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r ABSTRACT 

Several long range force models of quark confinement are considered 

with particular emphasis on gluon exchange analogous to linear and har- 

monic potentials. First the nonrelativistic case is discussed and the con- 

nection between the rise of the Regge trajectories and the power of the 

potential is derived. Then semirelativistic and relativistic equations are 

considered. It is shown that in each case the rising trajectories result 

from large quark-gluon coupling constants. It is also shown that an 

asymptotic power decrease of bound-state form factors follows only if 

the interaction contains an additional Coulomb- or Yukawa-like part, and 

only in the space-like or the time-like domain. The significance of 

infrared cutoffs is examined, violations of unitarity are pointed out and 

the behavior in the static limit is discussed. 
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1. Introduction 
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Gsnsiderable experimental evidence has accumulated in recent years in 

support of the idea that hadrons are composite. Also the most popular model 

of composite hadrons, the quark model, has been successful in explaining 

several high energy phenomena. Yet all attempts to isolate and observe the 

quarks have failed to date. Consequently Johnson’s suggestion’ that the 

elementary constituents possibly never appear singly and instead are confined 

permanently in. bounded regions of space, has aroused widespread interest. 

The reason is that if quarks are somehow confined, then an understanding of 

their physics necessitates an understanding of the implications of the confining 

mechanism for observable quantities. 

Numerous approaches to the problem of (permanent or temporary (high 

threshold)) quark confinement have been developed recently. All of these 

approaches assume that quarks may be classified in triplets carrying SU(3) 

color, that hadrons are color singlets, and that the sea of quark-antiquark pairs 

carries no quantum numbers. Many models assume that the quarks are effec- 

tively light, others that they are heavy, and that their relative motion is 

practically nonrelativistic. Roughly speaking, there are three types of models: 

a)2 those based on the Nambu mechanism3 in which the unbinding of color non- 

singlets is due to the repulsive nature of the quark interaction mediated by 

gauge vector bosons, whereas the binding of the color singlets is due to a scalar 

field4 (and is unaffected by the gauge vector bosons); b)5 those employing clas- 

sical field theory supplemented by suitable boundary conditions such that the 

quarks are confined to finite regions of space called bags; and c) 6-13 those 

employing a long range force, such as is provided by the classical simple 

harmonic oscillator or similar potentials in the static limit. (Note that type c) 
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models can be related to those of type a) if the energy needed to remove a quark 

froma, color singlet is proportional to a power of its distance of separation. ) 

In the following we are concerned with models of type ‘c). The aim of our 

investigation is to understand-in the context of .various models-the compati- 

bility between those phenomenological features which (at the present stage) a 

dynamical model of elementary particles is expected to exhibit. These are: 

particles classified as in the quark model, rising Regge trajectories (equiva- 

lently a fundamental length related to their slope), the nonobservability of free 

quarks, power-law falloff of form factors and (presumably) scaling in the scaling 

limit. Our investigation is mainly concerned with confinement of quarks, rising 

Regge trajectories and the asymptotic behavior of form factors. Incorporating 

unitary spin 14 and color is assumed to be a technical problem which does not 

destroy the general features of the models but is convenient to be ignored here 

in order to allow the equations to be solved with relative ease. Also scaling 

will not be considered because it is related to the built-in compositeness of 

hadrons and so follows along the lines investigated by Drell and Lee l5 (in the 

context of Bethe-Salpeter-like bound state models). 

It is generally believed that if physical (i. e. , dressed) quarks exist, then 

they would have a mass of several GeV because otherwise they would (presumably) 

have been seen. But if they are heavy, their binding has to be appropriately 

strong in order to yield masses typical of hadrons. If, in addition, this force 

is assumed to be not too singular and to increase with increasing separation 

(thus making it difficult for a single quark to escape) their relative motion is 

- essentially nonrelativistic. 16 The interaction is also expected to be infrared 

divergent. However, if the confined quarks are not extremely massive, which 

is an open possibility, the nonrelativistic model can no longer be trusted. It 
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is therefore not a priori clear that a nonrelativistic or semirelativistic approxi- 

matioa to the equation governing their relative motion is to be preferred. For 

this reason we shall consider both relativistic and semirelativistic models. 

It is common knowledge that the nonrelativistie harmonic oscillator leads 

to rising trajectories. An oscillator type of interaction also implies quark 

confinement because it is infinitely attractive and its spectrum of discrete 

eigenvalues is complete. However as a model it is obviously too naive. 

Numerous theories which have been discussed recently suggest quark-quark ,. 

interactions equivalent to a linear potential, 7,10-12 which may be associated 

with a dipole gluon propagator. In order to obtain a better understanding of the 

type of interaction required we consider in the following various classes of 

power potentials with particular emphasis on the relativistic generalization of 

the harmonic oscillator because of its mathematical tractability. 

Few models of quark confinement have (so far) been investigated with regard 

to the asymptotic behavior of form factors. In view of the considerable experi- 

mental evidence favoring a power decrease, it seems essential that this behavior 

should also be exhibited by realistic models. In the following we concentrate 

particularly on the compatibility between the rising nature of Regge trajectories 

and the asymptotic power decrease of form factors. We show that the latter 

requires an additional Coulomb- or Yukawa-like interaction and even then leads 

to violations of unitarity in either the space-like or the time-like region. Of 

course, writing the quark-quark interaction as the sum of two terms, one repre- 

senting the (mysterious) gluon exchange, the other a customary Yukawa force, 

is an arbitrary and so unsatisfactory procedure. Ideally one would prefer a 

single interaction which exists in two phases 17 and which can then be approxi - 

mated by these two terms in certain limits. In the following we find that the 
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rising trajectories are invariably related to large values of the quark-gluon 

couplizg constant (which therefore cannot have a small value around zero), 

whereas the Yukawa force may be treated as a perturbation If the latter (or 

equivalently the anomalous dimension of a renormalizable interaction) is allowed 

to vanish, the asymptotic power decrease of the form factor is destroyed. 

These observations strongly support a two-phase model such as that discussed 

by Wilson 17 in which the two phases correspond to strong coupling and weak 

coupling with a critical region in between. The similarity of such models with 

magnetostatics and the BCS-theory of superconductivity is particularly striking. 

In magnetostatics no free magnetic poles exist; the force binding them into pairs 

(corresponding to gluon exchange) is the internal force of the magnets. In the 

BCS-theory of superconductivity the superconducting phase is due to a domi- 

nance of the quasiparticle-phonon interaction (phonon exchange corresponding 

to gluon exchange) over the screened Coulomb repulsion to give a net attraction 

for quasiparticles near the Fermi surface. The reason why the BCS-theory 

works so well is that in real metals pair-pair correlations are almost entirely 

due to Pauli principle restrictions, rather than true dynamical interactions 

between pairs. Consequently the system can in lowest order be treated as if 

dynamical interactions exist only between the mates of a pair. 

The article is organized as follows. In Section 2 we consider briefly the 

nonrelativistic case of infinitely attractive potentials and derive in particular 

the dependence of the rise of the trajectories on the power of the potential. 

This case demonstrates explicitly the connection between the power of the 

potential and the resulting mass spectrum. It also serves a better understanding 

of the physics underlying the relativistic cases discussed later in the so-called 
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static limit. In Section 3 we consider semirelativistic and relativistic models 

in the%mit of infinite target mass. Here the equations are of the type used 

by Feynman et al. , 18 Montvay 19 and Rivers. 8 We derive the Regge trajectories 

and show that the Coulomb or Yukawa interaction leads to a distortion of the 

lower part of the rising trajectories obtained for the harmonic gluon interaction. 

We then investigate the asymptotic behavior of the form factor of the ground 

state of the two-body bound state. We show that only if the Coulomb or Yukawa 

coupling is nonzero will the form factor exhibit an asymptotic power decrease 

in the space-like region, but not in the time-like region where it diverges 

exponentially, thus violating unitarity. This result is then verified by an exami- 

nation of the momentum space equation. In Section 4 we consider fully relati- 

vistic models and arrive at roughly similar though not identical results for the 

relativistic harmonic interaction. We also consider various types of interaction 

kernels and derive their counterparts in four-dimensional Euclidean configura- 

tion space and in the static limit. Finally, in Section 5, we summarize our 

conclusions. 
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2. The Nonrelativistic Analogue 
- 

It&s often instructive in particle physics to keep in mind nonrelativistic 

analogues. For this reason we shall first consider briefly ordinary spinless 

two-body nonrelativistic potential scattering. In-this case the motion of the 

center of mass may be separated off and for spherically symmetric interactions 

V(r) the relative motion of the two particles is described by the radial 

Schriidinger equation. It is convenient for our purposes to consider this equa- 

tion in the normal form 

k2-!-k%-V(r) 
r2 

(2-l) 

where, as usual, 3? = i #-) Ppos 0) e 
im@ and li= c= 1, reduced mass M= l/2. 

