from power 

behaviour and anslyticity. 

If asymptotically 0; - (ln 23)’ (5 5 2) it follow that: 

ReF+ 3 
---T-- 
ImF 2 In s 

showing thnt (i) if OT rises asymptotically, thee the real part beco5es 

po&itive (86 observed in pp scattering above 500 GeV) and (ii) the rea: 

plrt increases with In s one power down compared ta the total cross section. 

(c) Applications of derivative analyticity relations to amplitude 

analysis 62 

With quasi-lccal analyticity relations, we are now ia a position w 

incorporate the snalyticity constraints in a convcnierit fans, I;ost stiited ta 

amplitude analyses. 

-formalism -- 

Let us consider for simplif,ity a process with sne even a@ii,lde: 

s2 g = (Re F+)2 + (Im P+12 

HE F, 
- = tad; a s 

d jyL 

lhe iterative method outlined in paragr*;@ (a) on dispersion rels~ixs 

can he impl.emented now in its most ccnvcnient forrp. Par 3lJ.r pllr~~ses it is 

somewhat more practical to use a phase-magnitude reis?im. Writio; the 

amplitude explicitly with modulus and phase: 

F+(%t) = R+(s,t) e 
i@+(s,t) 

Re F- - = t&!&y 
3m F- 

the i-elation between R and 0 reads: 





If tne polarization is small (one amplitude is small 01‘ they boti; hove the snme 

s dependence) then one has the approximate solution 

dy' i=(y') 
"0 

-mathsmati~al exam 2x6 

Before u6ipg this method on real data, it is very instructive to test 

it CCL c. few examples in order tC ieam about possible pitfalls. 

(J.; difference of two Refits -mies 

c/ 
pl‘+ = fs,s l ‘2 

-i(n-/2)a1 a2 
-p2s t‘ 

-r(lr/2)a, 

Cm sees that the approximately reconstructed amplitudes follow quite 

WI.! +,rie in&xt Puncticms exe@ when the latter hs~e dips which have been 

comp1ets1y SInesred out,. Away from the zeroes, the procedure is quit? izccurate. 

(ii) absorbed Regge pole (Pawron) 

M+ = s,-s(.rri2) LeBt _ .& &ABt/A+B)] 

vith B = 0.5(ln s - I ,$, and A = 4. This amplitude is predominantly imagi- 

nary and the differential cross section resulting from it somewhat realistic. 

-applications to data 
,. 

(i) KFp -tK$. 

It iG remarkable that experimentally br,tr:: (do/dt'L=V and 

exe power-behaved from a few GeV/c to 60 GeV/c (see Chapter II) an3 therefore 

the phase can be obtained most easily. The results for methods (1) and (2) 

are shown in Fig. 44 and are in good agreement with independent measuremilts 

using K;-K; interference or optical pooint extrapolations. 
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At t=-C.5Ged we have6~ 

,(-I = _ K d ++ 1; dy (In g', = ; (l.rn + .22) 

iniicaticg a very small real. part in qualitative agreement with Re p+ in 

.TN scattering. 

(ii) 7-P -7-P. 

Compton scattering is a nice example with an even-sigr.atured 

ampliwde. 'I& helicity non-flip amplitude is large and dominated by P and 

f exchange, while the flip amplitude Is much smaller. In the forward direc- 

tion, It = 1 exchange (mostly A2, flip) has been measured to be small by 

con~rin(j l-p and y-d Compton scattering. There is no direct experimental 

information on the helicity structure of It = C excharee, however, we knov 

from ?rN scattering and up ,p"p that it is helicity non-flip to a good 

approximation and we expect n, to exhibit the same character. we therefore 

neglect helicity-flip contributions and assume the phase we obtain from do/dt 

is that of the dominant. helicity non-flip amplitude. Using the data of Ref. 

64-66, the real part is obtained at mean momenta of 4 and IO GeV (Fig. 45). 

The comparison between.the two momenta shows a marked energy dependence, in- 

dicating that probably f exchange dominates the real part at these energies, 

as one would expect a priori. Comparing Im F++ and Re F++ at 10 GeV 

(Fig. '46) reminds us very strongly of the fl, It = L1 amplitudes at the same 

energy (Fig. ?Sj. Between t = 0 and -t = 0.8 GeV2 the phase Q++ changes 

from la' to llC*, in good agroexwci with TIN scattering. 

Hypercharge exchange reactions constitute an interesting area for 

applications since signature can be dealt with using the appropriate line- 

reversed pairs of reactions. Denoting even-signature3 amplitudes by T) 

(mostly KG exchange) and odd-signatured amplitudes by Vh (mostly < 

exchange) we have 

lesdirig to the four equations: 

$ A = Re(T++V:+ + T V* ) +- +- 

+ (CP) = L"(T++T~- + V++V=-) 

; (3) = I”(T++V:- + V++T) 

When the phase-magnitude relations are taken into account, one obtains 

a system of 4 differential equations which can be solved nu;oerFcally at each 

t value, giving back the amplitudes with scme ambiguities. 

We have tried to show how analyticity can, in a powerful and very 

practical vay, imProve our tocls to extract amplitudes from incomplete data.. 



IV - DUALITY AND ABSORPTION on the real axis. We ass-nme & Aegge hehaxiow st high ener&v: 

In this chapter we are going to briefly review some of the most impor- 

tant ideas and concepts In the phenomenalogy oi two-body scattering, as they 

relate in R relevant way to the experimental facts we have gathered throu&h 

the ccnu-se of the preceding sections. 

i. Dx4li.r.~ 

(aj Tk'o descriptions of two-body scattering 

At iow energy (L-5 2 GeV), our knowledge of two-body scattering is 

embodied in s-channel p&se-shifts dcscrjbing the data with resonant and IXX~- 

resonant (backgromd) wives. As s increases this description ceases to be 

practical because of too many waves. 

