
SLAC-PUB-15 18 
January 19 75 
(T/E) 

&PRACTICAL RELATIVISTIC THEORY. OF FEW-BODY SCATTERING* 

D. D. Brayshawf, $ 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

ABSTRACT 

A natural and unambiguous generalization of the boundary condi- 

tion formalism previously proposed by this author is shown to result 

in a practical set of equations for describing relativistic three- 

particle scattering. These equations are exactly unitary, and can be 

readily generalized to the n-body case. Applied to the O- and l- 

states of the 37r system (I = 0, 1, 2), they yield the 7r and w as natural 

consequences of the 7r-7~ s- and p-wave phases ; there are no spurious 

predictions . The equations appear ideal for relativistic data analysis, 

and have also been applied to n-d scattering and the nuclear force 

problem. 
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I. INTRODUCTION 

Qne of the most striking unsolved problems of elementary particle physics 

is the surprisingly rich spectrum of meson and baryon resonances. Although 

unitary symmetry and Regge theory have been very useful concepts in classify- 

ing these “particles”, there is no theory capable of providing a truly fundamen- 

tal interpretation. In this circumstance, it is natural to ask whether a less 

ambitious approach incorporating a certain amount of empirical information 

might not prove highly useful. In particular, is there some set of input from 

which one can predict at least a subset of the hadron spectroscopy? An obvious 

choice for such input would be the observed one- and two-particle properties of 

those particles deemed “elementary” for this purpose (e. g. , particles such as 

N, 7r which are stable under the strong interaction). That is, the input would 

consist of the masses and pairwise scattering data of the “elementary” parti- 

cles. Of course, this program is not a new concept; for example, it was sug- 

gested by Chew in 1960 that the CJ might exist as a natural consequence of the 

P-l The natural impediment has always been the absence of a calculable rela- 

tivistic n-body scattering theory (nz 3). 

The obvious analogy is to nuclear physics, in which interactions con- 

structed empirically to produce N-N phase-shifts and the deuteron are employed 

to calculate the properties of nuclei. In this case, for nuclei light enough for 

this program to be practicable, the results have been very impressive. Pre- 

vious attempts to construct relativistic scattering theories have leaned heavily 

on the highly successful procedures employed in this nonrelativistic problem. 

Thus, in analogy to the rigorous equations developed by Faddeev, 2 a number of 

authors have proposed covariant theories for three-body scattering. 3 The 

basic ingredients of these treatments include (1) summing the two-particle 
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graphs into (off-shell) two-body scattering amplitudes, (2) solving the discon- 

nectedness problem according to the prescription of Faddeev, (3) introducing a 4 

separable approximation to the two-body amplitudes, and (4) eliminating the 

relative energies as variables via the technique of .Blankenbecler and Sugar. 4 

The result of this procedure is a set of covariant one-variable integral equa- 

tions which can easily be solved on modern computers; solutions exactly satisfy 

(elastic) three-body unitarity. 

However, despite the profusion of potentially interesting applications, the 

history of these equations has been short and inglorious. In large part this can 

be traced to the very disappointing results reported by Basdevant and Kreps 

for the 37r system. 5 They searched for 37r resonances (realizable in such for- 

malisms as actual poles in the calculated amplitudes) in all isospin states with 

JL 2. Unfortunately, the theory was unable to produce the w, Al, or A2, pre- 

dicting instead a considerable number of spurious “resonances” in total con- 

flit t with experiment. Subsequent work by Mennessier , Pasquier , and 

Pasquier demonstrated that these results were to some extent dependent on the 

choice of a rather unrealistic p form factor, but they reported similar qualita- 

tive features. 6 Thus, although they found a specific choice of form factor 

(also unrealistic) which produced an “w” of mass 850 MeV, the continued pro- 

liferation of spurious levels does not inspire much confidence in this predic- 

tion. Moreover, if one seeks to establish a natural connection between the p 
and the w, a result depending crucially on the choice of an (unknown) form fac- 

tor is not very informative. If the theory is to be predictive in the sense that 

the nonrelativis tic theory is predictive , the results must be stable given any 

reasonable guess as to the off-shell characteristics. 
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Thus, with the exception of a covariant treatment of NT scattering as an 

N71-n system by Aaron, Amado and Young, 3 which succeeded in producing a 
-h 

(3,3) resonance (but no other interesting structure), the program outlined 

above has not proved viable. However, as shall be demonstrated below, equa- 

tions constructed to imitate potential theory (a Hamiltonian approach) are not 

the only alternative one can employ, A completely dis tinc‘t set of equations 

will be presented which follow in a natural way from simple physical consider- 

ations, and which can be applied in order to realize the same goals. In par- 

, - 

titular, calculations in the 37~ system result in a plausible w while producing 

no spurious effects. - 

The outline of this paper is as follows. Section II is devoted to a detailed 

exposition of our underlying philosophy and its realization for a system of 

three nonrelativistic particles, In Sec. III we develop the appropriate relativ- 

is tic generalization, which is straightforward. Again a one-variable integral 

equation is obtained, but in this approach we are able to avoid making the more 

radical assumptions noted above. In particular, it is unnecessary to assume 

separable amplitudes or “dominance” by the resonance pole; this is crucial in 

channels such as the T-T s-waves. The relation of the amplitudes generated by 

this formalism to the physical amplitudes is discussed in Sec. IV, which also 

deals with three -body unitarily . Applications to the 37r system are presented 

in Sec. V, and a general discussion of our results and their implications is 

contained in Sec. VI. i 

In view of the length of this paper, a balance had to be struck between pre- 

senting a special case of our equations having limited utility vs giving compli- 

cated (and totally opaque) formulas for the general problem. The solution a- 

dopted was to write the general equations in operator form, which are 
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presented in the Appendix. This provides all the information necessary to em- 

ploy the formalism, but leaves the rather standard algebraic manipulations to 

the redder . Since one will typically be concerned with relatively simple spe- 

cial cases this is not as callous as it sounds, and more specifics will be pro- 

vided in subsequent articles. In any event, the quite similar equations devel- 

oped for the nonrelativistic problem are also available for’ comparison. ‘I 
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11. BOUNDARY-CONDITION APPROACH 

Ifzne takes the one- and two-particle properties as empirical input, it is 

clear that a three-body system plays a pivotal role in the type of program dis- 

cussed above; it is the first level at which one hopes to make predictions. This 

is also the level at which one is first confronted with the major technical deci- 

sion: how is one to build in the n < 3 properties as constraints on n 3 3 systems? 

The classic response of nuclear physics to this question is the introduction of a 

potential, with parameters suitably adjusted to reproduce observables from 

solutions of the two-body Schrbdinger equation. The prescription is then to use 

this potential in the n-body Schrijdinger equation, with the implicit hope that 

specific three- and higher-body effects are a small perturbation. That this 

works remarkably well is shown by the results of extensive trinucleon calcula- 

tions during the past decade. 

However, as this author has recently demonstrated, the potential prescrip- 

tion is not only nonunique, but is unnecessary in order to achieve these results.8 

Thus, the success of these calculations does not provide a posteriori justifica- - 

tion of potential theory so much as it manifests the nontrivial fashion in which 

two-particle observables constrain a three-body system. The choice of a 

mechanism for building in these constraints is thus to some extent open, and 

one may exercise the resulting freedom in order to achieve certain desired 

properties. In the context of the relativistic three-body problem this is indeed 

fortunate, in view of the previously noted difficulties associated with the Hamil- 

tonian approach. As we shall demonstrate below, the boundary-condition (BC) 

formalism developed by this author has an unambiguous relativistic generaliza- 

tion, and appears ideally suited for this purpose. 



-7- 

The philosophy of this approach can be illustrated by first examining a non- 

relativistic problem. Consider two spinless particles separated by a distance 

x, and described by a wave function $I’ (2 ) in the region x > a. Assuming that 

we are dealing with a particular partial-wave, it is convenient to write z/ l (x) = 

# ext(x) + II, Pot 
e Q (x), where 

$Jext(x) = j (ox) + ie 
i6 

Q 

Q Q 
sin 6p hQ(K x), 

Here K is the c. m. momentum, and ta is the two-particle t-matrix, defined by 

sin 6, 
tQ(K)=- mK’ , 

r 

For typical meson-theoretic potentials x Q is a real function proportional to exp 

(+x) for large x @ is the mass of the lightest exchanged particle). An interior 

wave function $ ‘(x) may. exist in the region x < a; Q 
its sole effect on the exterior 

solution is via the matching BC 

zz ALnt(K2) . 

int 
One can thus account for the effect of the interior by a suitable AQ , without 

postulating either a wave function description or a short-range potential. This 

point is of particular importance in the relativistic problem, for which a two- 

particle description at arbitrarily small separations is essentially meaningless. 