The type of potential we wish to consider first is 

. - l<S ) (2.2) V(r) =g2 Ir-rols , _ 

or more specifically the cases 

VI(r) = g21r -r. 

V,(r) = g21r -r. 

I (2.2a) 

I2 (2.2b) 

We consider r. as being a separation of the quarks such that for r <<r. they can- 

to a reasonable approximation-be considered as moving freely, i. e., independ- 

ently of each other (as far as interactions of type (2.2) are concerned). Thus, 

for r << r. 

V(r) N g21-rOls 

and the force acting between the quarks is zero. For quark separations r of the 

order of r. the potential is approximately zero. For s > 1 the force is also 

approximately zero for r of the order of r o, whereas for s = 1 the force is a 
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constant depending on the coupling g2. For quark separations r >> r. we have 

fi V(r) N g2rs 

For s > 1 the force acting between the quarks then increases with the separation, 

whereas for s = l.it stays constant, Thus for s f 1 the quarks in the two-quark 

system need not be confined permanently (depending on the magnitude of the 

coupling g2). Permanent quark confinement (for finite coupling g2) therefore 

requires a potential having s > 1. However, since it is not clear whether quarks 

really have to be confined permanently, a linear potential of the type (2.2a) 

cannot yet be ruled out. In fact, it has several phenomenologically appealing 

consequences as we shall show. This applies also to its relativistic analogue 

which we discuss later on. We might add here, that a linear total energy and 

so potential energy 17 may be regarded as a natural consequence of locality for 

isolated quarks of infinite mass as was argued by Wilson’ (see also Kogut2’). 

Briefly, the argument is that in a theory with states having infinite energy, 

the Hamiltonian H is not a well defined operator. Using instead e -Ht, the 

expectation value for a quark-antiquark state with large separation r may be 

written 

1 tj> + O(emb(t)r) <qiile -Ht lqq> = <qlewHt lq><qle-Ht 

For mass m of the quarks we then have 

e-WV = ,-2mt + O(e-M~)r) . 

Ifm-- this relation yields for the energy E(r), consisting of kinetic and 

potential energy, the relation 

E(r)t=b(t)r , i.e., Eccr . 
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Our next objective is to calculate the Regge trajectories for potentials of 

the type (2.2). We shall use a simplified WKB-method and set 

z(r) = k2 -V(r)}“’ dr 

= j k2 - V(r)} I/2,+1 r 
“0 {k2 - V(r)} “2 

b2 - V(r)lI’2 r + 0 1 ZZ 1 
- VWV2 _I 

The radial wave equation may then be written 

(2.3) 

(2.4) 

For sufficiently large I k2 -V(r) 1 the right hand side of this equation may be 

neglected to a first approximation. The solutions of the zero order equation 

d2q(0) 

dz2 
(2.5) 

are 7/O)(z) = fi Z Q+ 1,2(z) where Zv is a Bessel function. A solution satisfying 

the boundary condition of regularity at r=O is given by Zy = Jv . For Q=O the 

appropriate solution of (2.5) is sin z. Now, the eigenvalues of the problem- 

and thus the Regge trajectories- are determined largely by the oscillatory 

behavior of the solution 1~) and so by its behavior in the region where k2 -V(r) 

is positive as will be seen below. 

Since sin z has zeros at z =nr, n= 0, 1, . . . , the number of zeros in the 

interval (0, R) , where R is given by k2 -V(R) = 0, is the integral part of z(R)/?r. 

In the case Q#O the zeros of # (0) are easiest to determine in the region of large 

lz I which implies large values of n. The solution G(r) satisfying the boundary 
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condition $(O) = 0 is obtained for 

-h $0)(z) = & JQ + 1,2(Z) . 

For large lz I the Bessel function has the asymptotic behavior 

JQ+ I,2(z) = ($,“” [cos (z - ; Qn I;’ r) -f- 0 (&)I 

which is periodic for real values of z. Clearly, the number of zeros in an 

interval (0, R) and hence the eigenvalues are given by 

<. z -;a, - + 7r = (2n+l) ; 

i.e., z = i n+iQ+ 1 > r, where n=O,1,2,. . . . Using (2.3)) we may rewrite this 

expression in the form 

k2 - V(r)/1’2 dr (2.6) 

where correction terms are of O(0) in k2 or n. It is known that a more detailed 

analysis2’ taking into account terms of O(0) yields the corrected version 

+ $Q + $) = $ jR {k2 - V(r))l12 dr -t- O(i) 
0 

(2.7) 

We now insert in (2.7) the potential (2.2). Then taking ro=O, for simplicity, 

we have 

L-1 
(l-4 1’2 tS dt -I- O(i) 
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Thus 

& 
Q=on(k) = -2n-g+ 

For the linear potential (2.2a) this becomes 

3 4k” 1 -v onQ=-2n-y+3 2 +O n 
0 

gn 

(r 0 = 0) 

and for the oscillator potential (2.2b): 

(2.8) 

(2.9) 

In the latter case our result agrees in fact with the exact expression (which can 

be derived from the complete solution of the differential equation as in the next 

section). 

We now interpret the results (2.8), (2.9) and (2.10) as being applicable over 

the entire range of the energy k2. From (2.8) we see that the linear potential 

yields the most rapidly rising trajectory (considering only integer power poten- 

tials rs, s>O). The oscillator potential (2.2b), of course, yields the linearly 

rising trajectory, as is well known. Regge trajectories for the harmonic 

potential and related versions have been discussed by several authors and so 

need not be considered in further detail here. 22 Its spectrum of infinitely many 

pure bound states for k2> 0 is, of course, unphysical. In order to make it 

physically meaningful it is necessary to imagine the introduction of a small 

deviation of the potential from the pure r2 behavior which introduces sufficient 
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nonanalyticity so that the “bound statesl’ become resonances (i. e. , all except 

possib.Iy the lowest for energies < 2M), a continuous spectrum thereby being 

introduced. Looking at Eq. (2.8) we observe that it is only for s=2 that the 

trajectory function does not develop a branch point .at k=O, The implications of 

this behavior are well known: in the case s=2, i. e. , the harmonic oscillator, 

no branch point in k arises, thus there are no continuum solutions, and the 

spectrum of discrete eigenvalues is complete; in the cases sf2 the branch point 

at k=O implies the existence of continuum solutions. 

Regge trajectories for Yukawa potentials have been discussed in consider- 

able detail in the literature. It is well known that they do not rise linearly but 

fall off rapidly with increasing energy; this applies also in the strong coupling 

limit. 23 However, as pointed out in the introduction, a Yukawa-like force 

(i. e. , particle exchange) seems to be responsible for the power-law falloff of 

form factors and so vertex functions. It is therefore of interest to understand 

the behavior of wave functions and Regge trajectories when the potential contains 

an harmonic as well as a Yukawa-like part. Unfortunately, however, the radial 

wave equation is difficult to solve except when one of the potentials may be 

neglected. We therefore do not pursue this case further except later in the 

context of relativistic models. 

There are several other types of potentials which are of interest in this 

connection. One which has recently attracted some interest is a potential with 

a finite range singularity, i. e., a potential V’(r) which is singular at a point 

r=h, whereh#Oora,. The example discussed by Fillipov 13 is 

V,(r) = --g-Z 
r2-2A 

(2.13-a) 
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(with the distribution or principal value prescription when the Fourier transform 

is calculated). Such a potential can be obtained by taking the static limit of the 

configuration space representation of the superpropagator’ of a nonpolynomial 

field theory. Thus, for rfh, 

- 

V,(r) = + %- Ai [l+$+($f + . ..] 0(1-r) 

-f [+$+($/+ . ..]8(r-h) (2. llb) 

We observe that for r<<A the potential behaves like a modified harmonic oscil- 

lator . Its eigenvalues and Regge trajectories (which can be easily calculated 

perturbation theoretically to any desired order in l/g) follow from the condition 

of continuity of the wave function at r=A or, approximately, from (2.10): 

22 2 
on(k) = - 2n - z 3 + y + O(gO) (2. 12) 

The quark is now trapped inside the range determined by the finite distance 

singularity. We observe that for h approaching zero the linear rise of the 

trajectory is lost, the potential thereby reducing to one of centrifugal type. 

