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i. ABSTRACT 

A new bound for the pion form factor in the timelike and space- 

like regions is derived and evaluated with the help of timelike data. 

The bound is compared with recent Serpukhov-UCLA data near t = 0, 

and implications for the asymptotic behavior of the form factor and 

the pion’s charge radius are discussed. 
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1. INTRODUCTION 

In the past few years, several authors l-9 have discussed dispersive in- 
h 

equalities for the electromagnetic form factor of the pion FT. In the simplest 

easel-6,8,9 , these inequalities provide bounds for, Fs(t) below its cut 

(t 5 to = 4mz) if the modulus I F,(s) I or an upper bound for I F,(s) 1 is known on 

the cut (to 5s < m). The bounds are particularly sensitive to the behavior of 

I Fn I near the elastic threshold, so that the lack of data in that region ham- 

pered attempts to evaluate them numerically. 5 In order to reduce the uncer- 

tainty caused by interpolating data on I Fn I to the threshold region, Levin and 

Okubo7 modified the inequalities, whereby data on both the modulus and 

phase 10 of the form factor are exploited. Essentially, they found that the pre- 

liminary Serpukhov - UC LA’l value of r2 r expt = (0.80 f 0.23) fm2 requires a 

large p-wave 7r7r phase shift d1 just above threshold if the upper bound on rz is 

to be satisfied. However, their result depends on assumptio& about “reason- 

able” asymptotic behavior of FE. Furthermore, recent data 12 on &I(s) show no 

indication of the phase shift behavior suggested by the analysis of Levin and 

Okubo, and the latest Serpukhov-UCLA measurement l3 of 

2 rr expt = (0.61 f 0.15) fm2 

is considerably smaller than the preliminary value quoted above. In light of 

the data of Refs. 12 and 13, and also new data on I Fn I in the threshold region 14 

and at high momentum transfer, 15 it is worthwhile to reexamine the problem. 

In Sec. II we show how to exploit the available experimental information to 

bound the modulus of the form factor in the timelike region where it has not yet 

been measured. This result is then applied to existing methods to obtain 

bounds in the spacelike region. We evaluate the bounds numerically and 
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compare them to the Serpukhov-UCLA data 13 in Section III. Section IV contains 

a discussion of our results, and conclusions. 
h 

II. THE BOUND 

We wish to make maximal use of the available timelike, information, which 

consists of data14-16 on IFx(s)lfor0.05<s< 0.15GeV2andfor0.34<s< - - - - 

9 GeV2, and dataI on sl(s) for 0.20 < s < 0.31 GeV2. - - Therefore, with the ex- 

ception of a small gap for 0.15 < s < 0.20 GeV2, we have information on either - - 

the modulus or phase of F,(s) for 4rnz 5 s < 9 GeV2. Notice that nowhere do - 

the currently available phase data overlap the modulus data. 

Consequently, to define our mathematical problem we assume that an up- 

per bound w(s) is known for I F.,,(S) I in the regions to 5 s 5 tl and t2 < s < CO, 

and that 6I(s) is known for tl <‘s < t . - -2 F,(s) is assumed to be a real- 

analytic function in the cut s-plane, with asymptotic behavior bounded by 

w(s) =O (exp (SOL)) (a < &) . (2-l) 

To motivate the discussion, we consider first the case of Levin and Okubo,? 

namely, tl = to. Knowledge of ?jl (s) for to < s 2 t2 allows one to construct a 

function G which has no cut in that region: 

G(t) = F,$t)/W) , P-2) 

where 

We define another function G by 17 

/ 

t2 ds 6,(s) 

t0 
s(s-t) * 

(t2 4 ,+ 

00 

In G(t)=ln G(t) - 7 

/ 

ds In (w(s)/ IQ(s) I) 1 

(2.3) 

(2.4) 
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E(t) is real-analytic in the cut t-plane, with asymptotic behavior similar to 

that of G(t), and satisfies 
4\ 

I G(t) I 5 1 (t2 2 t < m) . (2.5) 

We note that (2.5) becomes an equality in the case where w(s) E I F7(s) I. Then, 

18 .- by the Phragmen-Lindelbf theorem, I c(t) I 2 1 for all t. l3y mapping the cut 

plane into the unit disc and employing the Schwartz lemma, 19 the bounds de- 

rived by Levin and Okubo are recovered. 