A<< high energy we have seen that amplitudes are clearly related tc, 

t-channel exchanges and that, in general, only a few exchanges are require6 

to describe the experimental situation. 

If et low energy there is little uncertainty in the analytical descrip- 

tror! of zrchanne? resonances, the situation is less clear at high energy: 

YP know most amplitudes manifest some kind of Regge behaviour, with the phrrse- 

energy reletionandtrajectories approximately related to the particle spectrumii. 

Eence, as a starting point, it is not too unreasonable to assume that t-channel 

exchanges &CC? mediawE by Regge ~~?les. titer, considering some of the diffi- 

culties encountered, we shall come back on this assumption. 

67 (b) Relating low and hzQ& energy descriptions: FFSR 

There must be some rela<.iun between low s and high s regions since 

the scattering amplltud e is analytic in energy. Using analyticity and Regge 

beha-viour for high energy one can derive a finite energy sum rule (FEAR). 

consider a scattering amplitude F(v) which is supposed to be a real 

Rnalytic function of the variable v every where in the y plane except for 

inelastic cuts from -m to -vO and from v. to m and some isolated poles 

F(V) =cB 
1 + Tk e-i% 

k k sin % 

Now if we apply Csuchy's theorem 

to the closed contour T: 

/F(v) v" dv = 0 
r 

-\,‘I 
0 N 

J 
Im F(v) v" dv + J ImF(v) v"dv+C&r. 

-w x 1' 0 

F(V) = -F(-v) 

then the FESR reads 

an 9 Tk = -1 

N 

J I.mF(v) ?dv=Cf&------- k %+n+l 
VO 

(I: even j 
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Thus if we know jfrom pfiose-shifts) the behatiour of Im F(V) below 

v = Iv, we have a way to use rtr:sl:rticity in order to get some information on 

high en**,-? parameters , proirided (i) the asymptotic form chosen was correct 

*r; 'J (Ia .e cut-off N Is taken high enough for this asymptotic i^oxm to be 

velld. "&is procedure hss indeed. been applied vith some success. 

The IImitation tl?at @nose-shifts data exist only for low 6, well 

below the '(espptctlc" Regge region has been actually B rather Pavoui-able 

siStwtioc slave i t led t3 the coecept of duality. I?denl Fbrn and Sehmid 68 

ii:vesrigz;.efi the TN charge exchange fuzplitudes taking N = i.1 GeV 6s 

Lhej r cut-off: they were able to reprod-ace the main features of t-channel 

P exchange (dominance of A; p trajectory, zei-oe5) even though N was 

low and rescnance behavior was still seen at hi&r energies at t-0 

(Fig. '17): the high energy amplitude is beharing like the average of the 

s-chanuei resonances. An important aspect of the result is t,hat s-zhannel 

ressnances actually dominate the left-hand side of the FESR -with no nctice- 

able background, leading to the powerful idea that, s-channel resonances or 

t-channel poles are alternate descriptions of the came process with the smooth 

high 6, t-channel pole amplitudes averaging out the s-channel resonant structures. 

A powerful we of FEAR is realized when both s and t channel 

descriptions make ~8e of the same slnguLaritie8; in this case it provides a way 

of bootstrapping these singularities. Consider, for example, the process 
+0 o+ VT -1lrJT hhere p exchange occurs in both s and t channel: requiring 

the first zero of both amplitudes to coincide leads to l/a' u 1 m* or -2 P 

a' "- 1.1 GeV*, a value rather close to the experimental n~~~~ber. 

Many applications of FESR have followed for TN, KN, photoproduction 

etc. . . . . It would be very interesting to have reliable FFSR analyses to 

learn about those amplitudes not easily accessible at high energy in the t 

channel. For example we know very little about even crossing amplitudes 

(in particular, f exchange in TN elastic scatterin*, f and % exchanges 

in KN, EN elastic scattering). In principle we can learn about A2 exchange 

using F!EXR and low energY KN and kn data: however, in practice, this is 

somewhat unreliable oincc K'n low energy data are not yet very complete, 

nor veq accurate and consequently the pha&e shifts with proper quantum numbers 

cannot be completely trusted. 

For txamplti ii recent FFz3R analysis 69 of KN and $3 s-at&ring wit.h 

a cutoff pi, = 1.5 &v/c SLOWS the .5pd.ea featwos for the dominant amplitudes 

like Im u)?+ and In D+- vhi?? Ire A++ and In. A+- seem to behave differ- 

ently from ?Jx Lo++ and Im p f- respectively. 0~ must kwp in mind howelver 

that the wtoff is yi<ther low, the phase shifts sc1utiocs ait r;l.,;eys reliable 

and SlYTie of imhe amp! i':\l~i?es are quite snail in magnitude ?nJ subject. to 'WI- 

:l)r'x ;:i;.'i.-r , Such methods will be nevertheless very usefui., es the quality 

,f d'- CW phase ski32 improves, to study. specifjc exchanges in the intermediate 

enerp, region. ~_ 

Let us emphasize at this point the dominance of the FESR integral 

by reponsnces is expected to make sense only for the imaginary part of the 

amplitude, while real parts of resonances can contribute to very distant 

energies, even outside the @ysical domain. 

