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I 

This document is a working paper on the phenomenology of the $, 

which consists of two principal parts. It has evolved during a series of 

seminars on the $ with broad participation of the theoretical and experimental 

community at SLAC . The first part is a brief synopsis of the main tests and 

conclusions which can be extracted from the data, and is concerned with results. 

The second part is a collection of more detailed discussion of various points 

of the first section, and some independant discussions. 

References to discussions in the second section are made in the first 

section by author. 
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Phenomenology of the $ 

I. Introduction 

The principal channels to be investigated are 

e+e- 
+- 

-G--e e 

- lli - P-k 

-* - hadrons . 

The energy dependence of the phenomenon across resonance is of importance: 

we define three regions of interest - the peak region W = Wrest AW, with AW 

the machine resolution. For W a few MeV below the peak we have the inter- 

ference region, where the resonant Breit-Wigner amplitude interferes with the 

electromagnetic background. The radiative tail dominates the region a few MeV - 

above the peak. 

We assume there is a single resonance in the observed peak, unless other- 

wise indicated. P 

The second section contains a discussion on the extraction of partial widths 

from the cross section data, and numerical estimates based on the available 

preliminary data. The third section is a discussion of spin and parity assignments 

based on the two reactions with leptonic final states. 
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11. Line Shapes and Partial Widths 

Ultimately, direct fitting of the shape of the resonance curves with energy 

should extract the most information on partial widths, but a simple procedure 

suffices for orientation purposes. 

First, ignore radiative corrections. Then from Breit-Wigner 

Integrating across the resonance causes the interference term to cancel out 

If all final states are summed, then the area under the peak measures Fe+e-. - 

More generally, 

A. Area under efe- - all hadrons = 
A-iT*((T+ 1) p@e- rhd 

WZ 
G& 

which must be corrected for radiative effects. 

B. Contributions of neutral modes (other than v;) can be estimated from 

the SP - 16 (HEPL) experiment. 

C. The area under the e’e- - cl’p- peak = 
~+(~J--tI) 7@y- r/p- 

WL T?d- 

However, it is better to take 
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Area@‘p- ) (Peak he ight)r.r+p- 
Area(hadrons) Or (Peak height)hadrons 

This should be independent of radiative correction and resolution. The same 

+- 
holds for the area under e+e- - e e . 

D. Radiative corrections: Ignoring the contribution of the interference 

term, the integrated area under the Breit-Wigner peak (treated as a 6 -function) 

out to an energy w is given by a factor 

times the unradiated area (see figure). 

-4ntesated area __ --- --- 

( Fig. 1) 
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That is (Area) = AOe -6 . with (TO(W) = AOd (w-w,). 

If W-W0 >> AW, the machine resolution, this correction is independent 

of AW. 

The radiative tail (for W >> WO) is 

Other corrections are expected to be small ; however radiative corrections 

to interference effects are not negligible. Structures with rapid energy 

variation tend to be suppressed by a factor e -6 
. 

E. Numerical Estimates: 

Numerical integration has been caried out, using the published data, 

for the process efe- --$ 3105 -charged hadrons with Wmin=3. 10 GeV and 

W =3.12 GeV. We obtain 
max 

Area = 8600 X 10-32cm2MeV 
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From the ratio of two peaks we obtain 

If ICI couples to e+e- electromagnetically, then we expect 

If it couples weakly, then perhaps one must include neutrinos to give 4l? 
I-l+lJ- 

rather than 2. 

In conclusion 

-Ju = .J f ,,‘-, + -7-k-h? A-CA 1 

-GdCC~ak~e4~ I G,&&-‘j’~) 

These numbers are intended to be illustrative only. 

References in the second part for this section are: 

Radiative corrections etc. . . , J. D. Jackson and Y. Tsai 

Interference effects in hadrons S. Brodsky and R. Pearson 
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111. Spin and Parity 

This section is divided into three parts. In the first two sections the cases 

J = 0 and J > 1 are considered briefly. In the third section the case J = 1 is 

considered in detail. 

A. Spin 0: 

(i) -If (&I.!$ -background) is not isotropic, then JIc, # 0. 

(ii) If $L(e+e- 

J+ # 0 because the initial 

cannot interfere with the 

- P’P-) shows an interference dip (e. g. Fig. l), then 
+- 

ee state for the background amplitude has Jz= + 1 and 

J = 0 resonant amplitude. (For Jr0 > 1 there can be 

interference in the angular distribution. ) 

Write the vertex as z(g, + igp y5)u. Then 
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B. Spin > 1 (G. Ringland, D. Wright) 

If the @ couplings to leptons preserves chirality then 

e*,f4 t - 
YY 

If C and P are conserved, then A(s) = B(s). The distributions are plotted for 

J = 2, 3, 9, 10. They are self explanatory. (Figs. 2-3). 