To derive our bound, we proceed in an analogous way. Our Omnes-type 

function CJ is given by 

ln S-J(t) = k O” ds 6(s) 
s(s4) ’ (2.6) 

t0 

where 6(s) = 6 (s) for t < s < t and is continuous for t 1 l- -2 < s < =A We choose O- 

6 (s ) to be continuous, rather than zero outside (tl , t,), to avoid the possibility 

of zeros or poles in a(t). Our results will be independent of 6(s) except for the 

region tl 5 s 5 t2, as might be expected. 

Then the auxiliary function G(t), defined by 

G(t) = F.,,(t)/ C?(t) (2.7) 

is real-analytic in the t-plane except for cuts from to to tl and from t2 to 03. 

Defining G(t) by 
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i 
I 

t 
x - l 

t0 
+$-In (w(s)/lW(i)lj [(tl-:;;;-s,] s 

. 

+ 42.8) 

we see that I G(t) I < 1 for to < t ( tl or t2< t < ~0. - It is not possible, however, 

to apply the Phragmen-Lindeltlf theorem to G(t). The reason is that, in gen- 

eral, c(t) as defined in (2.8) has an essential singularity at t = to. In addition, 

it is not clear that I G(t) I < 1 for tl 5 t 5 t2. 

To make use of (2.8), we recall that one obtains dispersive inequalities 

for Fr(t), rather than exact dispersion relations,for two reasons. The most 

obvious is that an upper bound w(s) for the modulus is employed, rather than 

the modulus itself. The more fundamental reason is that Fn may have zeros 

in the complex plane, so that in writing a dispersion relation involving In Fr(t), 

the contributions from the discontinuities across the cuts arising from the ze- 

ros of l$must be accounted for. In the case considered by the authors of Refs. 

1-9, Cauchy’s theorem is written for the function In G(t)/(t2-t)* where G(t) is 

defined in (2.2). It is assumed that the form factor has the representation’ 

(2.9) 

where p(t) is a polynomial of n-th degree corresponding to the number of ze- 

ros of F%(t), 
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P,@) = I7 (1 
j All 

- ” )(l - &)(l -L)(l - $Q . 
j P be* 

(2.10) - 

HereThe bn are complex with Im bp > 0, and the aj and ck are real with aj 2 to 

and ck 2 to. The resulting dispersion relation is given by (2.4) with w(s) E 
_ 

IFr(s) I and with In E(t) representing the contribution from the zeros of F 7r’ 
G(t) may be calculated explicitly, 1 and it is found, as expected, that I G(t)15 1 

for all t. 

Analogously, to obtain (2.8) in the case where w(s) E I F,(s) I, Cauchy’s 

theorem is wri’itten for the function to-t 3 In G(t) (ti-t)(t2-t) - ,I 1 
The function G(t) in (2.8) then represents the contribution from the zeros of Fr, 

and is explicitly given by 2o (for real t) 

Re ba 
ln G(t) = x2 Re J 

B 
-r 

(2.11) 

wheres =x+ibn b p. Taking tl =0.2 CeV2 and t2 =16 mz, we have per- 

formed a numerical analysis of (2.11) for tl 5 t ( t2, and find that In G(t) is 

negative for all complex values of bn. Such an analysis is possible because the 

integrals in (2.11) reduce to the explicit expression given in Ref. 1 when Im bp 

is large enough. Therefore, they need be checked only for bp in a finite region 

near t 0’ 

Taking to 5 t 5 tl, using (2.6) and recalling that w(s) > IF*(s) I we there- - 

fore find that (2.8) may be cast in the form of a bound for I F,(t) I : 
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In IFJt) I 1. w(t) 

- 
= $[ @-yq{ Ip) + I#, + r3tq (tl ( t 5 t,), (2.12) 

where 

s 5 I,(t) = 
t0 

d~[(tl:;;y.t2-s~ ' 

i t 25 
I,(t) = P 

(2.13a) 

(2.13b) 

(2.13c) 

Hence, there exists an upper bound w(t) for the modulus everywhere on the cut, 

with w(t) given by (2.12) for tl ( t 5 t2. 

