
SLAC-PUB-1527 
January 1975 

MORTRAN2, A MACRO-BASED STRUCTURED FORTRAN EXTENSION 

A. James Cook and L. J. Shustek 
Computation Research Group 

Stanford Linear Accelerator Center 
Stanford University, P. 0. Box 4349, Stanford, California 94305 

-h ABSTRACT 

A language that permits a relatively easy transition from FORTRAN programming to structured 
programming is described. This language, called MORTRAN2, is a FORTRAN language extension that is 
further extensible by user-defined macros. The language is implemented by a pre-processor (which 
is in fact a macro-processor) written in standard FORTRAN. The output of the pre-processor is 
also FORTRAN, so that transportability of both the pre-processor and its generated programs is 
assured. 

INTRODUCTION 

The computing world is awash with a new fad: 
Structured Programming. There is no consensus as 
to what structured programming is but some of its 
more zealous advocates assert that those who write 

,non-structured programs are at best in a state of 
sin and at worst guilty of criminal obfuscation. 
It has been said that it is impossible to write a 
"good" program in FORTRAN. To those who have 
written the overwhelming majority of scientific 
and engineering programs in FORTRAN over the last 
fifteen years, these pronouncements are a trifle 
exaggerated. There are several reasons why 
FORTRAN has not met the sudden and awful death 
that its detractors insist it deserves. Among the 
reasons are 

: Availability. Compilers exist for most 
computers, even many "mini" computers. 

- Efficiency. Many of the FORTRAN compilers are 
peerless in producing efficient machine code. 

- Universality. It is the most widely known 
scientific and engineering language. 

Admittedly, FORTRAN has some weak points. A 
number of FORTRAN pre-processors have been written 
to provide FORTRAN language extensions which 
correct some;of these weaknesses, but they are 
lacking in one or more of the following respects: 
transportability (of the pre-processor and its 
output), extensibility (of the language), or 
compatibility (with existing FORTRAN programs). 
In addition to these technical constraints, we 
impose what might be called an aesthetic 
requirement: the language should8 support the 
development of programs that are easy to read and 
to modify. MORTRANZ satisfies the technical 
constraints, and provides facilities that permit 
programs to be written that satisfy the aesthetic 
requirement. The macro facility in MORTRAN2 
provides the programmer with a means of defining 
symbols to represent a sequence of operations in a 
way that augments the sub-program facility 
provided by FORTRAN. The macro facility may also 
be used to extend the language (for example, to 
include new data structures, and new operators on 
those data sturctures). 
Y 

We will show that by successively eliminating 
some of the objectionable features of FORTRAN one 
is led easily and naturally to a language that 
permits structured programs to be written, 
debugged, and maintained. 

MORTRAN2 

We will dispose of FORTRAN's small annoyances 
first. Counting the number of characters in a 
Hollerith data field is erroriprone and should be 
unnecessary. The rule in MORTRANZ is 

- Enclose Hollerith data in apostrophes (as in 
'PARAMETERS'). If an imbedded apostrophe is 
needed, represent It by a pair of apostrophes 
(as in 'DON"T' which becomes SHDON'T). 

FORTRAN has some annoying rules about "column 
seven" and "continuation marks". Forget all such 
rules, and substitute the single rule: 

- Terminate all statements with a semicolon (as 
in X=Y;), and ignore column and card 
boundaries. 

FORTRAN rules regarding comments do not allow 
the comments to be placed where they would be most 
meaningful. Put comments anywhere you like, but 

- Enclose all comments in quotation marks (as in 
"COMMENT") . 

FORTRAN statement labels have no mnemonic 
value. We abolish them and use alphanumeric 
labels instead. A label in MORTRANZ is an 
alphanumeric character string of arbitrary length 
enclosed in colons (as in :TOMATOES:). In 
MORTRANZ, 

- Use an alphanumeric label (in any context) 
where you would ordinarily use a FORTRAN 
statement label. 

So much for eliminating the minor annoyances. 
(The FORTRAN programmer need learn only the above 
four rules in order to start writing programs in 
MORTRAN2, so that gradual transition from FORTRAN 
to MORTRAN programming is possible.) We will now 
consider FORTRAN's more serious deficiencies: 

Work supported by the U. S. Atomic Energy Commission. 
(To be presented at COIGCON ‘75, San Francisco CA, February 25-27, 1975. 10th IEEE Computer Society Int'l. Cod.) 



FORTRAN has no "block structure", and 'lstructure" 
is the thing we are trying to achieve. Let us 
define a block as a sequence of statements which 
are delimited in some manner, and see how it can 
be used. Let 

Sl; S2; S3;...Sn; (1) 

be a-sequence of stmements. The sequence becomes 
a block when it is enclosed in the special symbols 
< and > which we will call "brackets". The 
brackets are not meta-symbols; they are delimiters 
in the language. We make (1) into a block by 
writing 

<Sl; S2; S3;...Sn;> (2) 

We can use such a block to circumvent the 
FORTRAN deficiency which disallows more than one 
statement following a logical IF statement. Let e 
be an arbitrary logical expression. If we write 

IF e <Sl; S2; S3;...Sn;> 

all of the statements in the block are executed if 
and only if e is TRUE. If we write 

IF e <Tl; T2; T3;...Tn;> 
ELSE <Fl; F2; F3;...Fn;> 

the statements Ti are executed if e is TRUE, and 
the statements Fi are executed if e is FALSE. 