The most general analysis for spin J is too cumbersome to be informative. 

C. Spin 1: (Budny, Cvitanovic, Giles, Pearson. . . ) 

If there exists no CP violation and no anomalous moment couplings, the zj 

+- 
contribution to the e e -71 amplitude can be written: 

where gV and gA are real. 

This gives differential cross sections 

e+e- --> ete’ 
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where we have assumed universality of electron and muon couplings. (If not: 

2 
gV - gv(ekVU) and 9: - gA(ekA&)‘) 

The interference terms between II, and the photon are reflected in the behavior 

of the total cross sections and angular distributions: 

Total Cross Sections 

The interference terms cause dips in the total cross sections for both P’,u- 

and e+e- . For /.L’P- the dip is a near zero of the theoretical cross section on the 

low energy side of the peak. 

There is a corresponding enhancement on the high energy side. After smearing by 

the beam resolution (fig. 4 ) 

The presence of the interference dip in e+e- -11+/J- implies that 1(1 cannot have 

pure axial couplings. 

The sign of the effect in (r e+e-- e+e- is reversed and markedly less 

pronounced. Edip > m because the predominant interference is with the t-channel 

photons cancelling the interference with the s-channel photnns (Fig. 5 ). Any 

such dip will be buried under the radiative tail on the high energy side of the peak. _- 

It is worth mentioning that experimentally one need not measure the cross 

section at the dip where event rates are low in order to see the interference terms. 

Any measure of the skewness of the total cross section relative to a pure Breit- 

Wigner near the peak will suffice. 
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changes by a factor- 2 over the region m 
JI 

- 1, MeV - m * + 1. MeV. 

Angular Distributions 
+- +- 

e e --PI* 

Any large parity violation in the zj itself (g, - g,) is observable as a front- - 

back asymmetry at the peak in e+e- - clz- 

(Fig. 6 ) 

For nearly pure V or A the distribution at the peak is (1 + cos2 O), so one must 

look in the interference region to distinguish the two cases. 

For pure vector the angular distribution is 1 + cos26 at all energies - 

there is no front-back asymmetry. 

For purely axial vector $, there is a front-back asymmetry 

that is negative in the interference region and positive in the radiative tail of 

magnitude - 35%. (Fig. 6 ) 
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For the e+e- reaction, the information in the angular distributions 

is more difficult to extract. The background Bhabha process has a front- 

back asymmetry A=O.66. For V=A, this asymmetry is changed only 

slightly near the peak (Fig. 7 ). For either pure V or pure A, A is decreased 

at the peak by the addition of a large (1 +cos20) term. The effects in the 

interference region are relatively small. 

Is there more than one # ( or + ) ? 

Various theories could have more than one neutral Ic,, conceivably 

degenerate in mass to an MeV. (See Barshays preprint; also colored ” p”’ 

degenerate with colored ” wo” . is another such option. ) A variety of 

interference effects are possible, depending on whether the two lines overlap, 

one is broad, one narrow, ect.. The consequences for experiment are 

(i) Branching ratios, distributions, ect. on the high side of the resonance 

may differ from those on the low side, and 

(ii) The line shapes may be peculiar. 

A general study for the lepton channels, assuming two spin one 11, s, 

is given by B. Ward. 

References in the second part for this section are: 

Effects of P and C symmetry on angular distributions . . . 

A. Weldon, S. Brodsky, J. D. Jackson, and J. Kuhn 

Two +‘-s . . . . B. Ward 

Calculations of crossections . . . . R. Budny, and R. Giles 
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A simple coherent discussion of the problem of radiative corrections for the 
production of resonances in e+e- annihilation is given with emphasis on narrow 
resonances such as the J1(3105) and $(3695) where the finite spreads in the energies 
of the beams are a significant factor in extracting partial widths from the data. 
Examples for the $(3105) and J1(3695) are given. 
I. Introduction 

The problem of radiative corrections is familiar and well understood by 
workers at electron accelerators or e+e- storage rings. These notes probably 

contain nothing new for such experts, although the occurrence of resonances that are 
narrow compared to the beam energy resolution introduces aspects not normally 
considered. The &&pose of these notes is to collect in one place the formulas 

+ - 
relevant for the analysis'of resonant line shapes and parameters in e e annihilation 

and to apply them to determination of the partial and total widths of the $(3105) 
and JI(3695). Acknowledgments are due to J. D. Bjorken, G. Feldman, H. Lynch, 
Y.-S. Tsai, and D. R. Yennie for teaching me about various aspects of radiative 
corrections. 