(c) Two-component duality 

!&he generalization of the duality concept to elastic scattering has 

been made.70071 While s-channel resonances are dual to t-channel exchanges, 

the background under the resonances builds up the diffractive amplitude--the 

exchange of the Pomeron. 

s-channel resonances <==a t-channel exchanges 

s-channel background <==a Pomeron exchange 

The consequences of this principle are well known: 
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spectrlrc alone we wouid deduce 8 I.inesr trajectory: AA. and A 8x2 lrp out of phase and consequently 

a(t) = 0.46 + o.gt 

wher? com~~.x to experimental traje-tories a(t) =a(O) + a't neasured in the 

space-iike region 

CX(Ol a’ 

P .56 .9? 

A2 .40 .9 

w . hc! ? 

f ? ? 

-t < 1.5 GeV2 

--res;.du.?s --- 

Zh.zlity imposes equalfiy between residues in ~.sli?ic channels. 

--line-reversed reectious -- 

Consider the pair of s-11 crossed renctions: 

a+b+c+d (1) 

:+b-t;+d (2) 

asyloptotically the two ampiitudes have to be equal, but MD makes some very 

strorlg re@rements at any s (sufficiently Large). Let us separate out odd 

and even amplitudes: 

A+ = ,?+(I + e -imqsa = 28+ e-ia(a/2) my a 
co6 -5- s 

A- = e-(i - .-im)sa = 2iB-e -id@) 

(s), = (%), 
with 

This result follows uniquely from the identity between the Tao tra- 

jectories a+ and ff-. 

Let lis now explicitly shov heiicity amplitudes: 

?Ae equality ur residws, 

in both processes. 

It is interesting 

and one exwcts: 

vi- it 
+- 

3, = g-, &posed by d;rzlity, iesds t3 to polar-izn:ior. 

to cow&we processes involting the same DID exchanges 

*cd) 2 (a'b' -+c'd') 

--experimental tests of line-reversal 

We have experimental information on: 

2 (K-p -1i?'n, K+n *ICop) 

$ (ti +KY, itN -+rrY) 

P(K-p +l?n) 

(Fb.3. 52) 
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P(rrN-+KY, KN -alrY) For example, at a = aA = 0 we hsve 
P 2 

g (K-p -vi?'n, K-n -+K'A-, 

s (K'n -aK'p, K+p +K"A") 
(Fig. 53) 

Agreement witb EXD is not good in general. However one does not have to blame 

duality as & whole since some other assumptions were used in particular the 

easwned Ragge pole bebaviour vith Its faCtOriZatiOn pZTXperties. Since we have 

numerous examplas where the simple Regge-pole description breaks down, mostly 

through fsctorizatjon, one may still hope to retain basic dual properties 

once the structure of the singularities is better understood. Along this di- 

rection It is instructive to compare the non-zero polarizations in K-p -+i?'n 
0 (duality + Regge pole behsv5onr predicts zero polarization) and in r p -air n 

(Regge pole assumption leads to zero polarization). 

--dip mechanisms 

In a Regge amplitude 

A+ = @+ c sa 

the residue function p+(t) must have zeroes to cancel the possible poles 

of sin 7M. 

a-0 sin I#. = 0 -2 p+(a = 0) = 0 

'&en exchange degeneracy forces the same zero on the corresponding exchange 

p-(a = 0) = 0 

where the pole is already cancelled and therefore the amplitude has a zero. 

hP+- = 0 

Re p+- = 0 

but ReA #O. +- 

These results a?? in good agreement Hith experiment for the flip 

amplitudes. T%e follo~ng processes are dominantly helicity-flip and should 

be related by EXD and W(3): 

$ 2 2na 7;~ 3 ronI - B, a* h - 
2": 2sjn 2 

g (K-p -aEon) - 2$ - 

In Fig. 54 these relations are compared to experimental. data: we see that 

there is good agreement between the shapes (a statement about duality and 

Regge bebaviour for flip amplitudes) and even in magnitude (N(3) symmetry). 

The same qualitative agreement is found ic vector meson production 73 

where It = 0 exchange (f,m) can be isolated. 

This nice systematics obviously will not work for belicity non-flip 

amplitudes with their zemee completely uncorrelated with wrong-signature points. 

(e) duality and quarks 

Duality and the absence of exotic states leads to properties usually 

attributed to the quark model: 

--in meson-meson scattering with SU(3) symmetry, duality leads to 

nonet structure for t-channel exchanges. 

--considering KkC and K+K" scattering, we find the canonical quark- 

model mixing angle between 0) - @ and f-f' 
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2 1 co5 h = - 
3 

This intriguing correction has been exploited in the duality diagrams, 74-75 

but will not be developed here. 

(f) semi-local duality? 

It is interesting to See how resonances can average and build up the 

Smooth Regge behaviour: in particular let us find experimentally what is a 

typical momentum range for cancellations to occur. For example, consider 

backward K-p +?'n scattering76 which has exotic quantum numbers: Fig. 55 

shows the energy dependence of the imaginary part of the amplitudes showing 

resonance-produced oscillations around the zero value predicted by duality. 

A typical range DpL - 1 GeV/c corresponds to the Short-range cancellation 

between resonances. 

This Semi-local duality can be exploited as a method to learn about 

t-channel amplitudes. Having a complete description in terms of phase-shifts 

over some (low) energy domain, we can reconstruct S-channel helicity amplitudes 

with well-defined t-channel quantum numbers in a local sense. Then, by 

observing the s-dependepce of these amplitudes over Some range of momenta 

(- 1 GeV/c) we can hope to learn about them. 