The essence of the BC approach is to take advantage of the relatively simple 
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exterior representation at the cost of a phenomenological treatment of the inte- 

rior. - 

Introducing the function 

BQ(~)- = Apt xi@,,) - xl,(a,K), (4) 

Eq. (3) can be written as 

u’pext’(a) - Am $yt(a) = BQ(” ) tQ(K ) . (5) 

The content of Eq. (5) is that both interior and exterior effects can be repre- 
r. ext sented as effective BC’s on eQ , the asymptotic form of the wave function. 

Since it is our intention to treat two-particle systems phenomenologically, it is 

sufficient to define 

a BQ’” ) 
$Ot(K2) = em 

NQ(” ) 

r 

hp(K’) = AFt(K2) + $fot(K2) . ; 
(6) 

one can then bring Eq. (5) into the form 

[p/+rt] = AQ(K2) . (7) 
x==a 

ext Given the trivial form of qQ , it is clear that a suitable TL~(K~) can always be 

introduced so as to reproduce the exact experimental phase shifts via the solu- 

tion of Eq. (7). The fact that the BC may be applied at a radius for which $yt 

has no direct physical interpretation is essentially irrelevant, since our pur- 

pose is merely to insure the correct asymptotic behavior. 

Taken together, IQ and the radius (a) provide an alternative representation 

of the two-particle scattering data. An interesting empirical fact is that for 

many systems there exists a particular value of the radius for which h Q appears 

to approach a constant for large K.’ In the context of potential theory one can 
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easily verify that this cannot come about via Pot A Q , which falls to zero; it is a 

-’ - physic2 property of the interior. The conventional explanation of this phenom- 

enon is that the huge interaction energy in the core is sufficient to swamp even 

very large K , but it may also come about as a natural consequence of an under- 

lying composite structure (e. g. , quarks), as has recently been pointed out by 
10 

this author. In any event, it is natural to choose the BC radius singled out in 

this fashion. The 

structure; it must 

We shall thus 

derivative function $(K’) then has a particularly simple 

be a meromorphic function of K’ (real for real K~). 

take 

(8) 

with the parameters adjusted to fit the two-particle data. In practice, one or 

two terms in the sum are usually sufficient. 

defines a particular analytic continuation of 

follow from Eq. (7): 

It is important to note that Eq. (8) 

tf(K ) via the explicit formulas which 

N&K ) = (a $ - Q) j, (aK ) + aK jQ+l@K 1 2 

Df(~) = immr (a$ - 1) hp(aK ) + aK h Q+llaK )] * 

(9) 

Therefore, although it is essential to build poles into ta below threshold (K 2 < 0) 

at the physical energies of bound states, the residues at these poles need not be 

identical with those generated in potential theory (e. g. , via the analytic continu- 

ation defined by the Lippmann-Schwinger equation). In addition, of course, 

there will be no left-hand cuts. Naturally, so long as we are concerned only 

with the two-particle scattering state these considerations are academic, but 

they are essential in the three-body treatment to follow. Otherwise, one could 

easily show that the resulting three-particle amplitude would violate unitarity. 



- 10 - 

In the above discussion we have made extensive use of the asymptotic rep- 

resent$ion, #f ext @I, and it is useful for the subsequent development to restate 

this in more formal terms. We therefore denote an incoming (plane-wave) 

state of angular-momentum lo, c. m. momentum .K j by I I$ > = 110~ >, 

<lx I@ = 6@ (2/a)’ i’j,(Kx) .i 
0 

(10) 

In this case we can define a free Hamiltonian Ho = - Vx2/2mr; clearly 

(Ho - E)l$> =p if E =K2/2mr. Presumably, there is a total Hamiltonian H 

such that (H-E) I z/ > = 0, where I + > denotes the physical two-body scattering 

state. By introducing the (outgoing wave) Green’s functions 

G = (H-E-ie )-I , 

Go = (HO-E-ie) -1 , 

one can formally define t as an operator by the relation 

G = Go - Got Go , 

and write the formal solution 

It follows that 

dpp2 j,(px) < !-p It I c/c= 

p2/2mr-E-i l 1 . 

(12) 

(13) 

(14) 

If the potential is generated by particle exchange, and hence bounded by exp 

(+x), one can evaluate the integral by the method of residues to obtain Eq. (1) 

(up to the previously neglected normalization), providing that one identifies 

t&K) = <~KItI$>. One thus generates the exterior representation by ignoring 

all singularities of <Lp It I $> in performing the p-integration. 
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This procedure is readily extended to (nonrelativis tic) three-particle states 

in the following manner. We denote the position of particle Q! by 7: (a!=1,2,3), 

and define the reduced masses piI -1 =m +m -1 p y’, and Mil = maI + (“p+ my) , 

CY $ p f y. It is useful to introduce the vectors 1 

(15) 

ra =Fa - (mP “& + my t)/ (mP + my) 9 
t. 

and the corresponding momenta 

s= cc 
P p , 

,FD =pa(i$/m, - cy /myI , (16) 
cl! = Ma r- 

1 $/ma - (iF +Cy)/(m P P +my) 1 , 
where < is the momentum of particle p, and (spy) are cyclic permutations of 

P 
(123). It follows that 

(17) 

In addition to the total momentum F; any two of the six momenta zo, co 

are linearly independent and serve to completely characterize the three-body 

state. The free Hamiltonian in the c. m. frame is now 

Ho= a! - vx2 /2pa - Vy2 /2Ma , (18) 
CY 

and an incoming plane-wave I+ > satisfies (Ho - W) I + > = 0, where W is the 

total (kinetic) energy. A three-particle scattering state can be written formally 

as 

l9> = (1 -GtiT) IQ> , (19) 
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where Go = (Ho -W - ie) -1 , and T is the three-body t-matrix. 

_ InAew of the relation of T to the total Green’s function, it is clear that the 

formal nature of Eq. (19) masks a considerable complexity. In particular, con- 

sistency with the two-particle description requires that for each a! = (1,2,3), 

(20) 

where I $> describes the two-body scattering of p and y, and I@ represents ~11 

as a noninteracting spectator. In what follows we shall refer to this as the 

quasi-two-body limit. It was in order to simplify this situation that Faddeev in- 

troduced the channel decomposition, T = C To; one can then write 
o! 

IQ> = Iit> + c I#@, , 
CY 

(21) 
1p> = -GoTa I+> . . 

- 
In contrast to If >, the channel state I+ *> need only satisfy Eq. (20) for y, - 

03, inasmuch as 

(22) 

in that limit. 

It is convenient at this point to make an angular momentum decomposition. 

Assuming an initial state of definite momenta 6 c ), we may couple ToGo ) 

and z’,(co ) to form the state IQ, > = lLMQoh@ 
ao ao 0 
q > . Correspondingly, we 

0 ao ao 
expand 

where 

YLmh (k;, = c C(AQL; mM-m) YAm6) YE Msm(‘)- (24) 
m 
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For practical applications, the following alternative expression for YLMeh 

- turns o$ to be quite useful. Let 8 denote an arbitrary direction in the To?& 

plane characterized by the Euler angles (o/I y), and let Bz be defined by cos 13~ 
A h 

= z. n for any vector z Then 11 

~,~&i,$) = c C(ML;w) DE m; (MY) YAm(6yJ) YpcltBx'o)- (25) 
w , 

The three-particle generalization of Eq. (14) in this basis follows immedi- 

ately from Eq. (21). We obtain 

#&A(xa ,Y,) = - g +-+I 
co 

dw2jA(sy, 1 
dpp2j,(px,)4M.Qhpq ITa I@> 

p2/2pa + q2/2Ma - W - ie 
> (26) 

where we have dropped indices on the dummy variables, (Pago) - (pq). De- 

fining the on-shell value of p, to be 
I 

i 
K 

a = 2/-Q-q;/2MLy)] 
c 

, (27) 

with the square-root branch cut chosen such that b-n K~ 3 0, the exterior rep- 

resentation again follows from ignoring the p, -singularities of the To matrix 

element. We thus arrive at the expression 

(28) 

where we have defined 

TtnA(qa) = < LMf!hK aqa, IT,! l@ > . (29) 

Due to the exponential damping provided by h&K oxa) when K Q! is (positive) 

imaginary, it is clear that the only waves which can propagate to large xo arise 

from q, such that K a! is real; i. e. , q2 cl! d 2MoW. For such qa, T&(qa) is 

precisely the on-shell (in the nonrelativistic sense) channel amplitude. 
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Comparing Eqs. (1) and (28) , we see that the asymptotic form is always spec- 

ified precisely by appropriate matrix elements of the t-operator, which is no 

surprise. 

We now seek a set of BC’s which, in analogy -to. the two-body problem, will 

enable us to determine the To Uh (and hence all scattering observables). It is at 

this point that the constraints arising from our assumed knowledge of two- 

particle properties enter the picture. Recalling the quasi-two-body limit of Eq. 