Another potential we might mention is 

2 2 VP(r)=+g r e -p2r2 

a =- 
d/l2 

( -g2 e-P2r2) (2. 13) 

For large values of g2 and small values of p2 the SchrGlinger eigenvalues for 

this potential are easily calculated by the methods used in Ref. 24. One finds an 

expression similar to (2.12), which, of course, reduces to (2.10) in the limit 

I-L -0. We return to a discussion of these potentials in the relativistic context 

later on. 
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3. Semirelativistic and Relativistic Models in the Limit of Infinite 
- 

Target Mass 

’ 3. 1 A semirelativistic model with rising trajectories 

Guided by the nonrelativistic considerations of the preceding section we now 

consider a dynamical model in which quarks interact via a neutral vector-gluon 

field V,(x). We assume that the quarks have a bare (unrenormalized) mass m 

and leave open (for the moment) the question as to whether the physical mass of 

a quark is meaningful or not, i.e., whether quarks do arise as asymptotic states 

(and so are only temporarily confined) or not. The equation for the spin l/2 

quark field q(x) may then be written 25 (using the metric gOO= -1, gii=+l for 

i= 1,2,3) 

where g is the coupling of the gluon to the quark. The equation, describing the 

motion of one quark in the limit of infinite mass of another quark is, of course, 

analogous to the equation describing the motion of a charged spin-l/2 particle 

in the field of a force. Like the Bethe-Salpeter amplitude, the wave function for 

a quark-antiquark pair of total momentum PC1 is given by 

< 0 IT($,(x’) q,(x)) i $,> = x,#) e-ip’rl (3.2) 

where CY and p are spinor indices and the expression on the right hand side shows 

the separation of, relative and center of mass coordinates [ =x-x’, n =i (x+x’). 

We assume now that the gluon field may be replaced by a c-number potential 

which depends only on the relative coordinate 5 
P’ 

Thenrewriting (3.1) in terms 

of 5 and q and using (3.2) we obtain 

(3.3) 
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as the equation describing the relative motion of the quark and antiquark. 

Muluplying the equation from the left by the differential operator with m 

replaced by -m, it becomes I .’ 

[ -- 4’ P2 -g2v2 + a2 -m’+gP.V - iP. 3 + 2igVs b - i~~($VJ~v]xO = 0 

(3.4) 
In general this equation is difficult to solve. We therefore make some plausi- 

ble approximations which are analogous to those used in the discussion of the 

nonrelativistic case. In fact, we will assume that both lPcc I and g are con- 

siderably larger than one. In this domain Eq. (3.4) may be written 

C 
-+p2-g2v2+ a2 -m2 + gP.V ~(5) = O(IPpl,g) 1 (3.5) 

where x is now proportional to the unit matrix; the left hand side of (3.5) 

represents in effect the equation for scalar instead of spinor quarks. It is this 

equation which we shall study in detail in the following. In solving (3.5) we could 

proceed in two (effectively equivalent) ways. In a three-dimensional configura- 

tion of the hadrons we could consider V as a function of the three-dimensional 

radial distance r given by 

r2 =+[ 2 - (P-5 )2/P2 

in the rest frame of the hadron (considered as the bound state of a quark- 

antiquark pair). In this case the time dependence of ‘x (t) is first separated 

from the configuration space dependence, and then the resulting three-dimensional 

equation is solved. Alternatively one may use the four-dimensional treatment 

familiar from its application to the Bethe-Salpeter equation. Here we shall use 

the former method because it is more appropriate for the treatment of the non- 

relativistic potential which we shall use. Thus, we go to the rest frame of the 
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hadron (F=O) and write 

e-w 
Vo=4r+/3r , 3=0 . : (3.6) 

Here the first part represents the (nonrelativistic) exchange of a spin-zero 

particle of mass p which we will subsequently assume to be zero (although it is 
* 

not difficult-in the context of the equation used below-to ‘derive a perturbation 

expansion in rising powers of CL. 26 The second term again is the linear poten- 

tial representing the gluon exchange ,between the quarks. Substituting (3.6) into 

(3.5) and separating off the angular part of the wave function we obtain for the 

radial part of x , i. e. , q(r), the equation 

-+3+2.3!+ 
&2 rdr 

i 
-y+ (&-gV,)2 -m2 

I 
$=O 

within our approximation of ignoring terms of 0( IP, I , g) for quarks of spin l/2. 

Also, we have set 8= Po/2. Substituting into (3.7) the potential (3.6), we have 

(for p=O) 

&+2.~+ 
dr2 r dr 

where 

A = g2p2 
3 9 

B = &” - my- 2apg2 

c = g2cY2 - a(a+l) = -L(L+l) 

Ar2+B-t C 

7 I l/J=0 (3-W 

Also we have neglected on the left hand side the term 

(3.9) 

which contributes significantly only in the transition region, and so does not 

control the behavior of the solutions in the regions around r=O and r=co in which 
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we are primarily interested. In principle this term could be dealt with pertur- 
- 

bation theoretically (in a suitable range of a! and p) like the Yukawa terms in ,u. c, 

Our next step is to solve Eq. (3.8). Its general solution in,any finite region of 

r, 6’ and g which satisfies the condition of regularity at the origin is found to 

be (apart from an overall constant) 

lZ2 

z/(r) = zL e-’ +(a,b; i 22> (3.10) 

where we have set 

z = (2iA mp r 

and 

(3.11) 

(3.12) 

The function +(a, b;s) is the confluent hypergeometric function which is defined 

as any solution of the equation 

2 d+ sJ=+@-s)=- 
ds2 

a+=0 . 

In analogy to the familiar treatment of the hydrogen atom, the eigenvalues and 

thus the Regge trajectories are determined by those values of the energy for 

which 

i. e., 

a = -n 9 n=O, 1,2,. . . 

Lk-zn-i+,+ (3.13) 
2iA 

We observe that since B is proportional to the square of the total energy g2, the 

trajectory on(&) = Qn , which is obtained by solving Eq. (3.13) for Q, also rises 

with the energy. It is clear from the relation between Q and L that sufficiently 
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moderate values of the coupling constant 01 distort the Regge trajectories 

generated by the pure gluon (i. e. , a=O) interaction in an appropriately moderate 

- 

way in the region of small 8. Hence the Coulomb (or more’generally Yukawa) 

part of the interaction does not destroy the rising behavior of the trajectories. 

However from (3.13) we also deduce that the gluon coupling A cannot be zero; 

in fact it must be large enough in order not to represent simply a perturbation 

on the Coulomb potential, and so to destroy the linearly rising behavior of the 

trajectories. /, 

We note here in passing that in the context of a relativistic wave equation 

the Coulomb potential gives rise to anomalous dimensions. This can be seen 

by looking at the behavior of the wave function near the origin which is 

G(r) r~ rL = r 
- ; + &+l) + + - g2a2 

and is seen to depend on the coupling constant. These anomalous dimensions 

appear in genera1 whenever the interaction has the same dimension as the 

kinetic energy term, i. e. , for renormalizable interactions. 

Of course, a self-consistent scheme requires in addition to the quark equa- 

tion with gluon and meson sources, also gluon and meson equations with sources 

involving the quark current. However, since such a system of simultaneous 

equations is vastly more difficult to solve than our equation above, we will not 

consider these here. Still, for the discussion in later sections, it is useful to 

keep in mind that the (linear potential (2.2a) satisfies the equation 

V21rl = 2 
Irl 

Then, since 

v2 (- *) = 6(r) 
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we have 

- 
c, V2V2 Irl = - 87~ 6(z) 

In three dimensions the equation of the free gluon x (corresponding to the linear 

potential) is thus ’ 

v2v2x =o * 

One may therefore speculate that in four dimensions the equation of the free 

- gluon is given by 

0202x = 0 . 