The final step is to observe that we may apply (2.12) to the usual bounds5-7 

for Fr in the spacelike region (t < 0): 

exp [1(t)1 
where 

(2.14) 

77(t) = 
(to-$ - t; 
f 9 
(to-t) + t; 

(2.15) 

(to-t+ 

I(t) = 7 (2.16) 
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The pion’s charge radius, defined by 

-h 
1 2 
iz 5 = F;(O) , 

satisfies the bounds 

- sinh [I(O)] - I(O)‘ + 5 < 1 r2 

2 t0 -6 wL 
sinh [I(d) ] 1 I(0) + z 

2 t0 
, 

(2.17) 

(2.18) 

where 

1 
t; 

J =7 J 
co ds In w(y) . (2.19) 

t0 s2 (s-t0)” 

With the definition (2.12) of w(t), (2.14) and (2.18) constitute the required 

bounds on FT and rr in terms of the given information about the modulus and 

phase of Fn on the cut. We do not know whether (2.12) is the strongest pos- 

sible bound on IFr(t) I in the region tl < t 5 t2 consistent with our assumptions, - 

but,as we shall see in Section III, when evaluated with the helli, of timelike data 

it constrains the modulus in the region .2 GeV2 to 16 rni rather strongly. 

III. NUMERICAL EVALUATION 

The inverse electroproduction data 14 near threshold yield a form factor 

that appears to be bounded from above by 

and we shall assume 

resonance region we 

w(s) = 

that (3. la) holds 

employ the fit of 

0.79 + 4.71s , 

for4mfL s< 

Benaksas et al. -- 

(3. la) 

0.20 GeV2. For the p- 

16 

I 

w(s) = 
Fom I’ 

(16 rni 2 s 5 1 GeV2), (3. lb) 

where F o =5.83, mp =775.4 MeV, lYp =149.6 MeV andp =i(s -to)‘. The 

form (3. lb) is probably too small for s 2 1 GeV2, so we take 

w(s) = 1.5 s -l (1 2 s59GeV2) . (3. lc) 
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We assume that for s > 9 GeV2 the form factor is bounded by a power law 

w(s) = w(9 GeV2) x (s/9)-” (SL 9GeV2) , (3. Id) 

where n is a real number. 

The upper bound w(s) is plotted versus the data 14-16 in Fig. 1 (solid lines). 

There is some disagreement among the modulus data in the p-peak region; 

however, note that Benaksas et al. 16 
-- claim that the earlier Orsay data of 

Augustin et al. l6 ( o P -- en circles) are too high by 8% in the cross section due to 

a systematic error. 

For the 7r7r phase shift, we take an effective range formula 21 for 

s <0.26 GeV2, 

3 
-z (s - to) cot (Q(s) = 

to2 
3 + f sg(s - to) (to (s 5 0.26 GeV2) , (3.2a) 
alm7r 

where a m3 17f = 0.05 andf = - 3.53, and use a linear form for s > 0.26 GeV2, 

ljl(s) = (-2.6 f 46.2s) deg. (0.26 GeV2 5s (16 mz) . (3.2b) 

Our parametrization for Cjl is shown with the data” in Fig. 2. 

By substituting (3.1) and (3.2) in (2.12) and taking n = 1, we obtain the up- 

per bound for IF,(O) I in the range tl 5 s 2 t2 shown as the dashed line in Fig. 

1. Our result is not very sensitive to n because we have chosen a large scale 

(9 GeV2) for asymptotic power-law behavior of the form factor. The bound in- 

terpolates I Fr I rather smoothly between tl and t2, and rules out any anoma- 

lously large behavior of I Fr I. This might have been anticipated by examining 

the phase shift data (Fig. 2) which show no evidence for resonance-type behav- 

ior of Fn between 0.2 GeV2 and the inelastic threshold. 
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Consequently, to evaluate the bounds (2.14) and (2.18) we may, to a good 

approximation, employ a linear interpolation for w(s) in the region 0.2 GeV2 
-h 

< s c 16 2. Taking n = 1, we obtain the upper and lower bounds for spacelike - - 

momentum transfer shown in Fig. 3 with the Serp,ukhov-UCLA data. 13 Within 

the experimental errors, all data points, except the one at 0.0333 CeV2, are 

consistent with both bounds, although the data tend to lie along the lower bound. 