(20) , we have immediately that, if @ :. ext(z-- ,Q 

lim 
aX 

= ha,(K;2) , (30) 
Y, -O” CY xcYa cl! 

0 where K~ is the value of p, in the incoming state. Here ha, is the same 

function defined in Eq. (16) with a channel index appended. To make this result 

more transparent, we note that if a! is regarded as the entrance channel @=A!,), 

where Ma! arises from multiple scattering terms. In the large y limit the Q! 

-(I@, 
) 

term dominates, producing the behavior noted in Eq. (20). 
0 

We thus deduce that any BC of the form 

aa 
ext 

a! %A (aa’L!) - haP %A ext (a y ) = FEQA tycl!;W) o!’ o! (32 ) 

will automatically build in the two-particle constraints, provided that FGA 

tends to zero sufficiently rapidly for large y,. With somewhat more effort one 

can show that Fzph(yol;W) a exp (+y,), if v is the mass of the lightest particle 

exchanged in the pairwise interactions. If one also considers the requirements 

of three-body unitarity, it turns out that FtM must have the form 
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F&h a’ (y *W) = c /“dqq2 B;$;, P oi, ,q;W) TLQ,,Jq) 3 (33) 
- #&!‘A 0 

in which BQP * is an arbitrary real-valued function. Together, Eqs. (32) and (33) 

provide a natural generalization of Eq. (5). It should be-apparent that the result 

is an implicit integral equation for the T!&(q); for a discussion of this and 

some fine points associated with the applicability of Eq. (32) we refer the 

reader to BCA. 

In the context of potential theory, the author has recently shown that for a L 

given set of two-particle phase-shifts, a function B (w with the stated properties 

can always be defined so as to reproduce the results of the conventional theory 

(e. g. , the Faddeev equations).12 A specific choice for Boyp is thus equivalent to 

stating the “off-shell” characteristics of the theory. In particular, a model in 

which B @ = 0 corresponds to a picture in which the interaction is compressed 

to the surface of an impenetrable boundary, outside of which the behavior is im- 

mediately asymptotic. This is equivalent to the BC model of Feshbach and 

Lomon applied in the three-particle sector. 
13 If one simultaneously goes to the 

zero range limit (a,! - 0), one obtains the “minimal” three-body equations of 

Amado. 
14 

As Amado points out, equations of this degree of complexity are a ne- 

cessity if one is to achieve an exact solution of the three-body unitarity rela- 

tions. 

. - 

In concluding this section, there are two related aspects of this approach 

which should be stressed. The first is that even for a crude approximation to 

Bayp (say BQyp s 0), we expect to produce reasonable three-body predictions in 

many cases. The reason for this expectation is primarily the short-range na- 

ture of the strong interaction. For systems with n ,) 3, the longest range effect 

is due to single particle exchange involving one of the real scattering particles; 
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this is sandwiched between quasi-two-body scattering dominated by on-shell be- 

- havior.+ Thus, the fact that physical wave functions decay exponentially to their 

asymptotic form rather than switch abruptly at some radius has the character of 

a perturbation. The existence of this effect in the trinucleon system is exempli- 

fied by the equivalent success of simple separable models (or the BC model) in 

fitting the data, as compared to “realistic” models of the nuclear force. 8 

The second point is that a meaningful analysis of three-particle data should 

involve the careful separation of features which are a natural consequence of 

previously known information. Thus, if certain properties of the data require 

the introduction of explicit parameters into B aP in order to achieve a fit, these 

parameters are truly significant in the sense of summarizing the content of new 

information in the experiment. This would be the case, for example, if strong 

three-body forces were present. As was shown in BCA, the BC formalism is 

. - especially efficient for such an analysis. 
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III. RELATIVISTIC GENERALIZATION 

In-contrast to the Faddeev theory, the BC formalism described in the last 

section has a remarkably simple extension to relativistic systems. If we de- 

note the 4-vector displacement of particle a! by ro = (t,,Fo), our principal as- 

sumptions can be stated as follows: 

(1) As a consequence of the short-range nature of the strong interaction, it 

is meaningful to define an exterior region by the requirements (r -r )2 < -a”, , P Y 
a= 

(1,2,3). Once in the exterior particle number is fixed and a wave function de- 

scription is valid. 

(2) Each particle propagates in the exterior according to the appropriate 

free Hamiltonian with its physical mass Jwe deal with “out-states”). For a 

scalar particle we take HQ! = (rnz - Vi)‘; for a spin-4 particle we would use 

HcL! =iG?o f Pmol. If Next > describes the exterior, we thus require 

i $-- l@ext> = Ho IGext> . 
02 

(3) We define the total 4-vector momentum operator P = x(i-& , - i 4u), 
P P 

and require that 

P2 pxt> = s I9 ext , , 

. energy (Js =Crno + W). 
o! 

where s is the square of the c. m 

(35) 

For the purposes of this paper we shall regard these assumptions as physically 

defensible and be concerned only with their consequences. 

One consequence is immediately apparent if we go to a momentum repre- 

sentation in which k a! =ty.g % ) is the 4-momentum of particle a. o1 Up to nu- 

merical factors which we introduce for convenience, we then deduce that the 

relativistic generalization of the three-particle propagator (Go) is the operator 
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So E c30(s), where 

-h <klk2k3 1~~0 Ikikgk~t = ; “f$ - k;’ SJo(s Iklk2k3) , 

2 Cm Z7 ?m&Y$-m~)~(E,) (36) 

So(s Iklk2k3) = P @, 
P2 

. 
-S - ie 

It is clear that (So has an obvious extension to the n-body case. 

Given Go, a suitable exterior representation can be derived as follows. In 

analogy to Eq. (19), we take 

(37) 
<rlr2r3 ia> = 1 

cm 
6 exp (-i ; rp’ ki) . 

The presence of $So as a factor puts S-on the mass-shell, ea! = (rni +xt)’ , 

for which 

<klk2k31:Y-I+> = Ei@-3’) < ;+<a ITI+> . (38) 

Note that Eqs. (15) - (17) remain valid in this context, although the values of the 

various 3-vectors will be different in different Lorentz frames. The outgoing 

exterior wave is then 

exp (-i ; rp. kp) < kIk2k3 IT141 > 

(Ck )2-s-ie ’ 
0 

(39) 

Just as in the nonrelativistic case (and for the same reason) it is useful to 

expand Se c Zo ; 
a 

it is then convenient to evaluate the 3, portion in the (in- 

stantaneous) c. m. of the Py subsystem. In this frame ?” = rncuro/M o! , where 

co is given in terms of the g@ by Eq. (16). We then obtain 



I@ > = mY n-e 

Y Eay 

where we have used ndr;’ = dFdro dco, and defined the quantities 
P p 

(41) 

corresponding to the single-particle energies and the invariant momentum- 

squared as evaluated in this frame (note that To, co are only 3-vectors, so we 

can continue to use p,, qa! for their magnitudes with no ambiguity). The nota- 

tion <z < ITa IQ, > refers to the operator T defined in Eq. (38) as evaluated 
o! o!Q 

in the Py c. m. frame; in that frame it is clearly a function of the two independ- 

ent 3-momenta ga ,yo. 

We now observe that in the vicinity of the pole (fa(Pa! ,qol) = s), 

r&t,& 2cLa! Wa!(Ka) 
fa@a’9a)-s - 2 

Pi -KQ 
, 

where 

(42 ) 

(43a) 
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and K~ is the relativistic on-shell value of p, defined by fo(K ,,qQ) = s. Spe- 
( 

cifically , K a! is the solution of 

(44) 

Note that the functions I‘@, wQ! go independently to unity in the nonrelativistic 

limit. If 7op (K J is the proper relativistic two-particle c. m. amplitude, 

W&(K o) defines the relativistic correction to Eq. (2); i. e. , 

As usual, the exterior representation is obtained by evaluating the p, inte- 

gral of Eq. (40) while ignoring the singularities of Ta. If we choose the origin 

such that R” = 0, and make the angular momentum decomposition introduced 

earlier, we arrive at the expression 

2P 00 
cz;ext 01 .Il+h+1 GLQh (Xa’Ya;tlt2t3) = --1 

w” 
dw2jh(4y,) 

0 

where we have defined ’ 

(47) 

Comparing to Eqs. (28) and (29), we observe that aside from the presence of the 

exponential involving the times t 
P’ 

the only difference in the relativistic version 
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lies in the kinematical relation between q and K Q!, and the relationship between 

T;eA md the physical amplitude (the extra factor of (2n) -3 is common to IQ, > 

and can be ignored). In the nonrelativistic limit (ma, large compared to the 

momenta), it is apparent that the time-dependence,can also be factored out and 

the resultant expressions are identical. 

Having established the exterior representation, our next step is to apply 

BC’s of the type discussed earlier in order to derive an equation for the T$. 