The propagator of the free gluon is then 

(b’k2)2 ; 

however, its configuration space representation is not the four-dimensional 

I r I, as will be seen later, although 1 r I may be regarded as its static limit 

in the sense of the above equations (corresponding to the relationship between 

the spinless particle propagator and the Yukawa potential). In the case of the 

harmonic potential (2.2b) it is more difficult to calculate the propagator. We 

return to this problem in Section 4. 

3.2 Another model with rising trajectories 

We consider a second semirelativistic example. We ignore the spin of the 

quarks and assume a @‘-like interaction (i. e., the scalar quarks of bare mass 

m interact through exchange of scalar particles of mass p) in addition to their 

interaction with gluons which we assume to have the form of a four-dimensional 

scalar harmonic potential in configuration space. Then the equation of motion 

of a quark is given by 

(d2+ m2) q(x) = v(x) q(x) (3.14) 

where v(x) represents its relativistic interaction with the scalars and gluons. 
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The wave function of the bound state of two scalar quarks of total four- 

-momentum Pet is given by 

f(xl,x2) = <olT(qW q(x’)) I@,> 

= #(t) evipsv 
(3.15) 

where the last expression shows the separation of relative and center of mass 

coordinates. Proceeding as before, i. e., writing 

I. a2 a ia2 0 ( -- 
ax =F+2&j > 

and acting on 4?(x 1,x2), we obtain the equation in 5 ‘. p7 1 e., 

-a2 + $ P2 + m2 + iP* El $Q) = v(t) z/(t) (3. 16) 

assuming that v(x) = v(t). A slightly different model equation for the bound 

state wave function is obtained by writing it as a two-particle wave equation 

containing a coupling potential 

{(- az+rn2) + (-di,+m2)} *(xl’ x2) = %-yx2) 9(x1, x2) (3.17) 

This equation is sometimes called the Goldstein equation and the bilocal field 

ilj (x1,x2) the Goldstein field. The equation was used by Feynman et al. 18 and 

Rivers . 8 For the bound state solution of the form (3.15) we then have the 

equation in the relative coordinates [ 
P 

( -2a2 + ’ P2 + 2m2 z > NO = 2w 5%) (3. 18) 

which is identical with (3.16) except for the term iP* &/J in that equation. We 

shall ignore this term in the following, and so work effectively with (3. 18). We 

assume now, as mentioned earlier, that the interaction v(t) is the sum of a 

q3-like scalar exchange and an harmonic oscillator-like gluon interaction. Also, 
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we work in terms of a four-dimensional Euclidean metric. Then 

-c, 
v(5) = g2V(t;) + f2t2 (3. 19a) 

and in the Wick-rotated four-dimensional Euclidean space, with r = 

[,=-it, , 

V(5) -V(r) = 
W1b-W 

47r2r 
for p#O 

and 

v(t) - V(r) = 1 
47r2r2 

for p=O 

(3.19b) 

In view of the O(4) symmetry of Eq. (3.18) we can expand the solutions $(r) in 

terms of four-dimensional spherical harmonics HLQm which we write 

where 

H~m(?h 0, @) = ALeFin qGQ C~>(cos $) YQm(e, $) (3.20) 

lAu12= ’ n(L+Q+ l)! 22Q+1 (L+l)(L-Q)! (Q!)2 , 

ImlLQ, L , 

so that 

IT 2 7r 27r 

I- 
sin Ic, d$ 

/ 
sin 0 d0 

I 
d$ lH12=1 . 

0 0 0 

Separating off the angular part of the wave function, 27 we are left with the 

equation for the four-dimensional radial wave function $JL(r), i. e. , 

22 12 +g2V(r)+f r -xP -m2 
1 

GL(r) = 0 (3.21) 
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where physically +if = If I, i. e. , f is pure imaginary. For simplicity we 

consider explicitly again only the case ,u=O in (3.19). Thus, setting - 
2 . 

L’(L’+2) = L(Lt2) - 3 , 
47r 

we may rewrite Eq. (3.21) 

d2 + 3 d L’(L’+2) 
2 rdr- r2 

-$ p2-m2+f2r2 
1 

#L(r) = 0 * 

(3.22) 

(3.23) 

The regular solution of this equation may be written down from our knowledge 

of the solution (3.10) of Eq. (3.8). Thus, taking into account the different 

coefficient of the first derivative, we have (apart from an overall multiplicative 

constant) 

where 

and 

Z/~(Z) = zL’ em’ l z2 G(a,b;i z2) 

z = [2 if]1’2 r 

(3.24) 

(3.25) 

a=+(L’+2)+ 
m2+l 2 zp 

4if t 
(3.26) 

b = L’+2 

Of course, the Regge trajectories are again determined by the condition of 

normalizability of the bound state wave function, i. e. , by 

az’-n, n=O, 1,2,. . . 

or 

Lf=-2n-2-A m 
( 

2 12 +7P > (3.27) 
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for which the confluent hypergeometric function becomes a Laguerre polynomial. 

Agairr. the Coulomb interaction or, equivalently, the anomalous dimension, leads 

to a moderate distortion of the Toller poles L = an(P2) and”so of the Regge 

parent (m=O) and daughter (m= 1,2,3,. . .) trajectories Q=nnm(P2) = L-m in 

the region of small I. And again the trajectories rise linearly with the square 

of the energy, i. e. , t=P 2 . 

3.3 Form factor for two-body bound states 

Our next objective is to obtain the asymptotic behavior of the form factor 

of the two-body bound state at large momentum transfer. We consider only the 

spinless case and assume that only one particle is charged. In this case the 

charge form factor F2(q2) is the convolution integral of the ingoing and outgoing 

bound state wave functions in momentum space, 28 i. e. , 

F2(s2) = / d4k $W, ;&-q) 
where 

(3.28) 

(3.29) ( k2+IP2+m2 z G(k-k’) F(k’) d4kl 

1 and y(k) = - -iy 4 

@7d4 
/ ~(0 e d [ (and correspondingly for T(k)). We observe 

that Eq. (3128) is simply the Fourier transform of the product of the configura- 

tion space representations of the respective wave functions, i. e. , 

F2(q2) = + / $*E) $48 e+iq* d41 
(27d 

(3.30) 

Since we know the sor’utions q(t) for the models described above, we can cal- 

culate the form factor. We have 
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For simplicity we consider in the following only the ground state of the spin- 

- lesssomposite particle. Thus n=O and L=Q=m=O. Then 

T(k) = c -!- / fi 
LQm (2~)” 

dEj e 
-ik.5 H 

j=l 
,,($9 03 @) @L(r) 

A 00 = 
’ J 

ml4 
r3 dr sin2 $ dzl, sine de d$ - e -& ‘OS + 2jLCo(r) (3.31) 

where 

S, = it4 , r2 = 5 If and k= @ . 
i=l 

Also, in writing down this expression we have chosen the direction of the 

Euclidean vector kp parallel to the 4-axis, so that the angle between kcl and 

tp is $. Performing the angle integrations in (3.31) with the help of the 

relation 

J,,(z) = 
7r ef iz cos 21, sin2~ 

# d+ 

(ne (v++) > 0) 

we obtain 

A 
%M = O” /m r2 k J+W $,=,(r) 

(27r)2 k 0 

Inserting here the solution (3.24) for $L (note that this solution incorporates the 

(3.32) 

(3.33) 

boundary condition of regularity in configuration space), we have 

y(k) = AoO (2if) (= +‘+2 

(2702k o 
dr J,W) e . G a,b;ifr2 
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Since we are considering the ground state for which a= -n= 0, the confluent 

-hyperR;eometric function under the integral is simply 1. Then, using the 

formula .’ 

J O3 ,f-’ & Jvtat) e-&2 = 

0 

we find 

ih = 
A002L'r(L+) . + k2 

(27r)2 (Q2 
; -2if (3.34) 

From (3.22) we have 

= -g2/8 r2 for lg21 << 4*2 (3.35) 

. - In order to ensure the regularity of the bound state wave function at the origin 

in configuration space we must choose the upper sign in (3.35) (implying L’=O 

for g2=O). The large k2 asymptotic behavior of the wave function now follows 

from that of the confluent hypergeometric function. We quote the latter 

explicitly in order to exhibit the source of the different asymptotic behavior of 

$1 1 z in the space-like and timslike regions. Thus 

+(a, b;z) N z ez zawb for Re(z) - +=o 

and 

+(a,b;z) N $$$ (-z)-” 1 + O(i]for Re(z) - -=Q . (3.36) 
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Hence for k2 -++a, (i.e., space-like with the metric we are using) and since 

if = ILi (cf. (3.21)) 

A00 2 
L’ L’+4 

%w = 
r 2 ( ) 

(2~)~ (iQ” r (-s) 

whereas for k2 < 0 (i. e. , time-like) 

a&) c! 
AoO 2L’/2 (-k2)L’/2 e&- 

‘. 