--example: EN Scattering 77 

This type of study is particularly interesting and important for I?N 

Scattering where phase-shifts exist and are usually parametrized in terms of 

reSonanceS superimposed to a background: each partial wave is taken as the 

Sum of background and resonant parts 

contributes a negligible amplitude to It = 1 exchange in strong support of 

the Harari-Freund proposal. 

Helicity amplitudes reconstructed from the resonant parts of the EIi 

partial wave amplitudes are shown in Fig. 57. Even at momenta l-l.3 GeV/c the 

features of high energy t channel exchange are well established with a zero 

at t - -0.2 GeV2 for Im F, (both It = 0 and It = 1) and a zero at 

t - -0.5 for Im F+- (It = 0, 1). 

AS a final remark, let US note that a linear separation between back- 

ground and resonances 

does not obey unitarity 

I!nF=ImP+ImR 

Indeed for a given partial wave P, we have the S-matrix: 

and consequently 

Im T’ = Im T; + Im T; + 2 Re(T# 

The last term is generally ignored in most analyses. 

2. Absorption 

(a) classical absorption 

In a scattering process, both the incident and outgoing waves can be 

absorbed out and it is convenient to describe the overall scattering amplitude 

in the impact parameter Space: 

The amplitudes reconstructed from the background shows dominance of 

the helicity non-flip, It = 0, imaginary part in accordance with Pomeron 

exchange properties (Fig. 56). It is remarkable that the background only 



/ I -.----i ---- I r 
L/ 

Sel(b j 

I- 

where S el(b.s) is the transmission at 

the impact prameter b, and S the 

overall heiicity change. 

SeLjb,z) = 1 + iTel(b,s) 

we have 

and therefore total absorption of low 

partial waves if 

aT --1 41~s -. 

can present dips due to :he inwr- 

helicity amplitudes due to the kinematic zero at t = C for flip smplitudzs. 

Schematicslly we have: 
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This can also be seen by transforming the pole input into inpact 

parameter space: one then finds that helicity flip amplitudes are in general 

a1rpq.r . ripheral and therefore absoqtion of low waves is of little effect. 

--general form for an aosorbed amplitude 

Fti(t) = jz db T(b) J&Js) 

if T(b) = F(b-R) 

F&(t) - JrSI(RG) 

if T(b) peaks at b - R vith 

some width Ab, t,hen F&(t) 

retains the zeroes of LTiA' R a 

A realistic form is FL&\,(t) 

B is related to &. 

A possible way to distinguish between absorption and wrong-signazure 

zeroes arises if R shows some variation with s: in that case the Jl zero 

will move with energy while the Regge zero, being a t-channel effect, should 

stay rixed. 

CC) "dual'I absorption 

We know that s-channel resonances will produce dips in angular distri- 

butions dueto their uell-defined angular rnmentum. Since duality relates these 

~esonames to the t-charnel exchanges, we are interested in the relationship 

between these dips and tl?e hi&h energy t-channel dips (with 3r without 

sbsGr$tl'-) I 

lint of all 2.et us see how P~~DIEUICE~ can produce dips et fixed t 

$?a!:, 5. 9%is will occur iY there is a tieflnite relationsl:J~ between the mass 

61iz rte spin 3. * the dominant resonances. As an example, consider ?nr scatter- -I_ 

and the first zero of the angular distribution is at: 



Thus the looked-for relationship is: 

leading trajectory 

- 
J-36 

Above the curve J -G we expect angular momentum barrier effects, 

while below the amplitude is suppressed by absorption of low partial waves lead- 

ing to the overall peripheral picture. 

This bebaviour can be checked against the observed N* and Y" 

baryon spectrum in Figs. 58 and 59. It seems satisfied although the deviation 

from the leading trajectory is still nor. clearly perceived. There is neverthe- 

less a noticeable lack o f low spin resonances at large mass: it seems that one 

should look experimentally a little harder into this question of low-lying 

*daughter)' resonances, in order to pin dcwn the idea of periphenlity. 

In Pig. 60 we plot the location of‘ the first zero of the A = 0 and AA = 1 

helici-ty smpiitude from the prominent Y* ~MSO.~B~C~S: fixed t structures occ'a- 

already in the lower mass states. 

We have seen therefore that the dominance of 'peripheral" resonances 

leads to a peripheral Im R whil. e no insight is gained on the real part. On 

the other hand, classical absorption has for consequence that both real and 

imaginary parts RR peripheral. 

--discussion 

It is an experimental fact that known resonances (log J) contribute 

a zero at 0.2 Ge jl in ImR,+ and that Im R++ at high energy also possesses 

such a zero (at least for the observed vector exchanges) as a result of absorption. 

l&e most logical connection between these two facts is to assume that resonances 

are dual to Regge poles + absorption cuts. 79 

Alternatively one could still have resonances dual to poles alone. 

If central resonances continue to be excited, dips can occur at larger t 

(- 0.6 GeV*) corresponding to 'the signature zeroes ef Regge poles. Also at 

high energy absorption moves zero down to 0.2 GeV* thereby breaki% duality. 

This alternative seems much less natural, but cannot be completely excluded at 

the present time. 

This situation has an imediate consequence for exchange degeneracy: 

in the first case EXC till be satisf%ed at the same level than dliallty itself 

&hile in tne.second case there will be sLrong tiollztiuns of duality due to 

absoqtior, corrections. 