It is perhaps obvious that the natural generalization is to apply the BC stated in 

Eq. (32) at equal times t_, = t in the ,G y c. m. One can then establish that the u 

resultant amplitudes do not depend on t, so we can simply set t = 0. The net 

result is a set of coupled one-variable integral equations, differing from those 

stated in BCA primarily by the relativistic kinematics. We defer the specifics 

to the Appendix. 

The input to these equations is again the empirical function $(K 2), which is 

related to the two-particle phase shifts via Eqs. (1) and (7). Since both of these 

expressions are regarded as applying in the two-body c. m. frame, no difference 

in interpretation arises except the different kinematical relationship between K 

and the two-particle invariant energy. There is one new feature, however, in 

the structure of the integral equations as a result of Eq. (44). Since qQ! is a 

real spectator momentum, it is clear that the right-hand side of Eq. (44) is real 

and positive for Js > m 01’ In particular, as qo - m, the right side approaches 

Js - mo. Inasmuch as the left side is a sum of two square roots, with the 

branch cut taken along the negative real axis, it is clear that the equality can be 
2 satisfied only if K a! > - Min (m2 p9 +I. We thus distinguish two cases: (a) m = 

P 

mY’ 
in which case we can allow any qo on the interval (0, CO), and (b) mp $ my, 

in which case qa! is restricted to a finite range (0, Q,), with Qol defined by 
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Eq. (44) with K “, set equal to its minimum value. Specifically, 

+ Imi-m2il,2j[s -(m 
Y a! - Im~-m21’)2] 

Y 
41m2 -mtl 

* (48) 
CY p _’ 

This behavior is significantly different from the nonrelativistic version, in 

which K 
2 - - wand a! q a! - + Q) regardless of the mass ratios. It is clear, of 

course, that the differences arise at momenta for which the nonrelativistic ap- 

proximation is invalid. For example, if we were to consider nd scattering at 

threshold in the TN channel with a nucleon spectator, we would obtain qa! < Qo 

c ,uM, corresponding to a momentum of 3 2 PM for the spectator in the nN c. m. 

frame (1.3 (&V/c). What is more interesting is that there are also differences 

with the Faddeev-type relativistic equations discussed earlier. Thus, if we de- 

note the invariant energy-squared of particles p and y by co, our formalism re- 

quires that 

lmi- y m21 d f-7 cl s (Js-ma?, (49) 

whereas CT - - o! M in the equations of Lovelace or Ornnes. This is very conven- 

ient for us in that the analytic continuation defined by Eq. (8) need not be em- 

ployed too far from the physical region; the extent to which it may be responsible 

for the rather different results we shall report is unclear at this time (we shall 

return to this point in Sec. VI). 

The structure of Eq. (44) has also another, rather amusing consequence. 

We note that if Js <ma, the right-hand side becomes real and negative for all 

qa’ and the equality cannot be satisfied. Thus, if we consider using the equa- 

tions to define an analytic continuation of the three-body amplitude below the 

scattering threshold (W = 0), the contribution of channel a! would vanish for 
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J o!’ s<m In particular, for 4s < Min (ma) all of the To vanish identically; 

there ins no exterior representation! It then follows that if a three-body system 

is more tightly bound than its lightest constituent, there is no smooth continua- 

tion to the domain- in which the particles are asymrjtotically free. This point 

becomes less academic if we treat the scattering of such a particle with some 

“elementary” particle as a four-body problem according to the n = 4 realization 

of this formalism. The resultant wave function would contain no outgoing piece 

corresponding to the three constituents as free particles. Thus, if the lightest 

nonstrange quark has a mass in excess of M, the nucleon could not be decom- 

posed by scattering! The description of such quarks would require the natural 

complement of this formalism: a purely interior representation. 

All the information necessary to compute the T&A functions is given ex- 

plicitly in the Appendix. As we shall demonstrate elsewhere, the use of the 

Dirac Hamiltonian for Ha! does not affect things in a material way; one can again 

derive an exterior representation which leads to precisely the same equations 

except for the usual spin-recoupling coefficients familiar in Faddeev theory. 

The necessary modifications will be indicated in Sec. V when we put isospin into 

the 37r problem. 
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IV. PHYSICAL AMPLITUDES AND UNITARITY 

IB this section we present the necessary formulas for calculating the 

physical amplitudes from our formalism. We also employ a concise operator 

notation and some earlier results in order to prbvide an explicit proof of the 

three-particle unitarity relations. 

If we first consider the description of the scattering process in the three- 

body c. m., it is clear that any pair (I;““, <cm 
P 

p ) of the six vectors defined by 

Eq. (16) in this frame can be used as independent variables; they are of course 

restricted by the condition c E = & . On the other hand, Z has been 
P p 

written as the sum of the 9o channel amplitudes, which are most easily 

expressed in terms of the corresponding pair (p, --tcm, Tim). It is thus con- 

venient to define a transformation between these different labels in a given 

frame of reference. We therefore introduce a Hilbert space of. states I o~F?i~i>, 

where the o! index tells us that (5, ?$ are to be interpreted as the numerical 

values of G& 2,). These states are taken to satisfy the normalization 

< cY~~lp-$Gp> = 6 
a@ N5--3 m-3) , 

with the corresponding completeness relation 

(56) 

(51) 
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We define an operator I on this space which l%-&rconnects’~ the various chan- 

nels by 

if a& are cyclic, 

if @y are cyclic . (52) 

The interpretation of I is that if (2, ?$ ) are the values of (zo,ca) , then (5,:) 

are the values of (l? < ) 
P’ P 

in that frame. As a consequence of Eq. (52), one can 

deduce that 

I=IT , 

1-l = ; (l-t-1) ) (53) 

(1-I) = + (l-Q2 I 

If we now consider an initial state I+> = ~~~~~~~~ in the three-body c. m., and 

write 

< klk2k3 I F I cP> = 6(F) < aF;IT 1 cv.oi;co;;o > (54) 

for the c. m. amplitude T, it follows that 

T = (1-1)~ , (55) 

where 

is the channel amplitude. 
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The integral equations given in the Appendix provide a means of calculating 

the @h-shell) operator 
A 

7. Thus, expanding 

- < PLNLQhpq I q I uOLMeOXOPOaq;~> , (56) 

we have 

< PLMhc/& I ~oLMtohopOaqOa’ = ‘J&(q) . (57) 

Here (F oa,Toa) are the values of (5 ,y 
a0 ao 

) in the PO?, c. m. , providing their 

values in the three-body c. m. are (Fo,co). The amplitude T&(q) is the same 

quantity defined in Eq. (47) of this paper, and in Eq. (19) of BCA. 

We must thus provide the connection between the operators T and ?, for 

which it is necessary to introduce the appropriate Lorentz transformations. 

Assuming that the vectors describing the on-shell state are (FGrn,<zrn), it is 

straightforward to show that the corresponding quantities in the @y c. m. are 

M 
ca = ” 

Y,& --rem 

01 J-i-E0 
%Y ’ 

[ 

-cm -+cm 

Gja = 5;” + (Ya-1) 
PC2 ‘9a ycPck! Ep Ey 

cm 2 
qck! 

+ JSmEa mp-my %l! ’ 
( 3 

-cm 

where 

P,=s;m/(E +E) , P Y 

= (1 p2)-l12 
Yo! -a! , 

(59) 
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and the eP are expressed in terms of (Fl”, Tim) via 

4r 

( 
cm 2 2 l/2 

E 01 = qa! +ma > , 

-cm P l/2 
a! -cm 2 

v- = (I po! - “r qc2 1 ) 
+ n-i2 

P ’ 

(I 

2 
-cm P a -cm 

EY= pcY +mpqa 1 ) 

l/2 

‘“y” f 

630) 

c& cyclic. To incorporate this information into our operator notation, we 

(61) 

define the functions 

u,($, T) = (ycr-1) -g + 
4 

Ma 
v,tit 3 = m 

Y z fr o! PP 
CY 9+ “Y 

and the operator A such that 

. (f-3 

Thus A takes the c. m. quantities ($, q) into the Py c. m. quantities (Tl,?). 

Similarly, we can define the inverse transformation A -’ by 

where 

(63) 

;,ci;t,3, = (yamI) q - 
q’ M;Tj{p,,q,) (2 - ii?) ’ (64a) 
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[ 

m2 - 

Yo! = fJP’,4’) + -$f qt2 
02 . I l/2. - 

/f;‘2(P’, 4’) * 

(6 9 

(64~) 

Here the E 
ap 

are given in terms of p and q by Eq. (41), and vavol=l. 