CW2 VI 
2++ L’ 

(3.37a) 

(3.37b) 

Thus in the space-like region of k2, the wave function falls off asymptotically 

like a power, whereas in the timelike region it diverges exponentially. We also 

observe that if we set the Coulomb coupling g (or the anomalous dimension) 

equal to zero, we have (cf. (3.35)) L’=O and the confluent hypergeometric func- 

tion in (3.34) reduces to an exponential. Hence for g - 0: 

(3.38) 

Thus (since if = If I) the wave function now falls off exponentially in the space- 

like region, the diverging behavior in the time-like region remaining unaffected. 

The discussion of the momentum space equations given in the next section will 

verify these findings. 

Finally we consider the form factor itself. It is clear from its definition 

(3.28) that its asymptotic behavior in q2 follows immediately from that of T(q), 

i.e., for q2 - +OO: 

F2(s2) - &I21 
-+I 

(3.39a) 
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and for q2 - -03: 

-h 

F2(q2) - (-q2)L”2 exp [-q2/2if] 

The Coulomb or Yukawa interaction thus serves to ensure the (physically 

plausible) asymptotic power falloff of the form factor in the space-like region, 

but not in the time-like region where it diverges exponentially. Of course, this 

power falloff in the space-like region is simply a reflection of the regular 

power behavior of the bound state wave function near the origin in configuration 

space, and this is determined by the Coulomb or Yukawa interaction. However, 

it is not completely trivial to see that this power behavior is not swamped by an 

exponential due to the harmonic gluon interaction. On the other hand, the 

divergent and thus unitarity violating behavior in the time-like region is related 

to the infinite rise of the Regge trajectories. The model shows that this infinite 

rise is unphysical. 

3.4 Relativistic wave equations in momentum space 

The Bethe-Salpeter equation is mostly treated in the momentum space 

representation. Considerable insight into its tractability and into the plausi- 

bility of approximations used in solving it is often gained by comparing it with 

its counterpart when one of the particles has infinite mass. Thus here (also 

in order to make the discussion of the Bethe-Salpeter equation in the next 

section more transparent) we will discuss briefly the equation considered 

above in its momentum space representation together with some related 

problems. 
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We consider Eq. (3.29). The momentum space representation of the 

interaction defined by Eq. (3.19) is 
i 

1 Y(k) =- 
(27r)4 

ZZ $- - f2cf64(Q 7r4c2 
Equation (3.29) may then be written 

(k2+$P2+m2) $k) =I 82 
(27r) 4 (k-k’) 2 

- f2D; 64(k-k’) 
I 

I+‘) d4k’ 

or 

( k2+$P2+m2 > 
$1 = -f2@“~) + J& / $cX’) d4k’ 

Gw4 (k-k’) 2 

Using the relation 29 

2 1 
Ok @k’j2 = 

-4n2 d4(k-k’) 

(3.40) 

(3.41) 

(3.42) 

we can rewrite the equation as 

c]E(k2+aP2+m2 
’ I 

z(k) = - -$ + f2 g q E) F(k) (3.43) 

We investigate the equation a little further in the form (3.41). After the Wick 

rotation the equation possesses O(4) symmetry in the four-dimensional 

Euclidean space of k 
P’ 

The solutions therefore transform like the four- 

dimensional spherical harmonics H ,m($, 0, $) which have been defined earlier. 

Thus, setting 

T(k) = x ~L(W HLQm($, 8, 4) 
Lam 
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and using the relations 

-h 1 Og 1 -= 
c ( (k-k32 L=o 

CL ,&j’$,)RLW. lk’l) , 

lk?’ L 
RL(lkl, lk’l) = l’k’l 

Ik’ IW2 
B(lk’l-lkl) 1-. 

lklL+2 
9(lkl-lk’l) 

I 
(3.44) 

we obtain 

( k2+$P2+m2)&Jlkl) = -f2DL(lkl)FL(lkl) 

Ikl, Ik’l)k’3dlr’ FL(lk’l) 

(3-45) 

. - 
where 

D,(lkl)= 

Using the relation 

‘-+$q (lk13&-) -71 

DL(lkl) R,(lkl, lk’l) = _ 2(L+1) 6(lk31-lkTl) 
lkl 

we obtain the radia form of Eq. (3.43): 

= -f2 D;(lkl)$L(lkl) 
2 

(3.46) 

(3.47) 

(3.48) 
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We consider Eq. (3.45). Dividing by f2 (the gluon coupling has to be 

large, as pointed out earlier) we may write the equation 

(3.49) 

-@I The solution z,!I~ of this equation with the right hand side zero may be read off 

Eqs. (3.23) to (3.26). Thus 

1;2 
$‘)(lkl) = EL eBT 

L cp > 

where 

a=+2) + 
m2+l 2 zp 1 

4if (3.51) 

The eigenvalues are again given by the condition that the infinite Kummer 

series in (3.50) be broken off after a finite number of terms, i. e., 

2=-n, n=O, 1,2, . . . 

providedz2> 0, i.e., k2 > 0 for if = 1 f I > 0 to ensure normalizability of the 

wave function. We observe that this condition is identical with (3.27) in the 

limit g - 0 (the case under discussion here). We also observe that for 

k2 -. --oo the bound state wave function gL(k) diverges exponentially as seen 

in the preceding section. The next step in solving (3.49) is clearly to develop 

perturbation expansions in rising powers of g2/f2 for both the solutions and 

eigenvalues. The zero order solution (3.50) leaves uncompensated on the 
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right hand side of (3.49) the contribution 

(Ikl lk’l) kV3 dk’;(‘)(Ik’I) 
’ L. 

This integral may be evaluated in terms of incomplete gamma functions which 

can be reexpressed in terms of confluent hypergeometric functions. However, 

the next step of calculating the first order perturbation corrections to FE) 

and its eigenvalue are complicated. We therefore do not go into further details 

here. Of course the fourth order differential equation (3.48) has the same 

solution as is easily verified. 

Another example of interest is the potential 

2 
v(E) =5 + f2t2 

4?T 
(3.52) 

which corresponds to a near harmonic interaction. -g2, of course, has the 

meaning of a potential well parameter. The Fourier transform of (3.52) is 

(3.53) 

and the equation describing the relative motion of the quark-antiquark system 

(3.54) 

Thus in this case one obtains a simple equation, the solutions of which can be 

read off Eqs. (3.49) and (3.50). We note in particular that the potential well 

does not lead to an asymptotic power behavior of the electromagnetic form 

factor of the bound state. 
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4. Bethe-Salpeter Models 

4.1 Tractable, approximate form of the Wick-Cutkosky Bethe-Salpeter equation 

F:r the discussion which follows it is useful to have for reference a standard 

- 

equation which is known to be easy to solve. It is well known that the Bethe- 

Salpeter equation of the Wick-Cutkosky model (in which the exchanged scalar 

particle is massless) can be solved explicitly in the ladder approximation, even 

in the case of unequal masses. Explicit perturbation solutions have, for 

instance, been given in Ref. 30. However, for investigating certain principal 

properties of vertex functions it is much more convenient to use simple, but 

approximate forms rather than complicated complete and explicit solutions. 

For this reason we derive first a more tractable approximate form of the Wick- 

Cutkosky Bethe-Salpeter equation, which in standard notation reads 

(4.1) 

where p and q are defined in terms of the momenta pl, p2 of the external scalar 

particles of mass m: p = $@,-p,), q = p1+p2. The equation may be rewritten 

P@,q). [p+$q)2+m2][(p-+q)2+m2] = --& / ‘(‘;pT$pr (4.2) 

where 

Here 

provided 

2 . 