Even though we are not yet seeiug ovexnhelming evidence for peripheral 

high-mass resonances (in tie J -& sense), the I.or mass resonances do exhibit 

striking p?riphersl properties in b 60 space : see, for example Fig. 61where 

the &V resonant partial wave amplitudes are used to recotistnxt iiu R,+. 'Be 

peripheral resonance contributions pea'& around 1.f iz a clear way aLmost outside 

the diffractive impact parszzeter dlstri-outlon (FLg. $2). ?his feature is not 

unique to l?N scatteriilg and is also observed in ~3 phase shifts: Fig. 6? 

shows the fti aX@itUde ti R++ + In: P where the resona?ice contribution is 

clearly visible on the edge of the diffractive background distributition of central 

character. From the same i?N analysis it is interesting to follow the zero 

positions at 0.2 and 0.5 Ge ? of the resonant amplitudes Ire R(It=o) end ++ 
(It=l) 

BJ R+- which are essentially constant within the accuracy of the different 

phase-shift analyses (Fig. 64). 
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The mst simple wey to produce dips at -t S 0.6 GeV* in differential 

cross sections is when M = 1 amplitudes with zero dominate. If &her 

helicity amplitudes are important they are likely to wash out any indication 

of a dip: for example [JO( hes a bump in this t region. In order 

to see if a given process will have 2 dip or not, it is sufficient to apply 

the helic-ity coupling rules derived enipirically in Chapter II and find out if 

M = 1 donlnates. If this latter condition is true, G dip will be observed 

if the exchange is odd under crossing since do/at has the zero of 

'Ibe dip is predicted and observed for the processes: 

Wnen M = 1 does not dominate, no dip is expected as in rp -4 qp, 

TN -BUN, despite a strong p exchange. 

Tne behaviour of elastic polarizations is also in good agreement with 

the dual absorptive model, as a test of Re Rfi=l. 

(ii) elastic scattering (M = 0 amplitudes) 

The (dominant) imgainary prrt of an elastic scattering amplitude 

receives contributions from resonances (or t channel poles) and the Pomeron. 

For exotic channels, only the Pomeron term survives, as in K+N and NN scattering: 

F-P-ImP 

while for non-exotic processes, such 8s K-N and % scattering, we have 

the complete fom 

ImF=ImP+linR 

For 8 hi&h enough, the M = 0, imaginary Pcmeron amplitude doa?inates so 

that the leading terms in the differentfal ~~06s section me: 

$f( nonexotic) 2 
2 p + 2p = %A=0 

vhere Im RAzO behaves ILke a J&R m function. We therefcre eqect 

the following pat&?-n: 



I I I - 
-t 1 -t 

'Ibis behaviour is clearly seen in the data in the intermediate energy 

region for &I (both non-exotic), Kfp and up to - 10 GeV for ptp where 

the resonance contribution is larger. Obviously as the contribution from the 

resonances slowly decreases as the energy goes up, we expect the two patterns 

to become more and more similar and the "dip" in the non-exotic channel to 

fade away. We can translate this effect in terms of the exponential slope 

of the forward differential cross section which energy dependence comes from 

the proper s dependence of the Pomeron slope (which shrinks according to 

K'p and pp data) and the disappearance of the Regge term (producing an 

apparent anti-shrinkage). The following trends are therefore expected in 

the dual absorptive model: 

B 

1-y + lwze R(~P) 
P + small R(K-p, ffp) 

/A----P (PP, K+P) 

L C 

and are in good agreement with experimental data. 

--questions and problems 

Dips at t - -0.6 GeV2 in M = 1 amplitudes are explained by zeroes 

of Jl(Ra; at th e 681118 time the complete systematics of the dips requires 

some connection with wrong signature zeroes (a = 0): in particular for even 

exchanges there is a delicate cancellation between Jl and sin(sQ'/2) where 

the Jl zero is completely determined by the absorption radius R. In order 

for this effect to happen at every energy, C% and R should have the same s 

dependence. Mow experimentally a is pretty independent of s at lead. for 

P exchange for -t < 1 Ge v2 and other excha:ges at t = 0. It then follows 

that R should be more or less constant with s and it is hard to correlate 

this fact tiith the expanding radius of the shrinking Pomeron. 

The peripherality picture receives also a warning from the new NAL 

data39 on - T p 4 Ton, still showing a dip at approximately the same value 

-t - 0.6 GeV2. A flip amplitude 

ti Fl(t) = AeBt Jl(Ra) 

corresponds in b space to: 

Im :1(b) = &j exp (-q&q I$$) 

-& & exp(-*) 

for b >> 2B/R. 

If B shows shrinkage as in the n-p +m"n data, the impact parameter 

distribution becomes wider and the peripheral character slowly disappears. 

In Fig. 65(a), IJS ;+_b) is plotted from the exact formula and 

B(s) = E. + a' In s Q' 1 1 GeV -2 



Since for a flip amplitude Im ?l(O) vanishes kinematically at b = 0, 

peripherality is maintained in an artificial way. If the same shrinkage 

occurs for a M = 0 amplitude where no kinematic suppression operates 

at small b, peripherality is lost rather quickly (see Fig. 65(b)). It 

will be of crucial interest to check whether M = 0 amplitudes show shrink- 

age pmperties. 