In order to complete the relationship between 7 and i, we see from 

Eq. (47) that in addition to the transformation laws for the labels (5, ;4t> given 
above, we also need to know the Lorentz transformation properties of the T 

a! 
operator. This turns out to be trivial since, as we shall see below, T is a 

Lorentz invariant. Thus, in order to incorporate the implied relationship into 

our operator notation, we need only take into account the transformation 

properties of &(i?-Fo) via the factor ?z . We therefore define the diagonal 

operator x such that 

(65) 

where the E’ are the single-particle energies in the three-body c. m. frame. 
P 

Comparing Eqs. (47) and (57)) we deduce that 

7=Ax -l&-l 
, (66) 

which reduces to an identity in the nonrelativistic limit. Inasmuch as none of 

the Lorentz transformations take the set (F, c) out of the scattering plane, the 

Euler angles (o/3$ in the representation of Eq. (25) remain the same. Thus, 

as in the nonrelativistic case, the c. m. amplitude T (in a state of definite LM) 
A .x 

can be expressed in terms of a single integral over the variable p. q involving 

P 
the Tub amplitudes. 
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We now consider the statement of three-particle unitarity for our ampli- 

.tudes, It will be convenient to adopt the notation 

At = t(s-tie) - t(s -ie) 
(67) 

for the discontinuity of an operator across its cut. In addition to the three- 

body elastic cut with threshold at W=O, there will also be cuts corresponding 

to elastic scattering from two-particle bound states. The discontinuity rela- 

tions pertinent to the latter are relatively easy to satisfy and we shall not be 

concerned with them here (a simple proof can be constructed along the lines 

given in SCI) . The development given below will still be relevant in the 

presence of such thresholds, providing that we interpret the discontinuity as 

applying to just the three-particle portion of the overlying cuts. We shall first 

demonstrate that F satisfies the relation 

<klk2kg 1 A~+ ~+ A~O”l I kik;;kb> = 0 . (68) 

We proceed by introducing an operator go which corresponds to go on our 

Hilbert space. We thus define the diagonal operator go such that 

gp 3 = , (69) 

where (5, c) are taken as the values of ($@ ,<,) in the three-body c. m. In that 

frame, Eq. (68) can be expressed in terms of the operator T defined in 

Eqs. (54) and (55); thus 

AT = -+T+A~OT- . (70) 
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Here the factor of l/3 arises due to the completeness relation of Eq. (51) and 

the fact that 

/ &=&-I) lc+i><a$‘l (I-I) 

is independent of o, as can be verified from Eq. (52). Since the equations 

given in the Appendix imply that T (and hence T) has a final factor of (1-I) on 

the right, Eq. (70) is equivalent to the relation 

since I and go commute. 

Stated as operator relations, the equations for q have the same structure 

as the equations studied in SCI, and hence one must obtain the same result, 

A; = -;+ AGO ; , 

where Go is defined by 

(73) 

Thus, except for the relativistic kinematics reflected in the difference between 

Eqs. (27) and (44), Go is formally identical to the nonrelativistic Green’s 

function of Sec. II. Recalling Eq. (42), the definitions of Go, go and x imply 

the relation 

AGOXA -I= pago ) 
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since the discontinuity takes Go and go to the pole. Invoking Eqs. (66) and (72), - 

we ftilly obtain 

AT = -T+ A AGO WI-’ T 

= -T+ aRo +I-- (75) 

= -; 7$1-I) Ago,7 , 

where we have employed Eq. (53) and the above noted property of T . Using 

Eq. (55) and the commutivity of I and go, we have proven Eq. (70), and hence 

Eq. (68). 

We now observe that if one defines a three-body scattering amplitude 
16 

according to the conventions stated in Goldberger and Watson, one deals with 

an operator 3’ related to the S-matrix by the equation 

Sfi = gfi - 27ri qi . 

In analogy to Eq. (38), one defines T’ such that 

<klk2k31~‘IkikHli~>=6(~-~)<icup~IT110!i;’~> a 

(76) 

(77) 

Unitarity then requires that T’ satisfy the discontinuity relation 

AT’ = -27ii dFd;iT;IaF;i>6(&- ++~j;~lT; (78) 

in the three-body c.m. On the other hand, Eq. (71) can be re-expressed as 

AT = -27ri J d; 

where 

CrnP my 
F&i,<) = PI?--- . 

&- y EY 
030) 
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We therefore infer the relation 

4 

Tf = &I2 T&/2 , (81) 

connecting T to the conventional amplitude. In view of the transformation 

properties of T’ (see Ref. 16), Eq. (81) implies that T is a Lorentz invariant. 

Together with the integral equations for G stated in the Appendix, Eqs. 

(55)) (66) and (81) provide the information necessary to calculate the physical’ 

amplitudes, and hence all scattering observables. As an example, we present 

numerical results for the three pion system in the next section. 
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V. APPLICATIONS TO THE 3~ SYSTEM 

A+ a first test of our relativistic formalism, we consider the Jr = O-, l- 

scattering states Q=O, 1,2) of the three pion system. This permits a direct 

comparison with the previous results noted above. 598 For c.m. energies 

& < 2 GeV, one would hope to predict the ~(784) as a l- isoscalar 37r reso- 

nance, and perhaps the 7r itself as a 37r bound state in the O- (I=l) channel. In 

order for such results to be meaningful, no other resonant or bound states 

should be predicted by the theory. Of course, since it can be shown that our 

equations constitute a general solution of the three-particle unitarity relations, 

it is clear that some choice of the A operator defined in the Appendix (analogous 

to B in Eq. (33)) can always reproduce the physics. Thus, if the qualitative 

characteristics of the 37r system are to be regarded as a natural consequence 

of the known two-particle properties (e.g. , the o), the predicted properties 

must follow given any reasonable guess as to the off-shell behavior. The numer- 

ical results given below demonstrate that this is indeed the case for the channels 

considered. 

As noted in the Appendix, the equations for 7 can be expressed as an 

operator relation G = -gpX, where X satisfies 

x= a -t(Kl+AK2)x , 

written in terms of states IaQhq> defined (for fixed L) such that 

< /3Q’A’$ I oQhq> = 6 o!p%Q’%A 
SW-sl . 

q2 
(83) 

(82) 

The quantities a, Kl, K2 are totally specified in terms of on-shell two-body 

information (scattering phase shifts) via the parametrization of h,(K 2, in Eq. (8), 

whereas A summarizes both off-shell effects and possible three-body forces. 
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In order to apply these equations to actual physical systems, one will in 

general need to add discrete indices describing additional degrees of freedom 

(spin, isospin). In the present application we are concerned only with isospin, 

and the necessary modification of Eq. (82) consists of the replacement 

< /3Q’A’q’ I Kl I czQhq> - C:if” <PifQfhfqf lKl I aiQhq>. , (84) 

where if represents the total isospin of the pair cry, i similarly labels the Py 

pair, and the expansion of the basis to I oiQhq> merely reminds us that the on- 

shell two-body parameters contained in Kl will also depend on i, i’. The matrix 

$f” is just the overlap between a state formed by coupling (pV)ISi+ (o)Izl to 

form a state of definite total I, vs coupling (ya)Izil + (@I=, to total I. Hence 

C1 is a spin-recoupling coefficient, 

$W 
ifi = (-)N [(2if+1)(2i+l)]1’2 W(ioiy IiP;ifi) , 

N=i’+i -I 
P 

if aPy cyclic , (85) 

= i+i CC-I if boy cyclic , 

where i 
P 

is the isospin of particle /?, and W is the Racah coefficient as defined 

by Rose ?‘If our particles had spin which could couple to values sf , s in pairs, an 

&Pa additional factor of Csl s would appear in Eq. (84). For the calculations to be 

described, we shall need the explicit values 

+Pa 
00 = l/3 , 

co;Por & cm3~ = 11 11 1 , 

&PQ = 11 c%P = 11 42 

036) 

Taking the most interesting case first, we consider the l-, I=0 (w) channel. 

Here, in order to form an isoscalar we need i = if = 1, and hence the statistics 
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restrict us to odd angular momenta Q, Qt. Given the strong energy-dependence 

in thw-wave (p) channel, plus the angular momentum barriers, one would 

expect that Q ~3 states could be neglected for energies up to a few GeV. Given 

Q=l, we can only have h=l in order to produce a- l-’ 3~ state. The relevant 

equation is then particularly simple; Eq. (82) reduces to 

X (9’) = a(q’) +Jm dqq2 w X(q) , 
0 1 

(87) 

where DQ(~) is,defined in Eq. (9), and 

N(q’,q;K) = ~N$$-P,q) , 
P’ 

%l’,%K) = N(q;,%K) + K -’ Ah’, q;s) . 

Here NcyPiL . QhQ,hl is the function defined in the Appendix (the summation is a result of 

having identical particles), and A is a real-valued function summarizing the off- 

shell content. In view of the discussion preceding Eq. (33), one would expect A 

to exhibit exponentially damped behavior in the coordinate representation; this 

corresponds to poles or branch cuts at complex momenta q’=tic . In addition, 

if one studies simple off-shell models, one expects an explicit energy-dependence 

of the form A(q’,q;s) CC (~~+pz). The value of ~1, corresponds to the longest- 

range component of the r-r interaction, so we expect PC = 2p . 