The experimentalis ts 13 have extracted a value for the charge radius by fit- 

ting their data, including systematic .errors, to the form IFr(t) I2 = ~/(l-At)~; 

their result is given in (1.1). In Fig. 4 we plot our upper and lower bounds for 

rt as a function of the asymptotic power n (solid lines). The requirement that 

the upper bound exceed the lower bound gives the constraint 

n< 1.98 , (3.3) 

which may be compared with the value (n 5 1.2 f 0.3) obtained by Bonneau et - 

al. 9 
- The larger value (3.3) is a consequence of our more conservative esti- 

mate for w(s) in the threshold region, and our choice of 9 GeV2 as opposed to 2 

CeV2 for the onset of s-“-type behavior. 

For comparison, we also show in Fig. 4 the bounds obtained from the 

phase-modulus representation7 with SI(s) given by (3.2) in the region 

to f s 5 16 rnt (dashed lines). We remark that these latter bounds are sensitive 

to the phase and modulus near s = t2, not near s = to. Consequently, it is dif- 

ficult to imagine a form for dl(s) for s < 0.20 GeV2 that would alter the dashed 

lines significantly. In the case of the modulus representation (solid lines) a 

more accurate determination of lFr I near threshold might allow a considerable 

strengthening of the bounds. 

The upper bound in Fig. 4, which is the one of interest, is weakly depend- 

ent on n for n > 0, and is in at best marginal agreement with (1.1) there, 
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although agreement improves as n becomes negative. If the asymptotic behav- 

ior (3&ld) really holds true for s > 9 CieV’, then (3.3) provides a lower bound 

on the asymptotic form factor; however, if asymptopia is not reached until 

some higher momentum transfer, then (3.3) bounds the “average” asymptotic 

behavior of I Fn I. ’ In this connection, the recently discovered resonances at 

3. IO5 and 3.695 CeV in e+e- annihilation 22 and massive lepton pair production 23 

suggest that a scale greater than 3 GeV may apply to the form factor. 24 

IV. DISCUSSION AND CONCLUSION I. 

We have shown that existing data on the phase and modulus of the pion form 
n 

factor may be used to bound the modulus everywhere on the cut up to 9 GeV’. 

This timelike information is then applied to the well-known inequalities l-9 

giving bounds on Fx in the spacelike region. 

If we assume the Serpukhov-UCLA value 

r”, = (0.61 f 0.15) fm2 , (1-l) 

then Fig. 4 shows that the bounds must receive a substantial contribution from 

momentum transfers greater than 9 CeV2. The insensitivity of the upper bound 

for ri to the large s behavior:of the form factor means that I Fr I must be 

anomalously large at high momentum transfer for agreement with (1.1). An 

alternative hypothesis is that (1.1) is too large, and that no anomalous contri- 

bution is needed for consistency between the upper bound and the true charge 

radius. This idea is supported by the agreement between the spacelike data and 

the bounds for n = 1 (Fig. 3). Furthermore, theoretical studies 25 based on 

sidewise dispersion relations for the form factor yield values for rt close to 

the p-dominance value of 0.40 fm2, in agreement with our bounds. The errors 

in the Serpukhov-UCLA data, and the uncertainty introduced by the necessity of 
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extrapolating to t = 0 suggest that a reliable determination of the pion’s charge 

radius will require further measurements of the form factor at small momen- 
-h 

turn transfer. 
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FIGURE CAPTIONS 

1. Data for I Fn I from Refs. 14-16, plotted versus s. The solid lines are 
c, 
our upper-bound function w defined in Eq. (3.1) and the dashed line is the 

bound given by Eq. (2.12). 

2. The 7~ phase shift hl given by Eq. (3.2) (solid line) plotted versus s with 

the data of Ref. 12. 

3. 

4. 

Upper and lower bounds for Fr assuming l/s asymptotic behavior (solid 

lines) plotted versus -t. The data are from Ref. 13. 
<. 

Upper and lower bounds for r”, plotted versus the asymptotic power n. 

The solid and dashed lines are modulus and phase-modulus bounds, re- 

spectively, as discussed in the text. The experimental value (1.1) is in- 

dicated. 
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