Another possible problem is connected with even exchanges (f, %, I$) 

which are predicted to be peripheral. There is no model-independent analyses 

of these amplitudes for M = 0 and therefore it is very difficult to make 

any sensible statement; however there exist now some evidence Prom PRSR analyses 

in KN and hypercharge exchange reactions indicating that tensor erchanges 

may be less peripheral than vector exchanges. It would be very important to 

confirm this experimentally by a direct test: this could be done for A2 

exchange by studying the differences 

L$ +(K+p) +$ (K-P) - g (K+n) - g (K-n) 

It is remarkable that It = 0 exchange in TN scattering can be 

explained 82 by a peripheral f 

Im f++ = Af e Bft J&Rfi) 

if the Pomeron amplitude shrinks. There is then a nice Consistency between 

7rip and K+p elastic szattering, all being described with peripheral ex- 

changes and a shrinking Pomeron at energies 3-20 GeV (Fig. 66). 'JIbis har- 

monious situation is unfortunately shaken by data 83,84 on 0 photoproduction 

where Pomeron exchange is expected to dominate in the t channel since non- 

strange exchanges do not couple strongly to 0: the data shows essentially 

no s dependence for dU/dt (y-p -'ep) at -t = 0.6 II,?. Even including 

some s dependence for (do/dt)t=o, leaves little shrinkage 

"4: z 0.1 - 0.2 ciev-2 

in the range 2 to 19 GeV. 1411s is to be contrasted with Fig. 66 where in the 

same energy range a; z 0.6 GeV-2. Regardless of the e data, it is also 

possible that a slope a; - 0.6 &vL2 leads to some inconsistencies in the 
8 

dual absorptive model analyses since it comei+ponds to a sizeable real part 

of the Pomeron amplitude at larger t values-- - 50$ of the imaginary part 

at -t- 0.5 Ge?. 

(b) Strong absorption models (Kane et a1.84) 

--calcuutinK Pi 8 P cuts 

In these models the cut is calculated explicitly as a convolution 

integral over the pole amplitude and the Pomeron amplitude: 

Rabsb,t) = Rpole(s,t) + 1 /-dt' dt" K(t,t:,t") Rpole(s,t') P(s,t") 

where R polew 1 8 a structureless amplitude, having no relationship to 

exchange degeneracy or duality and K(t,t',t") is a real positive function. 

All dips seen in differential cross sections are explained as absorption 

zeroes coming from the destructive interference between pole and cut. 

In its early forms the model suffered from not representing correctly 

real parts. If P Is an imaginary amplitude, both the real and imaginary 

parts of the pole term are equally strongly absorbed giving a - 

behavior for both: 



Such B form for Re p+- is ruled out by polarization data on 

a new version of the model was developed. 

so that 

--a new model 

Since the trouble seemed to come from the assumption of .a purely 

imaginary Paneron (believing the procedure to compute cuts) an easy cure is 

to allov for a Pomeron real part. 'Ibis was originally motivated by the 

eteepening forward differential cross section obeerved in pp mattering at 

the ISR: &vmemettizing the iraclgimry Paaemn Bmplitude with B deminant 

central part and a peripheral psrt with eXpanding rediue 

IlUP=Ae Bt + Cc? Dt J&R&) 

one obtains via analyticity a real part proportional to the derivative of JO 

ReP-d dy J&Ra - Jl(Rm 

ImP 

\ 

-t 

Re P 

It Is easy to understand how the real part of P changes the con- 

clusions about real and imaginary absorbed amplitudes: 

& Rabs = Re P 
pole 

-RC!P pole @ IB PI + ITJ Rpole @ IRe pI 

The result of absorption will now depend on the relative sign of Re Ppole 

and Im P pole' leading to B qx&.itatively different conclusion for odd and 

evsn exchangesi 

Re 

odd 
M-O 

even 
M=O 

Im 





to notice that the phase of' an amplitude, being related to derivatives of the 

modulus with respect to 8, is a rather sensitive indicator of any change 

in the s dependence. 

At a more fundamental level, the magnitude of Re P required to fit 

the data may be too large. In Chapter III we have seen that the real parts 

of I t=O 'fr'p and up elastic scattering were strongly s-dependent and 

probably related more to f exchange rather than Pomeron exchange. It does 

mean of course that f exchange should be not ignored in calculating cut 

diagrams but the whole problem has to be investigated separately--whether 

and how to compute R @ R' cuts. We have seen that for exotic quantum 

n-mbers these amplitudes are rather small and this should be understood 

before engaging In a systematic program to Include pole-pole cuts in two-body 

processes. The half-success of the strong absorption models seems to indicate 

the need for real psrt effects in rescattering and R @ R' cuts are likely 

to play a role in them. 

2. Speculations on the Pomeron 

We have seen in many occasions that it is crucial to learn more about 

the Pomeron amplitudes at lower energies since it relates to the problems of 

understanding of elastic amplitudes, selxwation of f exchange, exchange 

degeneracy and absorption. Since experimentally the Pomeron is most accesible 

at very high energies, we shall try to start there and gather the relevant 

properties of Pomeron exchange. 

(a) Pomeron from high-energy pp data ISR 

We take the following points as clear experimental facts: 85 

. Im P(s) t = 0) is rising with s 

. Re P(s, t = 0) is small, crossing zero and becoming positive 

. Im P(s,t) is dominantly central, but has a distinct peripheral piece 

(- Jo may be a good parsmeterization) 

. Im 'central (s,t) changes very slowly with s (a' small) 

. ImP peripheml(sJ.t) is growing 

The stronger shrinkage seen at small t can be induced by any of 3 

effects or a mixture of them: 

- the growth at t = 0 

- the shrinkage of the peripheral pai? 

; an expanding radius R in JC(Rm 

Since the first effect we mention is already clearly observed in the data, 

it is interesting to see if, by itself, one can achieve a good description 

of pp elastic scattering with other parameters only slowly varying. In 

this simple model we write 

Im P(s,t) = AeRt + C(s) eDt JO(Rfi) 

with A, B, I) and R are slowly changing with s and the main s depen- 

dence comes from C(s), growing with s. 