In e+e- annihilation the lowest order radiative corrections arise from the 
six diagrams in Fig. l(b). 

Fig. l(a) 

Fig. 1 .b 
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The first two diagrams correspond to real photon emission and their sum contributes 
incoherently to the cross section. The other four renormalization diagrams are higher 
order in a and contribute in lowest order only by interference with the nonradiative 
amplitude of Fig. l(a). The calculation of the lowest order radiative corrections is 
done in several places. The most immediately applicable reference is 

G. Bonneau and F. Martin, Nucl. Phys. B27 381 (1971). -' 
Their Eq. (16) is given below as Eq. (1). 

A more complete treatment of the problem of the infrared divergences associated 
with the vanishing of the photon mass involves the consideration of emission of 
arbitrary numbers of very soft photons. A basic understanding of the soft photon 
problem was achieved by Bloch and Nordsieck in 1937. A comprehensive modern treatment 

is given by 
D. R. Yennie, S. C. Frautschi, and H. Suura, Annals of Phys. (N.Y.) 13, 379 (1961). 

See also the Brandeis 1963 Summer school lectures by Yennie: 
D. R. Yennie, "Topics in Quantum Electrodynamics", in Lectures on Strong and 

Electromagnetic Interactions, Brandeis Summer Institute in Theoretical Physics, 
1963, Vol. 1, ed. K. W. Ford, Brandeis University (1964). 

The consequence of including the multiple emission of soft photons is an 
"exponentiation" of the lowest order logarithmic corrections into power law corrections 
A nice discussion of this exponentiation for soft photon emission by a classical 
current source can be found in 

J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-Hill, N.Y. 
j1965), Sect. 17.10, p. 202-207. 
Radiative corrections for high-energy electron scattering by nucleons and by 

nuclei are treated authoritatively by 
L. W. MO and Y. S. Tsai, Rev. Mod. Phys. &., 205 (1969) 

with improvements in 
Y. S. Tsai, XX-PUB-848 (January 1971). 

II. Basic formulas 
(a) Notation We consider ultrarelativistic electrons and use the following 

notation: 
w = total energy in the center of mass 
E = W/2 = energy of each of the electrons in the initial state 0 
k = energy of an emitted photon 
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‘J,(w) = 

a(w) = 
G(w) = 

M = 
r = 

r* = 
(Area) = 

0 

G(w - W') = 
u = 

AW = 

tAW)obs = 

+- a cross section for e e annihilation at energy W in the 
absence of radiative corrections 
cross section with radiative corrections 
cross section with radiative corrections and folded with a 
resolution function 
mass of narrow resonant state 
total width (FWl%f) of a resonance 
partial width of a resonance into channel a 
energy integral of an isolated resonant cross section, in the 
absence of radiation corrections 
normalized resolution function, normally taken to be a Gaussian 
standard deviation parameter of a Gaussian resolution function 
2.3548 Q = FMM of a Guassian resolution function 
FWHM of G(W) for an isolated resonance 

The quantity t is the (classical) energy radiated per unit frequency interval at low 
frequencies when electron and positron in head-on collision disappear. 

(b) Bonneau-Martin first order formula 
Equation (16) of Bonneau and Martin for the cross section including photon 

emission and renormalization corrections can be written in our notation as 

u(W) = cl,(w) 
c 

1 +2&g) +gt 

+t * (1) 

In the integral over dk the argument (W - k) in u. should more correctly be 

sw2-2wk', but for narrow resonances our approximation is perfectly adequate. 
Bonneau and tirtin's upper limit of integration qmex has been put equal to E, 
corresponding to the fact that an electron can lose all its energy in radiation. The 
soft-photon emission is contained in the dk/k term and is just the classical result, 
corrected for energy conservation by the cross section uo(W - k). It is convenient 

to rewrite Eq. (1) with the soft-photon part displayed separately from the "hard" 
photon terms: 
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where 

‘J(w) = uo(w )[l + E-j + t I” $[uo(w - k) - uo(wjj 
0 

t - F b' dk (1 - &) uo(W - k) (2) 

(3) 

is a small number that changes slowly with energy. (For the 9(3105), where 
t = 0.076, E = 0.085.) The last t erm in Eq. (2) is small compared to the first two 
unless the energy W is far off resonance. From now on we omit this "hard" photon 
piece, although at appropriate points below we will come back and pick it up. 