( 
2 2122*l - 

P +m +xq > 
(4.3) 

This approximation is valid if q2 << p2 or p2 << q2. 
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On Wick-rotating Eq. (4.2) we obtain 

4\ 

F(p, q) . ip2+m2+$-q2)2 = --$ / 
F(pt, q) d4pf 

(p-p’)2 : 
(4.4) 

(Euclidean metric. understood). Our approximation‘has also made the equation 

invariant under rotations in the four-dimensional Euclidean space of p. Hence 

expanding l?(p, q) in terms of four-dimensional spherical harmonics, we obtain 

the radial equation in momentum space, i. e. , 

( 
2” 1 

p2+m +hq 
22 ,3 rL(IPI)=o (4.5) 

The close connection between this equation and (3.48) is obvious. In fact, for 

f=O the latter follows from (4.5) if we replace FL by I’L and go to the limit in 

which the mass of one of the external scalar particles is allowed to approach 

infinity together with A/m2 remaining finite and nonzero. The solution of 

Eq. (4.5) is given in terms of the hypergeometric function: 

rL( Ipl) = lplL F G, 1-G; L+2; 
( 

P2 
p2+m2+ iq” ) 

where 

The Regge parent and daughter poles a! ncl, n,p=O, 1,2, . . . are given by 

aw = an,+ 9 01,+1+Z = -n+O(q2) , 

(4.6) 

where on are the Toller poles. (Note that the trajectories (4.7) rise linearly 

with q2 only for lq2 I < 4m2; see Ref. 30. ) These eigenvalues (determined by 

the vanishing of FL in the limit p2 --, m , and so for q2 << p2) are in fact 

identical with those calculated from the exact equation for small difference 
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between the masses. The differential form of Eq. (4.4) follows immediately 

with the help of (3.42): 

0: Y(p,q) (p2+m2-I-iq2)2 + S(p,q) = 0 (4.8) 

The radial part of this equation is, of course, (4.5). 

In the following it is also useful to have for comparison the configuration 

space equations obtained by Fourier transformation of the above. We have 

i 
212 22- 

7Q +H q +m 1 l-t<) = h m> 
t2 

(4.9) 

where X=g2/4n2 in our earlier notation and F(p, q) = 2 / ?([) emip5 d4[. 
Gw4 

Expanding the solutions of (4.9) in terms of four-dimensional spherical har- 

monics one obtains the radial equation 

( 2 l DIpm -p ‘)” GL(r) = h 
r2 $L@) (4.10) 

In the limit of infinite mass of one of the external particles (as considered 

earlier) the kinetic energy represented by the operator DL(r) may be considered 

to be negligible compared to its mass, and so the fourth order differential equa- 

tion reduces to a second order differential equation. It is easy to convince 

oneself that the extreme simplicity of the equations of the Wick-Cutkosky model 

in momentum space is due to the relation (3.42) which says that the Wick- 

Cutkosky potential is the Green’s function of the D’Alembertian. 

4.2 Interaction kernels 

We have seen that the three-dimensional linear potential suggests the gluon 

propagator (1/k2)2. The propagator corresponding to the three-dimensional 

harmonic potential does not follow from a similar simple reasoning. It is 

therefore suggestive to consider four-dimensional generalizations which simulate 
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rising three-dimensional potentials, e.g. , in the approximation in which 

retar$ation effects are neglected. Alternatively one may consider classes of 

four-dimensional Euclidean potentials which can then berelated to the problems 

of quark confinement and rising trajectories. This is the approach we shall 

follow here. 

Now, in finding the momentum space representation of the four-dimensional 

linear or harmonic gluon interaction, one is immediately confronted with the 

fact that the four-dimensional Euclidean Fourier transform of r or r2 does not 

exist. It is therefore necessary to use a method of infrared regularization, or 

the well known artifice of differentiation with respect to a parameter which (if 

permissible and desired) is allowed to approach zero at the end of the integration 

or, in some cases, the trick of absorbing a vanishing mass into an infinitely 

large coupling constant. From the study of the Veneziano and other dual models 

it is well known that infinitely rising linear Regge trajectories (due to potentials 

increasing without bound at infinite separations) do not lead to amplitudes 

satisfying unitarity. Thus the introduction of a mass parameter which has a 

damping effect on the potential and wave functions and which is not strictly zero 

may in fact be desirable in order to restore unitarity (which then would also 

have to imply a bending over of the Regge trajectories at highest energies). 

In the following 1-1 is this mass or reciprocal length parameter which is in 

some way a measure of the finite extent of the quark-confining region of space. 

Of course, if one attributes to p such a significance, then the meaning of the 

limit /J -0 is anything but clear. It may be argued, however, that this difficulty 

is related to the fact that ,u itself (i. e. , the damping) should follow from the 

underlying dynamics of gluon confinement (by vacuum polarization). Unless one 

imposes further constraints there is, of course, in general, an unlimited 
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number of possible p-dependent momentum space representations of the inter- 

actionyhich are such that their Fourier transforms reduce to or behave like 

r or r2 in the limit of vanishing p. This nonuniqueness of the momentum space 

representation is inherent in our phenomenological.approach (as also in the 

analogous work Bender et al. 6), which does not include an equivalent and 

overall selfconsistent treatment of the gluon wave equations together with the 

corresponding problem of gluon confinement. Such an overall consistent 

treatment-as, for instance, the field theoretic model discussed by Blahal’- <. 

would lead naturally to a damping of the (e.g. ) three-dimensional linear 

potential at large distances due to important vacuum polarization effects (i. e. , 

gluon propagator selfenergy insertions) which result in a power-like asymptotic 

decrease of the potential thereby avoiding a violation of unitarity. 

In Table I we list several interaction kernels g2UP(r) together with their 

four-dimensional Euclidean Fourier transforms g2FUP(r) defined by 

1 FU&r) = - 
(W4 

J d4t . e 

1 * 2 =- 
/ 47r2k 0 

r dr JIW Up@) (4. 11) 

( hered4[= fi’yi 
i=l ) 

where we have used Eq. (3.32). For orientation purposes 

we include in the table also the well known case of the Yukawa potential 

(exchange of spinless mesons). 

For p@?) positive and nonzero each of the kernels given in Table I has a 
l/2 

decreasing behavior for r - 0~) ( recall K,(x) N (6) eBx for x - +a, . 1 The 

conditions of validity stated in the table are those which result from the inte- 

gration; in several cases they may be relaxed to allow the limit p - 0 to be 
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taken. The results in the table allow the following observations. Constructing 

potentials along the lines suggested by the well known case of the Yukawa 

potential, we see that the linear potential g) (i. e. , linear for p - 0) has a most 

unpleasant momentum space representation, whereas the Fourier transform of 

the harmonic potential f) (i.e. , harmonic for p - 0) looks surprizingly simple 

(our expression has the same form as that quoted by Sundaresan and Watson 
31 ). 

The propagator ( l/k2)4 implies, of course, a strong infrared divergence which 

is made worse by a multiplicative factor l/p2 in the configuration space 

potential which cannot be absorbed in the coupling constant. Various forms of 

potentials which are constant in the limit ~1 - 0 are given by b), again 

accompanied by factors of /J. The potentials c) , d) and e) are included because 

they lead to power-behaved interactions when differentiated with respect to p 

2 orp . For instance, from d) we have 

with the momentum space representation 

27r2 

15 ZZ- 2 2 7/2 
27r tk) 

(4. 12) 

which is independent of p. 