Analyticity requires that 

RepP===- 

Re P = tan($ $) Iin P 

with dC/dy > 0. 

If C = cOy, then Re P 

is essentially s-indepen- 

dent while lin P grows like 

In 6. 
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An excellent fit to the available TSR data yields 

B = 4.4 GeV -2 

D = 4.7 GeV -2 

R = 4.7 Gev 
-2 

-If 

showing a rather broad peripheral distribution in b spew. Let us note et 

this point that our picture is quite orthogonal to Kane's 04 where the main 

s dependence comes from the 8 dependence of R in the J 0 argument. 

At lower energies we expect real parts from Regge exchange to con- 

tribute since, although Im R is not very large, Re P can be quite sub- 

stantial--as seen in Chapter IV. 

Re(FP) 
t 

We expect the same qualitative behaviour for meson scattering with 

R scaled geometricaliy with -J"T and the peripheral piece will lead to 

sane curvature in do/at at high energy. 

(b) I:an we extm2t I0 P(S,O) at lower s? 

'de ran isolate the ccmbinatio:! (P + I-) in TN. KN ar.d NN elastic 

scattrr;cg. How tr, eliminate f exchange? Let LLS recall the following 

prcper';i~s of excharge amplitudes: 

-P9 u) and A 2 exchange is power-behaved at t = 0 and probably 

the same will hold fcr f exchange. 

-within the experimental uncertainty it appears that a(O) for a given 

exchange is independent of the process; for example, a:(O) - c$o) - ego). 

-N(3) symmetry Is approximately true for residues at the 26 level 

for example). 

Guided by these facts we shall assume that the f amplitude has 

similar properties at t = 0: 

l Imf=fs 
af-1 

. a; = $ (= I$ 
l 2fK = fT as given by SU( 3). 

It is then possible to use cross sections data on ?p, K*p and K’n 

to eliminate the f amplitude and obtain a "Pomeron" amplitude. The relation 

is . 

; tC(Kp) + C(Kn) - C(v)] = 2PK - P,, 

and is evaluated using total cross section data in Fig. 67. Since we do not 

a priori expect a marked difference between the s dependence of PK and 

PT, it is fair to ass'xne that we are seeing in Fig. 67 the 8 dependence of 

either PK or P,: data shows a rising Pomeron contribution from a momentum 

of 3 GeV up. 'Fnus the asymptotic behaviour seen at the LSR for pp scattering 

and also for Ktp szattering at lower energies (2 20 GeV) seems to persist to 

quite 3.0~ energies, once Rrgge terns have been removed. 

Before g>lng further we must check the stabiliCy oP our result against 

the nest crucial assumption of an W(3)-symmetric f coupling to pseudoscaLar 

~r‘3OiiS. !'rom the hraxhir.g mi.io 



obtained frcm an analysis a6 including a proper treatment of f-A9 Interference 

in the KI? channel, we obtain 

2fK f = .94 + .2 
IT 

In good aggreement with su( 3 ) . Since this last result is only accurate to + 2C$, 

it is important to see the effect of such variations on the s dependence of 

the Paneron amplitude. This is studied in Fig. 68 where the quantity 

1 
ii [ 

C(Kp) + C(Kn) - (7) E(P)] 

is evairrated for different values of 2fK/fT = 1 f. .2. Within this range of 

values, our result stands that the Pomeron amplitude is rising with 5, the 

rise being more linear in ln s for the values of the ratio closest to 

s;mnnetry . 

More quantitatively there is internal consistency between a linear 

In s growth of the Pomeron term and the ratio fK/f, given by SU(S). 

Parametrizing crose sections es 

“k = 13.0 + 2.6 

% - 0.41 

C&e fact that '7~ + 'K indicate that Pomeron exchange is not n Poe 

&J(s) sinelet a7 in agreement with vector meson photoproduction: 

leading to U,(@PP) - 10 mb around 10 GeV. Experimentally o&@N) has been 

directly measured by nuclear absorption to be 12 mb at 6 GeV 
88 showing a large 

reduction compared to u&o??) - u&TN). Asswning the W(3) breaking occ‘urs 

through octet exchange 

p = P1 cos c1 + P8 sin CL 

measured by a mixing angle ~3, we can evaluate the Pomeron contribution to 

forward elastic amplitudes: 



T 



produces a slight anti-shrinking, at variance with the trend of experimental It is interesting to notice that such a small change in the first zero has 

data showing a pronounced shrinkage. important consequences for the peripherality of the amplitude: if Im f++ = 0 

-if Im f++ and Im a++ have different zeroes the shape of Im(f-co)+, at -t- 0.3 Ge'? it means that (Rj - 0.5 f rather than (R) - 1 f for 

will depend on the separation between their zeroes. Im w++ and that Im f++ is qualitatively central in agreement with strong 

A Wf-co)++ 

f zeroat.jGe j, 
5 

zero at .2 GeV2 (like a) 

Even for slightly displaced zeroes (0.2 and 0.3 GeV2), Im(f - ")++ 

can be very different from a JO shape, leading to a much flatter amplitude. 

This results in an apparent shrinking of the K+p differential cross section 

since this rather flat amplitude is decreasing with energy: 

A 

t slope - P -t > 0.2 GeV -2 

__-_ P -t < 0.2 GeV 
-2 

absorption with important real parts, a convincing mechanism for which being 

still lacking. 