To save space we will write an ellipsis 
enclosed in brackets to denote a block. That is, 
we will write < . ..> instead of (2). 

<Another thing we can do with our definition of 
a block is to simplify the way we write loops. 
For example 

WHILE e <...> 

repetitively executes the statements in the block 
while e is TRUE, and 

UNTIL e <...> 

repetitively executes the statements in the block 
until e becomes TRUE. 

DO i=j,k,n <...> 

where i, j, k, and n are the standard FORTRAN DO 
parameters, generates a standard FORTRAN DO loop. 

FORTRAN DO loops have certain deficiencies. 
The "control variable" must be a non-subscripted 
integer variable; the other DO parameters must be 
non-subscripted integer variables or unsigned 
INTEGER constants. All DO parameters must always 
be positive. In MORTRANZ one may write 

FOR v=a TO b BY c <,..> (3) 

where a, b, and c are arbitrary arithmetic 
expressions, and v is a variable of type REAL, 
INTEGER, or DOUBLE PRFCISION which may be a simple 
variable or an array element (subscripted 
variable). We will call (3) a "FOR loop"; it has 

two alternate forms 

FOR v=a BY b TO c <...> 
FOR v=a TO b < . ..> (4) 

Since (4) has no increment, it is assumed to 
be one. 

MORTRAN2 implements the "forever" or "endless" 
loop with 

LOOP < . ..> REPEAT (5) 

The optional word REPEAT in (5) is an aid to 
readability which may also be used with any of the 
other loops. 

In MORTRANZ, a loop is simply a block which 
has been preceded by, and optionally followed by a 
"control phrase". The control phrases which begin 
a loop are WHILE... UNTIL... FOR..., DO..., and 
LOOP. The control phrases which may optionally 
follow a loop are WHILE..., UNTIL..., and REPEAT. 

In order to "jump out" of a loop one may write 
something like 

GO TO :CHICAGO: ; 

where the label :CHICAGO: preceeds some statement 
or block that is outside the loop. This can be 
annoying if a convenient label does not already 
exist and one must be created for the sole purpose 
of leaving the loop. MORTRANZ offers an 
alternative. The statement 

EXIT;. 

causes control to be transferred to the first 
executable statement following the loop in which 
the EXIT appears. The statement 

NEXT; 

causes control to be transferred to the next 
iteration of the loop in which the NEXT appears, 
incrementing the control variable (if any) before 
performing the test for continuation in the loop. 

Any loop may be optionally preceded by a 
label. The EXIT and NEXT statements may be 
optionally followed by a label, in which case, the 
transfer of control is made with respect to the 
loop bearing that label. For example, suppose 
that the outermost loop of a nest of loops has 
been labeled :SEARCH:, and that two of the 
interior loops have been labeled :COLUMN: and 
:ROW:. We may write 

NEXT :COLUMN: ; or NEXT :ROW: ; 

to transfer control to the next iteration of the 
corresponding loop, or 

EXIT :SEARCH: ; 

to transfer control to the statement following the 
outermost loop. 

-2- 



I 

USER-DEFINED MACROS 

At any point in a MORTRAN2 program one may 
define a macro by writing 

%'pattern'='replacement' (6) 

where "pattern" are 
strings- 

and" "replacement" 
optionally including 

character 
parameters and 

imbedded character strings. (Since imbedded 
character strings are permitted, the rule 
regarding imbedded apostrophes must be observed 
when writing macros.) 

In the simple (parameter-less) form, a macro 
does simple text substitution; all occurrences of 
the pattern string in the program are replaced by 
the replacement string. 

The pattern part of a macro definition may 
contain up to nine formal (or "dummy") parameters, 
each of which represents a variable length 
character string. The parameters are denoted by 
the symbol b. For example, 

'EXAMPLE#PATTERN#DEFINITION' (7) 

contains two formal parameters. The formal 
parameters are "positional". That is, the first 
formal parameter is the first d encountered 
(reading left to right), the second formal 
parameter is the second # encountered and so on. 
The corresponding actual parameters are detected 
and saved during the matching process. For 
example, in the string 

. 
< - EXAMPLE OF A PATTERN 

IN A MACRO DEFINITION 

(assuming (7) is the pattern to be matched), the 
first actual parameter is the string "OF A", and 
the second actual parameter is the string "IN A 
MACRO". The parameters are saved in a "holding 
buffer" until the match is completed. After a 
macro has been successfully matched, it is 
"expanded". The expansion process consists of 
deleting the program text which matched the 
pattern part of the macro and substituting for it 
the replacement part of the macro. 