Quark and gluon confinement models involving the free gluon propagator 

(1/k2)2 have been discussed by several authors.10-12 From h) we see that this 

propagator would arise in the limits p, p1 --L 0. Can we take this limit in the 

configuration space representation? For cl, CL’ # 0 but r - 0 one finds from the 

expansion defining the modified Bessel function K 1 @r) the following behavior 
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of u p, /Jr): 

where y is Euler’s constant, 0.577. This result agrees with that discussed by 

Kiskis l2 for “the case /A=/A’=O. ” We observe that not both p and ~1’ can be zero, 

otherwise the constant in (4.13) would be undefined. We point out here that a 

propagator behaving like Qn r is also obtained in one space-one time dimensional 

quantumelectrodynamics 32 (there, of course, with the normal type of-but 

two-dimensional-propagator) and in Wilson’s four-dimensional lattice gauge 

field theory. 7 However, from entry i) in Table I it can be seen that the 

(singular) logarithmic interaction with infrared cutoff does not correspond to a 

propagator behaving like ( 1/k2) 2. Extreme caution, therefore, seems advisable 

in the use of such an interaction. We observe that the Fourier transform depends 

on the method used to regularize the integral. This is particularly clear for 

the caseunder discussion because the propagator (1/k2)2 may also be extracted 

from entry b) in Table I, which for V= 0 and 

FUP(r) = % . 1 

27r B2+P212 

gives 

U,(r) = KOW9 
p?- ( y +QnF > 

for lprl+ 0 in agreement with Eq. (4.13) provided p’=O. Nonetheless it is 

interesting to observe that the propagator (1/k2)2 may be related to the super- 

position of an attractive and a repulsive Yukawa potential with the same coupling 

(and so looks similar to a bubble in q4 theory). 
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In the literature reference is frequently made to the socalled static limit 

of a relativistic propagator. What is meant is the case k2 = k2 

1 1 so that the off-shell propagator - - - 
k2+,u2 - lf2+p2 

, i.e. I--$$-1 

four-dimensional Minkowskian Fourier transform is the Yukawa potential, i. e. , 

1 
/ 

eikx 4 dk -p 1x1 

(27d4 k2+p2 
e 1 x y- 

- 

or 

1 1 1 -/A 1x1 
L.-E- 
(27r)4 k2+p2 (27r)4 J ,-i&.x d3x e 

47rI5 I 

Thus, in searching for suitable representations of the gluon propagator, we 

could look at the spatial Fourier transform of a power-behaved potential 1x1’ 

and therein replace k2 by k2 so that the propagator is 6 (x0) lx I ’ in the static - 

limit. Then, for integral values of ~20 and p> 0 we have 

’ e 
/ 

-ik+x 3 lxlSe -Cl&l = 
2(s+l)! Im (-f-i llfl+p) s+2 

!z?ip 
--d x 

(27r)3 l&l &2+/J2)s+2 

where we have inserted an exponential in the infrared cutoff p in order to ensure 

the existence of the Fourier integral. 33 Replacing k2 by k2 we have (in con- 

formity with Table I) the gluon propagator 

FU(‘)(r) = ~(s-I-l)! Im (i k2+p)s+2 J- 
P 

(27rj3 ,/i? (k2+p2)s+2 

which in the static limit and for p - 0 corresponds to 6(x0) lx I ’ Particular . 

cases are 

FU(‘)(r) = 4P 
P (27r)3(k2+p2)2 

F&r) = -4&2+3r-L2) 
P (27r)3 (k2+p2)3 
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&2)(r) = 48/4~2-k2) 
P (2?r) 3 (k2+p2)4 

FU(3)(r) = 48 (k4-lok2p2 + 5p4) 
CL (27r)3 (k2+p2)5 

(1) We see from FUP (r) that if the potential is to be linear in the static limit, then 

the gluon propagator is (in the limit p - 0) ( 1/k2)2 apart from a multiplicative 

constant (ignoring vacuum polarization effects). We have observed earlier that 

in the four-dimensional Euclidean configuration space the corresponding 

potential behaves like log&r). (Aspects of this case as well as FU(3) have also 
P 

been discussed by Blaha. 10 ) 

In the following we consider in detail the four-dimensional Euclidean 

harmonic interaction given by entry f) in Table I. In order to obtain the corre- 

sponding three-dimensional potential in the static limit, we observe that 

where F3 means Yhree-dimensional Fourier transform. I1 Using now the well- 

known theorem which states that the Fourier transform of a product of two 

functions is the convolution of the Fourier transforms of those functions, we 

find that for p -0 but still +O 

F3 
a b 2 

=-+- 

P4 P2 
x +o@) 

where a and b are numbers. Of course, this expression is still to be multiplied 

by a coupling constant g2. The potential is meaningful if g”/p4 = f2 is finite. It 

behaves like a constant for 1x1 - & having 0 < a! < 1, and like Ix I 242’o4 (apart 
CL 
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from an additive constant) for 1x1~ -& having 1 < CI! < 03. Thus, if 1x1 is - 
P 

suffitintly large in relation to l/p the static potential is again z2; for smaller 

values of Ix I it behaves like a lower power of Ix I or even like a constant - 

(corresponding to a zero binding force). 

4.3 Bethe-Salpeter models 

From the table of phenomenological gluon interaction kernels discussed 

above it appears that one of the simpler candidates to deal with is 

U&r) = r2@r) B,&r) near the limit 1-1 - 0. In order to ensure that both, its 

momentum space and configuration space representations, are physically 

meaningful it will be essential to assume that p is small but nonzero, thereby 

providing also the otherwise essential infrared cutoff. Further, the product 

of p2 and the quark-gluon coupling must be assumed to be finite, but nonzero; 

in fact, in the following it turns out that this coupling will again have to be 
. - 

large. 

The momentum space representation of the Bethe-Salpeter equation is in 

standard notation (Euclidean metric understood) 

or 

[(paq)2+m2][p-+q)2+m~ hp, 4) = / +P’) I%‘, s) d4p’ (4.14) 

where 

is the Fourier transform of the amplitude 

< 0 IT(&) q(O)) 1 $q> , 

and v” is the interaction kernel. 
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In keeping with the motivation of our investigation we assume that v” consists 
- 

of @sum of a gluon and a massless scalar exchange interaction. We assume 

therefore that y(p) is given by (3.40)) i. e. , 

Y(p) = 82 - f2@ $@). 
(2Tj4P2 P 

(4.15) 

In terms of the approximation discussed previously the Bethe-Salpeter equation 

can be written 

2F(p,q) 
2 - JpI 

= -f2tipQp,q) + 5 J r(p’,q) d2 (4.16) 
(274 (P-P’) 

(Euclidean metric and infrared cutoff understood). In writing down (4.15) we 

have again made use of the fact that the (four-dimensional, “spherically 

symmetric”) harmonic gluon interaction can be simulated by the action of the 

D*&embertian on the four-dimensional delta function, i. e. , we have 

r2 = r2@r) K1@-) for /A- 0 

and 

= -02 6t4)(k) 
k 

Using (3.42), this becomes (for p small but nonzero) 

which agrees with the Fourier transform calculated from (4.11) (see entry f) 

in Table I). 

We now observe the close analogy between Eqs. (4.16) and (3.41). In 

solving (4.16) we may therefore proceed in a similar way, and we obtain after 
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separating off the angular dependence the following equation for the radial wave 

functisn rL( I p I ) in momentum space 

DL( Ip I) (p2+&2+m2)2 r”,(lpl) = -f2D;(lpl)~L(lpl) - “-2 “r 
4a2 L 

(Ipl) 

(4.17) 

The corresponding radial equation in configuration space is 

( DLtr) -m 2-$i2)2 $LtrJ =(&+ f2r2) zcILW (4.18) 

. - 

(Note that here the dimensions of g and f are different from those in Section 3.) 

In general, when both f and g are nonzero, these equations are not easy to 

solve. For this reason we are compelled to consider various approximate 

cases separately which taken together give an understanding of the complete 

solution. We discuss first the eigenvalues, i. e. , Regge trajectories. For 

f=O Eq. (4.17) reduces to the equation of the Wick-Cutkosky model for which 

the solutions are known. On the other hand, for g=O and f#O the equation can be 

written 

i DL(IPI) + 
( p2+$ q2+m2)2 

f2 i 
FL(IPl) = 0 

Setting 

(g=O) 

p,(lPl) = ?L(P)/P3’2 , L’=L+i , 

Eq. (4.19) can be rewritten 

J- _ L’(L’+l) ~ p2+m$+Zq ( 
2 122 

) 

dp2 p2 
.rLW = 0 

(4.19) 

(4.20) 
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As in Section 2 we can now use the WKB method for an approximate calculation 

of ths Regge trajectories. For t = -q2 > 4m2 (and beyond by analytic continua- 

tion) one finds the Toller poles i 

- 

- 4 L = -2n - 2 (+) 3nf 
I( - 

$ q2+m2 )}3’2.+ $2) 

(For the relation to Regge poles, see Section 3.2. ) We observe that the larger 

number of dimensions compared to previous cases has no effect on the intercept 

term. Also, L is real in the time-like (i.e., resonance) region q2+4m2 < 0 

iff2> . But the fully relativistic treatment makes the trajectory rise more 

steeply with energy for f < 0 and in the region of validity of the WKB approxi- 

mation which is where n is large. 