Since it is our intention to study the effect of the off-shell properties on our 

result, we have taken advantage of the fact that NoPiL has an explicit dependence 

on the momentum K = K(q, s) in writing Eq. (88). It is then convenient to rewrite 

“N in the form 

G&l’, qx) = N(q’,q; K) - y N(q’,q;ip) + K 
-1 - 

A(q’, q;s) ; (89) 



- 36 - 

this is justified because ipN(q’ , q;ip) has precisely the same analytic structure 

as ATa cut for Imq’ 2 ,!J). The point of this decomposition is that as q -+ 00 , 

K - i,u, so the first two terms of Eq. (89) combine to give better convergence 

properties for the kernel. This simplifies numerical analysis, and there is no 

real loss in generality. We observe that neglecting A corresponds to neglecting 

the momentum-dependence of form factors (which play a significant role in the 

convergence properties of Faddeev-like equations), and hence we expect the 

inclusion of A to improve the convergence of N”. Regarding A as a type of vertex 

correction in this sense, it is reasonable to consider A in the form 

%‘, W = W N(q’,qW gW&) , (90) 

with g(0) =g(O) = 1. The on-shell parameters embodied in N thus set the overall 

scale, and determine the behavior for small q? and q. 

In practice, since A is purely phenomenological except at small momenta, 

it is more efficient to parametrize it directly. For the present purposes we 

consider a representative model, 

I+- 
2 

wl’,%S) = Y g&l’) g(q) 2 2 9 
PO---CL 

(91) 

To fix the overall constant y, we observe that for &S - EL, K= i/~ independently of 

q, and hence x contributes the entire kernel in this limit. The normalization in 

Eq. (91) has thus been chosen such that 

with y determined by the requirement that N(q’, q;ju) has the same small 

momentum limit. 
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This prescription is admittedly ad hoc, but it preserves the general 

featwes of simple off-shell models. The main point has been to provide an 

estimate for y, which comes out to N 0.8 in this calculation. On general 

grounds one expects p. N pl -N 21.~; the expected analyticity properties of 7* (q) 

(in addition to direct 47r exchange) then imply that p2 = 2~1’ 4~. In estimating 

the off-shell sensitivity, we shall vary the parameters y, po, PI, p2 freely 

about these values. 

Schematically, Eq. (87) has the form 

X = (l-K)-% , 

K&/D1 . 
(93) 

Three-body bound states or resonances thus appear as poles in 7^, and corre- 

spond to discrete values of s for which the inverse (1-K) -1 fails to exist; i. e. , 

to values such that there is a nontrivial solution of the homogeneous equation. 

In order to search for the w as a 37r resonance, one looks for zeros of the 

determinant GB = 1 l-K1 . Although the equations actually permit a calculation 

to be extended onto the second sheet, it is sufficient in practice (and more akin 

to the experimental situation) to study the behavior of GB for real values of &. 

One thus proceeds by approximating the integral as a finite sum through the 

introduction of appropriate Gaussian rjoints qi, and weights hi, converting 
17 

Eq. (87) into a finite matrix equation. The determinant 9 can then be calculated 

in an elementary fashion. 

In order to describe the p-wave phase shift, we employ the parametrization 

fl(K2) = CY + 6/(K2-p2) , 

=a hl(K2) + 2 , 
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which is of the form given in Eq. (8). There are thus four parameters (a@@), 

whiclwnre have adjusted to fit the analytical representation of the phase given by 

Baton et a1f8 The numerical values are a=. 67 F, cz= 2.39, @= 2.20 F-l and -- 

6=3.21 F-2. We observe that for .a given choice of a, the behavior of fl can be 

read off from the expression 

8K Cot (gl+aK) = fl ( -a2K2)/f1 , (95) 

if the phase shift (61) is known. In practice, as one would expect, only the 

values of f 1 inthe vicinity of the p pole turn out to be significant, and these are 

well established. 19 

The numerical calculations were performed as described, and a l- iso- 

scalar resonance was indeed observed for parameters in the ranges discussed 

above. With regard to the off-shell parameters (y~o~l~2), it was observed that 

the effects which could be produced by varying all of these independently were 

quite limited, and the results were always equivalent to calculations in which a 

single parameter was allowed to vary. The situation is well represented by the 

choice y = 0.8, /.L~=P~=~P, with p2 taken as the free parameter; the corresponding 

results are listed in Table I for the entries marked “N”. 

The inclusion of off-shell corrections can thus shift the position of the 

resonance to lower energies, while at the same time decreasing its width, but 

the basic energy-variation which leads to the existence of the effect is contained 

in K 1. The inability of ;;i: to produce strong effects is a consequence of two 

factors: (a) the fact that it is real limits the role it can play in the interplay of 

real and imaginary parts leading to the nearby resonance pole; and (b) in con- 

trast to Kl it has no singularities close to the real axis, and hence has a weaker 

intrinsic dependence on the energy. As one would expect, the effect is sensitive 



I 

- 39 - 

to the parameters which describe the p; this is illustrated in the Table by 

entries A and B (model A corresponds to a lrp7’ of width 60 MeV, model B has 

the p width but a mass of 660 MeV). To illustrate the results in more familiar 

terms, the first and third entries of the Table are plotted in Fig. 1, in which 

l1-Kl-2 ’ is used to indicate the rapidly varying factor in an appropriate cross 

section. 

Our result indicates that the p does essentially imply the existence of the 

_ 0, leading naturally to a resonance with the appropriate quantum numbers. 

The precise position and width of the effect, however, are to some extent 

dependent on the details of the dynamics. The fact that our calculated widths 

come out too large as compared to the experimental value (= 10 MeV) is 

apparently due to neglect of coupling to the virtual Kj? channel, as we point out 

below. Just as important, similar calculations for l- (I=l, 2) .and O- (I=O, 1,2) 

37r states with this formalism do not predict the existence of resonances; there 

are no spurious effects of the type reported by Basdevant. The only other 

“particle” which comes out of the formalism (for c. m. energies less than 2 GeV) 

is the pion itself, which appears as a O- (I=l) 3n bound state for reasonable 

input (in this channel we couple the I=0 7r-7r s-wave to a A=0 spectator, in all 
20 other channels we take only the p-wave). The values of the s-wave parameters 

required to produce a O- bound state at the exact pion mass (with ArO) are 

almost identical with the best fit obtained to the I=0 phase shift of Baton et al. 
18 

-- 

Using a hO+l=fO( K~), and parametrizing f. according to Eq. (94), we arrive at 

the values a=. 32 F, a=l. 28, pz3.18 F-l and 6=9.04 F -2 (with obvious uncer- 

tainties due to the state of our knowledge concerning this phase shift). This 

calculation has some interesting features and will be reported elsewhere. 
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It therefore appears that the relativistic BC formalism is capable of pro- 

- vidim a viable description of such systems. Hopefully, subsequent applications 

to the A1 and A2 channels will provide some insight as to the nature of these 

effects. In condluding.this section, we observe that a natural generalization of 

our technique can be employed to treat several different exit channels simul- 

taneously. Thus, if a reaction can produce different types and numbers of 

particles in the outgoing state, we regard these as originating within the inter- 

action volume. (the interior) and enlarge our exterior description accordingly. 

The channel wave functions are then coupled via BC’s which are a further 

generalization of Eqs. (32) and (33). For example, above the threshold for K!? 
ext production (1 GeV), our exterior representation should consist of IQ3, > and 

ext I*,E >, with <P3n ext,*gT;> zz 0. These will satisfy a coupled set of BC’s, which 

we write schematically as 

ext 
0,-q *kg, = B1l T3, +B 12 TKz ’ 

( d2 - 12) $j$ = B21 TQr + B22 Ta 
(95) 

ext Here ‘km has the form of Eq. (1) and B22 is just a number; hence the second 

equation can be solved explicitly for TKiT in terms of T 3n’ and the result 

substituted into the first equation. The result is an equation involving only TQr 

which is of the type considered above, except that the B-operator contains a 

term having the energy-dependence of Tm, including the 4 pole at & = 1.02 

GeV. The effective size of this term can be fixed by the Cp - 37r/$ - fl 

branching ratio; it survives below the m threshold in the sense of an analytic 

continuation. Treated perturbatively, this contribution has the right behavior 

(attraction increasing with energy) to significantly lower the w width calculated 

above. A detailed examination of this effect is now in progress. 
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VI. DISCUSSION 

There are two essential features of the three-body problem. One of these 4\ 
is unitarity, which expresses the conservation of probability, and links the 

various physical amplitudes via the discontinuity relations; e.g., Eq. (68). The 

other is what we have called the quasi-two-body limit; this is merely a con- 

sistency condition stating that as one particle is taken to infinity, we must 

recover ordinary two-body scattering as a special case (for short-range forces). 