The replacement part may contain an arbitrary 
number of formal parameters of the form #I 
(1=1,2,...,9). During the expansion process, each 
formal parameter /ii of the replacement part is 
replaced by the i-th actual parameter. A given 
formal parameter may appear zero or more times in 
the replacement part. For example; the pattern 
part of the macro definition 

%'INCREMENT #;' = '#l=#l+l; 

would match the program text 

(81 

INCREMENT A(I,J,K); 

During the matching process the actual 
parameter "A(I,J,K)" is saved in the holding 
buffer. Upon completion of the matching process 

(that is when the semicolon in the program text 
matches the semicolon in the pattern), the 
expansion of the macro takes place, during which 
the actual parameter "A(I,J,K)" replaces all 
occurrences of the corresponding formal parameter, 
and producing 

A(I,J,K)=A(I,J,K)+l; 

Note that the single formal parameter #I 
occurs twice in the replacement part and therefore 
the single actual parameter "A(I,J,K)" occurs 
twice in the resulting string. 

Space does not permit more elaborate examples 
demonstrating the full power of macros. One 
particularly useful feature is the ability to 
write macros which generate other macros. For 
this purpose, the rule regarding the doubling of 
an apostrophe to denote an imbedded apostrophe is 
extended to include the symbol i/ used to denote a 
formal parameter. That is, if the replacement 
part of a macro is (or contains) a macro 
definition, the formal parameters in the 
replacement part which are within the contained 
macro are represented by b#. 

MORTRAN 1 

MORTRAN2 is an elaboration of MORTRANl which 
has been in use at the Stanford Linear Accelerator 
Center for almost two years. Some very large 
programs have been written in MORTRAN for the 
analysis of high energy physics data. Our 
experience to date shows that the time required to 
pre-process MORTRAN programs is roughly equal to 
the time required by the FORTRAN (IBM,level H) 
compiler to compile the resulting program. In 
both MORTRANl and MORTRAN2 the programmer may 
insert segments of FORTRAN code in a MORTRAN 
program or segments of MORTRAN code in a FORTRAN 
program. 

-OTHER APPROACHES 

Modification of the "front end" of the FORTRAN 
compiler to accept MORTRAN programs seems 
attractive at first because of the obvious 
advantage of avoiding the pre-processor step with 
the implied increase in speed as well as other 
advantages. The disadvantages are: loss of 
transportabliity of the processor, loss of 
transportability of the programs which are output 
from the processor, vastly increased maintenance 
problems, introduction of new uncertainty with 
respect to suspected bugs in the compiler or 
(heaven forbid) the pre-processor. 

The approach we have taken is to regard 
FORTRAN as a machine-independent "assembler 
language" (the only such language available 
today), and the pre-processor as a compiler whose 
object code is FORTRAN. 

-3- 



CHARACTER SETS AND TRANSPORTABILITY 

There exists an incredible number of different 
character sets and internal representations for 
those character sets. MORTRANZ solves the problem 
by reading in the character set during 
initialization. All that is necessary to change 
any of the special characters used by MORTRANZ as 
delimiters is to c?iange the characters on a single 
card. No reference is ever made in the processor 
to any particular character set or to any internal 
representation. Moreover, since the delimiters 
are matched by macro patterns, the user may use 
words as delimiters instead of special.characters.- 
For example, the word "BEGIN" may be used instead 
of the left bracket, and the word "END" may be 
used instead of the right bracket. 

RESERVED WORDS VERSUS BRACKETED KEY-WORDS 

MORTRANZ offers the programmer a choice of 
writing programs using reserved words, or 

~ enclosing his keywords in brackets. Reserved 
words have the advantage that they are easily 
typed, but the disadvantage that they may not be 
(safely) used as variable names. Bracketing the 
keywords; makes them easy to locate in the program 
listing and allows the programmer to use keywords 
as variable names if he wishes. 

EXTENSIBILITY 

The language described in this paper is 
defTned by a set of about fifty macros (requiring 
about as many cards). In order to re-define the 
language, one need only write a new set of macros. 
For example , the choice of key-words or reserved 
words described above requires a very simple 
modification of the standard (language-defining) 
set of macros. 

User-defined macros may be easily added to the 
standard set to extend the language. For example, 
macros have been written that permit simple 
operations on matrices so that explicit loops need 
not be written. More elaborate macros have been 
written that define dynamically allocated 
linked-list data structures. Some very useful 
macros have been written that might have been 
included as part of the language, but were not on 
the grounds that they are (1) available as an 
option and (2) would "clutter up" the language if 
they were made an integral part of it. The macros 
are "stacked", that is, the last read in is the 
first scanned for matches in the program text, so 
that the user may override specific parts of the 
standard macro set without re-writing all of it. 

READABILITY 

Some aids to readability have already been 
mentioned: alphanumeric labels, the fact that 
comments may be inserted anywhere in the program 

text, and the fact that the language is 
"free-field". In addition MORTRAN automatically 
prints the nesting level, and optionally indents 
the listing according to the nesting level. 
Automatic indentation can be very helpful in 
exposing the structure of complex programs. 

CONCLUSION 

A structured language is one which has 
(minimally) a clearly defined nested block 
structure, and facilities for controlling the 
execution of those blocks. MORTRAN makes the only 
machine-independent language available today into 
such a structured language. 

-4- 