It thus seems that our picture of a mostly central Pomeron with very 

slow energy dependence with a growing peripheral (but wide) part leads to 8 

consistent description of elastic processes and vector meson photoproduction. 

Small breaking of exchange degeneracy follows end has significant effects on 

the slopes of the differential cross sections; the breaking of exchange 

degeneracy is strong enough to allow the imaginary part f exchange to become 

significantly central. To verify these conclusions it is important 'co carry out 

accurate measurements of ?-p + +p, and also have some model-independent look 

at the even exchanges such as in hypercharge exchange reactions and may be 

YP'OJP and y-n *ml. 



OUTLOOK 

There has bean a qualitative change in lmderstsndjng two-body reactions 

when experiments have Seen geared to extract individual amplitudes inSbad of 

just bi-linear producCs such as cross sections. Information gathered so 

far is very limited arid new experiments should expand our knowledge considerably. 

Major areas are: 

The present picture of 6 high energy amplitude is aesthetically not 

particularly pleasing; for example SU(3) symmetx-y and concepts like exchange 

degeneracy are only sppproximately verified by experiment to about 2oqb. Bow- 

ever we feei that much will be learnt when the breaking mechanisms are under- 

stood and then, may be, a simpler picture will emerge. 

h) 
5) 

6) 
7) 

energy dependence of r;N nmplitudes 

gcttlng closer to KN, I?N complete amplitude separation 

measuring even-crossing amplitudes through K+d, yN -?wN and hyper- 

charge exchange rractions 

production of resonsnces observ-ing their correlated decays; mostly 

for lower spins 

accurate elastic scattering and polarization measurements at high 

energy (up to - 100 GeV) to deternine the energy dependence of a 

few important amplitudes 

improving experimental knowledge of the Pomeron amplitude at lower 

energies, mostly through detailed measurements of y-p + Op 

determine the importance of non-exotic Regge @ Regge cuts through 

accurate comparison of processes sensitive to interferences. 

We also need to develop methods to incorporate the constraints of analyticity 

into amplitude analyses: while the derivative analyticity relations look promis- 

ing, one has to understand their limitations more fully. It is possible that a 

clever use of analyticity will relieve some of the burden of carrying out corn- 

plete experiments--s task out of sight in most cases. 

When unambiguous experimental measurements of even amplitudes are'done it 

will become essential to understand absorption effects, the structure of PanerOn 

amplitudes and the importance of Regge cuts. 
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Figure 14. Differential cross sect-ions for backward TN scattering around 

6 w/c (from Ref. 101). 

+- 
Figure 15. Cross sections for exotic quantum number exchange in T-P +K C 

and K-p +TT+C- (Ref. 44). 

Figure 16. 6 dependence of the differential cross section for i;p -+K-K+ 

at fixed t (u); data from Ref. 43. 

Figure 17. s dependence of backward K*p differential cross sections (u = 0) 

from Ref. 43. 

Figure 18. Complete angular distribution for K'p elastic scattering at 

5 GeV (Ref. 43) and "erotic" K-p backward peak. 

Figure 19. Complete angular distribution for pp elastic scattering at 

5 GeV (Ref. 43) and "exotic" backward peak. 

Figure 20. Energy dependence of the cros8 section for r-p -i +n (Ref. 48). 

Figure 21. Test of W(3) symmetry for amplitudes dominantly helicity flip 

(from Ref. 49). 

Figure 22. Wtin of real to imaginary parts in r-p -ST', at t = 0 as 

a function of beam momentum (Ref. 36). 

Figure 23. Differential cross sections at t = 0 for K+p -+K'n and 

K-p +i?'n and contributions of the imaginary parts obtained from 

total cross section data. 

Figure 24. p - (0 interference in the a'~- mase spectrum for r-p -PT'TT-II 

(u-) and ~'+n +T-T'P (cJ+); tits from Ref. 54. 

Figure 26. Odd-crossirg helicity non-Flip amplitude parallel to Pnneron 

exchange (- IIm wt+) in K+p eiastic scattering at 5 GeV 

(Ref. 56). 

Figure 27. Imwct parameter distribution of amplitude shown in Fig. 26. 

Figure 28. Impact parameter profiles in K'p elastic scattering at 5 GeV 

(Ref. 56). 

Figure 23. Differential cress-sections for particle and antiparticle elastic 

scattering at 5 &V/c from Ref. 5. 

Figure 30. ilifference a(s,t) as defined in the text for ~'p, K*p and 

p&p elastic scattering at 3, 3.65, 5 and 6 GeV/c (Ref. 5). 

Figure 31. CFl+)/, amplitude obtained from cross-over data only and compared 

to result of complete amplitude analysis; data from $p at 

6 GeV (Ref. 5). 

Figure 32. Difference between exponential slopes in Kfp elastic scattering 

as a function of beam momentum; data from Refs. 5, 96, 97 and 98. 

Figure 33. f 
Difference of TT p polarizations at 10 GeV as a function of t 

(Ref. 9). 

Figure 34. (F:- L and (Ff- II obtained from polarization and cross section 

data only and comparison to results of full amplitude analysis. 

Figure 35. sum of ~'p polarizations at 10 GeV (Ref. 9). 

Figure 36. Sun and difference of K'p polarizations at 1C GeV (Ref. 9). 

Figure 37. Sum and difference of K'p polarizations at 14 GeV (Ref. 9). 
Figure 25. Fhase differences between p and u) production amplitudes in 

TN 4 (p+jN, for different t-channel exchanges (Ref. 54). 
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