It is trivial to construct models satisfying either of these requirements singly, 

but taken together they exhibit the fundamental complexity of the problem. This 

has recently been pointed out (in different but equivalent language) by Amado, 

who shows that the channel decomposition plus unitarity and the conventional 

analyticity properties can be used to derive the most basic realization of the 

Faddeev equations. 14 The same derivation produces the zero range limit of 

the nonrelativistic BC formalism proposed in BCA. 

It is then clear that the Faddeev equations (in their most general form) and 

the BC formalism represent alternative but equivalent solutions of the above 

problem. The advantages of the BC prescription for computation and data 

analysis have been pointed out in previous articles. 796 In the present paper 

we have demonstrated that this approach has a straightforward generalization 

to the relativistic problem. This is in contrast to those theories designed in 

imitation of the Faddeev approach, for which there is no unambiguous procedure. 

Furthermore, the most obvious distinction between the corresponding equations 

suggests that the Faddeev generalizations do not properly take into account the 

quasi-two-body limit, which we assert must be understood in the two-particle 

c.m. frame. In the exterior (asymptotic) representation, this requires the 

spectator to have real momentum in this frame, and hence leads to the 
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restrictions on the two-particle invariant energy-squared given in Eq. (49). 

In thesequations of Freedman, Lovelace and Namyslowski for example, 3 ua! 

varies to -03 as a result of arbitrary spectator momentum in the three-body 

c. m. frame; the same property is shared by the o’ther Faddeev-like equations 

in Ref. 3. A useful byproduct of this distinction is the fact that our formalism 

requires a much more limited analytic continuation to the unphysical region. 

Just as in the nonrelativistic problem, our equations in their full generality 

provide an efficient framework for the analysis of scattering data involving 

three-particle final states. Since the solutions are automatically unitary, this 

procedure would avoid the (justified) criticism leveled at current techniques. 21 

Obvious applications would include Nn - Nn7r and the 3n final state interactions 

in NT - N(37r). Furthermore, via the parametrization of the operator A 

introduced in this formalism, one is effectively summarizing the full content 

of new information in the scattering experiment; whereas the minimal (A = 0) 

model builds in automatically the important features deducible from two-body 

data. In the case of the W, the latter constitute almost the entire effect. A 

nice additional feature, described at the end of Section V, is the ability to 

simultaneously take into account different orthogonal channels, such as 3n vs. 

KK. This property, which has no counterpart in the Faddeev-type theories, 

is vital in describing an object such as the +. 

The efficacy of the minimal model has been demonstrated in the 37~ calcula- 

tions described in Section V. If one considers all isospin O- or l- states for 

c. m. energies less than 2 GeV, the only effects predicted by the theory 

correspond to the only observed particles (the 7r and 0); the masses are in 

excellent agreement with experiment. These results are in sharp contrast to 

the Faddeev-type 37r calculations discussed in the Introduction, 5,6 both in the 
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absence of spurious effects and in the relative insensitivity to the off-shell 

input.* In view of the strong form factor dependence exhibited by the latter 

calculations, these discrepancies are not too surprising. The reason is simply 

that in our formalism the off-shell.characteristics are completely distinct from 

the phase shift, which is held fixed, whereas the two are linked in the separable 

model. Although our results did not depend strongly on the p-wave phase-shift 

except in the immediate vicinity of the p, the variations considered were 

compatible with the experimental uncertainties, and hence were nowhere as 

dramatic as those reported by Menessier, Pasquier and Pasquier. 6 It is thus 

possible that their sensitivity is not entirely an off-shell effect. On the other 

hand, several of the spurious levels did not share this sensitivity, and hence it 

may be that the formal differences discussed above may be quite important in 

explaining our results. Additional factors, which reflect themselves in different 

analyticity properties in the unphysical region, may also play a role, although 

this does not appear very likely. Hopefully, the next round of calculations 

planned for the Al, A2 channels will produce some insight into this question. 

Although there is no room to pursue this topic in detail, it should be clear 

that our procedure has an obvious generalization to the n-body case. In fact, 

the 4-body analogue corresponds to a two-dimensional integral equation which is 

comparable in difficulty to solving the Faddeev equations with a local potential 

(which has been done). With regard to the hadron spectroscopy, it is then clear 

that a great many interesting problems are now within reach. Furthermore, 

once one has a scattering theory which is reliable in highly relativistic problems, 

it is possible to say something useful regarding relativistic corrections, a topic 

which is poorly understood. For example, a number of contradictory estimates 

of corrections to the triton binding energy have been suggested. 22 In this case, 
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a comparison of the results of the BC formalism in both its relativistic and 

nonr$ativistic manifestations suggests an increased binding of about 0.5 MeV. 

In addition, the increasing use of pions as probes of the nucleus will require a 

dependable relativistic treatment of pion-nucleus scattering in order to properly 

interpret the results. As a first step in this direction, the present formalism 

has been applied to investigate r-d p-wave scattering at energies up to 350 MeV, 

and a paper detailing the results is now in preparation. 23 Lastly, a particularly 

intriguing application has been made to the basic nuclear force problem; a L. 
report of this work is already available. 24 

Acknowledgement 

The author would like to express his appreciation to the Stanford Linear 

Accelerator Center for its hospitality during the final phases of this work, and 

to the Alfred P. Sloan Foundation, whose support made this visit possible. 



- 45 - 

APPENDIX: THREE-PARTICLE EQUATIONS 

-2Ppplication of the BC’s discussed in Section III result in a set of coupled 

one-dimensional integral equations for the functions T fQ#) defined in Eq. (57). 

For fixed L, M it is useful to define a basis of.states I oQhq> with the 

normalization 

<PQ’A’q’ 1 aQhq> = 6 04 %t ’ ?G? 
6(q’ -q) 

q2 
. (Al) 

The formal representation of the equations in this basis is identical with that 

given in BCA for the nonrelativistic problem. In what follows we first state 

these equations and then sketch a derivation resulting in an expression for the 

most critical term. 

As discussed in Section III, the minimum value of ~z (the on-shell value 

of P; in the fly c. m. ) encountered in our equations is 2 
K em = :min(mi,m;). 

With reference to the BC function AoQ( ~2,) describing the Py (two-body) scatter- 

(0) _ ing, we define hoQ - h olQ am). In referring to the quantities N (K~ (‘) D(O) below aQ’ aQ 3 

we shall mean the functions N oQ, DoQ defined in Eq. (9) evaluated with 

hap(K “,) replaced by haI (O). A consequence of this definition is that N9e) - Nc,Q, 

D(O) 
ck!Q - DaQ as q, approaches its maximum allowed value. If we then define 

an operator X in the above basis such that 

T;Q-#) = - 

tO!Q(KCY) 

N(‘)(K ) 
--QwlxI~OQOcu~O($Oa’ , 

aQ Q! 

our equation can be expressed as 

x= !2nKx , 

(A21 

(A3) 
K = B +Kd”) + (l-e)& + e (C-I) [ 1 (1-R)p . 
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Here Q O~‘AocY’qOcY are the parameters characterizing the initial plane-wave 

.statein the P,y, c. m. system (PO # y. # ao), and the operators entering this 

equation are defined below. 

The operator 6 arises from the fact that the BC stated in Eqs. (32)) (33) 

must be applied in the exterior region, defined by the requirement that for each 

CL, (rP-rS2 5 -at . This is insured by taking the projection operator 

as an 

equal 

pe(rlr2r3) = n 
I 02 

explicit factor, where 

times, Pe reduces to 

0 
C 
-ai - (r pyJ2 1 644) 

6 [d] = 1 for d> 0, and vanishes otherwise. At 

0 yap , [ 1 (A5) 

where xp, y x must be expressed in terms of za,ya via the linear combinations 

implied by Eq. (15); 

am cyclic. Applying the BC means taking xa! = ao, and thus the domain in 

which Pe # 0 depends solely on y, and “, . Ga * In general, there is some 

maximum value y”, such that Pe vanishes identically for yo <yi (yi may be 

zero). The BC only has content for y, > y”, , and the operator 8 utilized in 

Eq. (A3) corresponds to 0 yi-ycr [ 1 in the coordinate representation. Explicitly, 

2R2 
eA ts’ , q;W = - 7r 

$.$W) - q’ jh+$W) jh(Rq) 

q2 ^ qt2 1 . (A7) 
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The operators p, R are diagonal in the above basis ; 

RaQ(q) = 1 - D(‘)(z CYQ a! )/D(‘)(K ) CLQ a. ” 

Here Ka! refers to Ko(q) evaluated at the kinetic energy W=w, which is a free 

parameter (w < 0). The presence of R is formally necessary to achieve unitarity 

in the minimal model (B = C = 0), as first pointed out in SCI, but in all the cal- 

culations so far performed (3N, 3n, nd) there is virtually no sensitivity to iii7, :. 

and in fact this piece of the kernel is completely negligible. 25 The operators 

B, C have arbitrary real values; the former is analogous to B a’ in Eq. (33), 

while the latter arises from an auxiliary BC on the interior segment, y < yoo , 

as explained in BCA. 