In order to obtain an estimate of the Regge trajectories when neither g nor 

f is zero, we use yet another modified WEB approximation but applied to the 

configuration space equation (4.18). We argue that for fixed values of the 

coupling constants g and f the maximum value of L(L+2) and so of L is obtained 

when the radial kinetic term 

in Eq. (4.18) becomes minimal. This may be justified as follows for the non- 

singular Bethe-Salpeter potentials considered here. The eigenvalue problem 

%$=X2$ (with + square integrable) is equivalent to that of 

Further, the eigenvalues of the operator d2/dr2 are bounded from below by 

zero. Thus it is possible to expand the solutions of Eq. (4.18) in the neighbor- 

hood of that value of r for which X(r) becomes minimal. Then (see below) 
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r3N 0 (L&+2)) and the effect of the term 3/4 r2 is of 0 v% 
( 1 

. (Note that 

-4 L 
interactions behaving like r are of the same order as the kinetic part whereas 

in the case of more singular interactions the kinetic part-dominates in the 

region of large r. ) Thus, ignoring the radial kinetic term, the four-dimensional 

angular momentum L for a classical circular orbit of radius r is given by 

( -L!A$3-m2-+q2)2 = 5 +f2r2 (4.22) 

This equation <defines L or N = L(L+2) as a function of r. Next, we find that 

value of r, say ro, for which N(r) is a maximum. We have 

N(r) =r2[(tzr2+-$&y -(m2++q2)) 

for lg2 I < 14n2f2r4 I. Setting dN/dr = 0 we obtain the equation 

6f2rt - 4f (m2+$ q”) ri = -$ (4.23) 

This equation may be solved for r. by first ignoring the term on the right hand 

side. Then, since we are looking for a maximum and f < 0, m2+i q2 < 0 (as 

in the previous case) 

m2+l 2 
roEi. f Tq . 

Adding a correction term E to this expression, substituting r. back into 

Eq. (4.23) and calculating e by ignoring terms which are nonlinear in ‘E, we 

find 

2 m2 +$ q2 9 r N-* P. g2f 
0 3 f + 64n2 
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Finally we calculate L from the relation 

c, L2 N N(ro) 

and find for the lowest (n=O) eigenvalue 

2 4 L =+= (4.24) 

If we approximate 4x27= 108 by 97r2 (implying an error of 18% in the coefficient), 

then the first term in Eq. (4.24) agrees with the corresponding term in Eq. 
L 

(4.21). The expression (4.24) has the structure expected for large values of f2 

and small values of g2. Again we observe that the harmonic gluon interaction 

with large quark-gluon coupling constant leads to the rising trajectory. 

Our next step is to obtain the large p2 asymptotic behavior of the mo- 

mentum space representation of the wave function since this determines the 

corresponding asymptotic behavior of the form factor. We consider first the 

case g=O, i.e., pure harmonic gluon interaction. Changing the variable in 

Eq . (4.19) to x=p2, this equation can be written 

1 FL(lPl) = - 
2f2 i I 1+& FL(lPl) 

(4.25) 
13 3 

For Ix I >> It q’+m’ I and co > If 1 >> 1, the terms on the right hand side are 

small compared to the last term on the left hand side. The large x asymptotic 

behavior of FL is therefore 

FL(IPI) = + z 
3/2 

x1 2 +L(L+2)/:3f ( ) 
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where ZV is a solution of Bessel’s equation. The particular choice of Z to be v 

- madeGs dictated by the condition of regularity of the bound state wave function, 

i.e., 

= &I exJ? i 
+i ( 2 3/2 

p3f) I (4.26) 

for p2 -c *m and f < 0, where c is a (complex) constant. Thus, in the time-like 

region where p2 < 0, J-- p2 = +i I J- p2 I , the wave function PL( Ip I) falls off 

exponentially whereas in the space-like region it falls off like l/(p 2 5/4 with ) 

a superimposed oscillatory behavior. Since the vertex function I?,( ip I) is 

related to the wave function yL( Ip I) by 

r,( Ip I) = (p2+m2++ q2)2 P,( Ip I) , 

we see that in the time-like region the vertex function falls off exponentially, 

2 II/4 but in the space-like region it diverges like (p ) . 

We now consider the case gf0. Then it is clear from Eq. (4.18) that the 

behavior of the wave function GL(r) near r=O (and so of rL( Ip I) near p2 - -co) 

is determined by the singular Coulomb or Yukawa interaction. From a 

detailed study of the Wick-Cutkosky model 30 we know that this’interaction leads 

to a power behaved asymptotic behavior of the vertex function, i. e. , 

Thus, in the presence of both interactions one expects the ground state vertex 

function to behave like 0 in the region p2 -) --03 but to diverge in the 

region p2 - + od . 
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The form factor F(q2) of the Bethe-Salpeter bound state 34 is given by the 

coefficdent of (P+~P)~ in the current matrix element 

i 
<P+ql jpIP> = 2i 

/ d4p r,(lpl) 
1 

( > 
tp+2P+q)p - 

p++P 2+m2 

* tp-+ ;12,z - (& p;qJ2+m2 rL(lp+q’2 I) t4* 27) 

It is clear that if lYL( lpl) N O(p2)-’ for p2 - -00, then F(q2) N O(q2)-l-’ for 

q2 - -00, Thus in our case F(q2) = O(qB4) for q2 -c --oo whereas it diverges in 

the space-like region. 
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5. Conclusion 

In&he foregoing we investigated various aspects of phenomenological models 

exhibiting quark confinement, rising Regge trajectories and asymptotic power 

decrease of form factors. In view of some successes of the nonrelativistic 

quark model, we considered first the nonrelativistic case of infinitely attractive, 

quark-confining potentials and showed how the resulting mass spectrum depends 

on the power of the potential. A power slightly different from two is required in 

order to endow,, the trajectories with physically acceptable analyticily properties 

without destroying appreciably their linear behavior. This case illustrated also 

approximately the properties of semi- or fully relativistic models in the static 

limit, We then considered semirelativistic models for interactions consisting 

of an harmonic-like and a Coulomb- or Yukawa-like part and showed that both 

parts are necessary in order to ensure a linear rise of the trajectories as well 

as a power decrease of bound state form factors in the space-like region. Finally 

we considered the fully relativistic (though suitably approximated) Bethe-Salpeter 

equation for appropriately generalized interaction kernels. The trajectories 

were found to rise more steeply, and the power decrease of form factors was 

found to occur in the time-like region. Thus these semirelativistic and rela- 

tivistic models possess the defect of violation of unitarity in either the time-like 

or the space-like region (a well known property of (unmodified) Veneziano 

models possessing linear trajectories). A characteristic feature of all models 

is that the rising trajebtories require strong quark-gluon coupling. 

In Section 4 we considered also classes of quark-confining interactions, i. e. , 

phenomenological gluon exchange propagators, particularly the dipole propagator, 

and investigated their behavior in the four-dimensional Euclidean space and in 

the socalled static limit. Strong infrared divergences are evident. E. g. , 
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if we calculated the quark self-energy in perturbation theory, we would find a 

resultihich diverges as the infrared cutoff /J is allowed to approach zero (in 

contrast to quantum electrodynamics where the result depends on an ultraviolet 

cutoff). 

For simplicity we considered throughout only the equations of motion of the 

quarks with effective gluon sources. An overall self consistent treatment would 

have required the simultaneous consideration of appropriate gluon equations: 

also, we did not deal with such problems as acausality, indefinite metric in the 

Hilbert space of state vectors, and the violation of spectral conditions which are 

known to arise in Abelian quark-confining gluon field theories of the type con- 

sidered here (see, e.g., Refs. 8,10,12 where these problems are alluded to 

or discussed). It is possible that few or none of these difficulties are encountered 

in the context of pure Yang-Mills theories which, moreover, are known to be 

characterized by long range forces screened by vacuum polarization (see, e.g. , 

the last paper mentioned in Ref. 32). However, in such theories explicit calcula- 

tions are formidable. 
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TABLE I 

h Four-dimensional Euclidean Fourier transforms FUp(r) 

of interaction kernels Up(r) . 
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