Except for o, which corrects the two-particle phases from those implied 

by h(O) oQ to their physical values, all the operators defining K in Eq. (A3) are 

designed to complement the central operator K (0) . That is, the operators 8, R 

appear to guarantee unitarity and a unique solution, while 6, C exhibit the full 

flexibility allowed by unitarity, and hence summarize the off-shell content. It 

is clear that K(O), Q are present in the most trivial realization of the theory, 

(0) corresponding to a model in which AoQ = haQ , a constant. This is the “pure” 

BC model, considered in several previous papers on the nonrelativistic 

problem. 26 Except for the relativistic kinematics implicit in the relation 

between q and KQ, the only differences in the relativistic version are contained 

in them. In discussing these operators, we shall sketch their derivation in 

the “pure” BC model. 

As explained in Section III, the basic BC is to be applied with a, t t t 
Q’ P’ Y 

all set equal to zero in the py c. m. frame. The exterior representation then 
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will depend only on 2 Q,yy and the BC can be expressed as 

4r 

( ) c) a 2; <LULMeXaoy,I gel*> = 0 , 
02 

(A% 

where &Pe has the simple representation given-in Eq. (A5). For formal manipu- 

lations it is useful to observe that if TQ(p) is the Fourier transform of eQ(x), then 

-co 

J dw2 N(')(P) 7 (P) m 
0 O!Q Q $taa) - AaQ Q aa (O) et ) - (A 10) 

This implies that Eq. (A9) is equivalent to the relation 

/ 

iG 
IIdk e a*%! 

P p 
y;m@cy) NlrOa)(pJ <klk2k3 I Pe le > = o , (All) 

where the integration is performed in the ,@y c. m. frame. By decomposing 

I\k > into its three channel pieces, introducing appropriate Lorentz transforma- 

tions, and taking advantage of the 6( s- Fo) factor in gand the mass-shell 

delta-functions in go, this equation can be displayed in a form involving only 

the independent vectors FP,zP appropriate to the particular Lore&z frames. 

This is equivalent to the following formal development, which we state in terms 

of the I cw< <> Hilbert space defined in Section IV. 

The ; operator of Eq. (57) is only determined by our formalism for on- 

shell values p = Ka(q), but it is useful to introduce a function GaQ(p, Kly) which 

is unity on-shell and satisfies 00 s dpp2 jQ(xp) 

GaQ@, KCr) 7fiK 
0 p2-Kz-i E 

= -+ hQ(xKQ) 

* 
forx> ao, * we then regard 7 as the operator 

<QJLmpqIG = GaQ(p,~J <aLMehKaq[q . 

G4w 

W3) 
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The explicit choice for GaQ does not matter since ultimately everything is put 

on-skell; a particular example might be j (a e CY p)/jQ(aaKcr) (another is given in 

SCI). The initial plane-wave state in the three-body c. m. is represented as 

Ia?> = (1-I) I$> , where I $> is one of the basis states; 
-it-c 

I@ = lQoPoqo> , 
6414) 

dl$> = Icro~o~Toa> , 

(see discussion concerning Eq. (57)). We may then define the states 
i 

I$ > = (1 - Go;) A--l I$> , 

W5) 
I%> = (1-I) A IJ, > , 

employing Go as defined in Eq. (73). 

The interpretation of these states is that I$ > corresponds to the channel 

wave function in its appropriate c. m. frame, while Ia> corresponds to the 

total wave function in the three-body c. m. They are defined in the space of the 

two momentum variables 5, z and may be Fourier-transformed to obtain the 

coordinate representation; e.g., for x > a@, 

< @LMehxy I z/J> = < oLhB.&xy I o!o~oo<ocr> 

VW 

Comparing to Eq. (46), this is just the exterior representation of the channel 

function in its c.m. (Z=$=O). Similarly, if we evaluate Eq. (37), in the 

three-body c. m. at equal times tP= t, the result in the exterior is proportional 

to exp (-i& t) < 027 I* > . 
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It is now useful to introduce the operators g, N such that 

GaQ@,K,) 
D$ ha) ' 

(Al71 

Thus t = gN is a type of off-shell t-matrix corresponding to the on-shell value 

tt”)tK 
al o! 

) = Nt”)/Dto) 27 
OJQ cd’ One can easily verify the relations 

L. At = -t+ AGot , 

NGOgN = N , 
VW 

from these definitions; the former is quite useful in the unitarity proof. 

Employing the ge operator defined by 

(Q!) - - in the coordinate representation, where Ye ( x, y ) corresponds to 

2 we are ready to restate Eq. (All) in the form 

N 9’eA-11P> = 0 . (AW 

Since this is to hold independently of 1 @p> , we deduce the operator relation 

N Ye(l-,a)(l-Go;) = 0 , 

,a= fclIA . 
(A2 1) 

Except for the replacement I - 3, this equation has precisely the same form 

as the case first studied in SCI. 
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We now introduce an operator X such that T = -gX, which is possible as a 

result of Eq. (A13). The interpretation of X is that 

<ammpqlX = <aQhqlX , (A221 

where the right side corresponds-to the notation of Eq. (A2); there is no 

dependence on p. At this point we choose to simplify the .derivation by assuming 

that for each Q included in the sum stated in Eq. (A17), hl,oe) = A@, independent 

of Q (note that the sum is implicitly truncated to take into account as many 

partial-wavesas are necessary to describe the (01) channel function). This 

avoids the necessity of going explicitly to the LMQh representation, and is 

adequate for the simple cases studied to date, but is not essential in our method 

(formulas for the general case are presented in BCA). This means that there 

exists an operator pe such that Nge = <??,N; ge is just Pe with xo = ao. In 

accord with the discussion given above, pe vanishes identically for y, < y” . o! 

Defining a generalization of the operator 0 above, 

(A23) 

one can show that there exists 3,’ such that (1-O) g-e1 se = (1-O). Thus 

(1-O) 3,’ N geGo; = -(l-O) NGOgX 

(A. 24) 
= -(I-e)x , 

the last line following from Eq. (A18) and the fact that X is of the form X= NX’ 

(as we see below). Returning to Eq. (A21), we finally obtain 

(1-0)X = (1-e) N(S-1) + (1-e) NSGOgX . (A25) 

Although written on different bases, Eqs. (A3) and (A25) are directly 

comparable in view of Eq. (A22); i. e. , X has no p-dependence. In this model 
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p=l and 6=0; we thus infer that 

- <cxQ~qltilo! Q o OahO$Oa> = < aLmhKa‘-i 1 (l-8) NW-l) 1 ~O~~Oa~OaKOaqO~’ , 

< crQhq lK(‘) ,/3Q’A!q’> = /mdp’p’2 < @Li!&&Kaq ,(-I-e) NSGOg I PLMQ’A’p’q’> . 
,O 

6-3 

The explicit evaluation of these operators is straightforward, but tedious even 

in the nonrelativistic case. Naturally, in special cases such as s-wave forces, 

etc. , one can obtain a relatively simple formula. 

In conclusion, we note that Eq. (A3) can be expressed in the form 

X= S1+(K1’AK2)X , 

K1= 8 +K(‘$’ - W-R)/3 , 

K2 = WVp , 

(A27) 

A = (i-e)6 + e6 . 

Thus K1 defines the “minimal” model, and is determined entirely (up to the 

negligible w-dependent terms) by the two-particle data. The same is true of 

K2, whereas all the off-shell information (including possible three-body forces) 

is contained in A, which is an arbitrary real-valued operator. We note that in 

the general case, i = -gpX, which is compatible with Eq. (A2). For compu- 

tational purposes it is convenient to express K in the form 

< aQ4q I K IPQ’h’q’> = 
N;~$tct, s) 

DpQ"K2 
WW 
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TABLE CAPTION 

I. Variation of the 37r l-, I=0 resonance vs. the off-shell parameter p2 

defined in the text. The mass (M) and width (I’) were determined by 

extrapolation to the pole. Types N, A, B refer to the physical parameters 

of the p , a “p” of width 60 MeV, and a “p” of the proper width but a mass 

of 660 MeV, respectively. 

FIGURE CAPTION 

1. Variation of I 1-K I -2 vs. c. m. energy in the w channel; the curves are 

normalized to unit height. The solid line is N (4.0)) the dashed is N (4.6) 

of Table I. 
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TABLE I 

P&A-4 M (MeV) I’(MeV) 

4.0 808. ‘ 120 

4.3 782 95 

4.6 752 65 

4.7 735 45 

4.0 826 155 

4.0 I 757 I 95 

I I I 1 I I I 

0.64 0.72 0.80 0.88 
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Fig. 7 