With the omission of the "hard" photon terms, our simplified version of the 
Bonneau-Martin formula reads 

u(w) = u,(W)[l f e]+tjk$uo(W-k) -uo(Wjj . 
0 

(c) Exponentiated form of the radiatively-corrected cross section 
The emission of arbitrarily large numbers of soft photons with energies less 

than k leads to the introduction of a factor 

exp[- t Pn(E/k)] = [$)" 

in the integrand of the integral in Eq. (4). Then we find that the radiatively 
corrected cross section becomes 

SE 0 t u(w) = t F $ - uo(W - k) + E u,(W) . 
0 

The justification for keeping the E u,(W) term after exponentiation is not clear. . 
The presence of the factor (k/E>t makes the integral convergent at the lower limit. 
In fact, 
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showing that the radiative processes redistribute the cross section in energy W but 
do not affect the total probability. This argues for the omission of the term E a,(W) 
in (6). The first part of E is very small (0.0027) and can be viewed as some sort 
of "inner" correction to the width fe in the entrance channel. The second, energy- 
dependent, part of E is larger, but is not greater than 0.1 even at PEP energies of 
w = 30 Gev. For simplicity, we omit the E o,(W) term from (6) from now on. The 
reader who wishes to add its contribution may do so. 

(d) Folding with the energy resolution function 
The incident beams in a storage ring have inherent spreads in energy coming 

mostly from the quantum fluctuations in the emission of synchrotron radiation. Each 
beam is approxtitely Gaussian in energy and so the total energy W is distributed 
approximately in a Gaussian fashion. If the normalized resolution function for a mean 
beam energy W is G(W - W’), the observed cross section is 

OD 

G(w) = 
I 

dW' u(W') G(W - W') . (7) 
-0 

The resolution function G is assumed to fall off sufficiently rapidly that the 
limits of integration can be taken formally as +"o without damage to the physics. 
Using the radiative correction formula (6) for u(W'> this becomes 

ce 

G(w) = t dW' G(W - W') a[' $$$ uo(W' - k) . (8) 

^_ 

In using Eq. (8) for relatively narrow resonances it will be convenient to 
make certain quite justifiable approxi&tions. For example, with a,(W) as a reson- 
ance whose width P is small compared to its mass M, it is justified to replace the 

variable upper limit on the k integration by E = : and to approximate 

(-&)" = (')". ($I) t 3 ($ . 

I Recall that t = 0.076 for M = 3105 MeV.) 
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111. High-energy radiative tail 
A characteristic feature of the cross sections is a radiative tail on the 

high-energy side of a resonance, as shown schematically in Fig. 2. This corresponds 
physically to the emission of a photon by one or the other of the incident electrons 
causing the energy of annihilation to be in the neighborhood of the resonance mass M, 
even though the incident energy W is considerably higher. For energies sufficiently 
above the resonance that (W - M) is large compared to the larger of the line width 
r and the width AW of the resolution function, Eq. (8) yields a simple result: 

u 

( ) 

t 
G(w) = t(Area)o.&. ' i ' (9) 

where 

(Area)o = ao(W')dW' (10) 
W 

M 

is the area of the cross section without radiative corrections. If we return to Eq. 
(2) and pick up the "hard" photon terms, this becomes 

NQW = t(Area) . 7 
D ) 

t 1 W-M 
0 n-k+ 2E2 * 1 (11) 

The last two terms are important only very far from the resonance. The first term is 
basically the l/AE bremsstrahlung spectrum, modified by a slowly varying factor 
incorporating the multiple soft-photon emission. The lowest order (Ronneau-Martin) 
cross section gives (11) with this factor omitted. Note that Eq) (11) is independent 
of i(w - W') and depends only on W, M and (Area)o. 
IV. Cross section for a resonance whose width is large 

compared to the energy resolution 
For a resonance like the p" and even the $, its width r is large compared 

to the beam resolution. Then the resolution function G(W - W') can be taken as a 

delta function and the observed cross section a(W) is essentially equal to (6): An 
integration by parts gives 

a(w) = a,(W - k) . (12) 
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In writing (12) we have dropped a term a,(W/2), the assumption-being that, if u,(W) 

is a resonant cross section peaking at W = M and W is not too far from resonance, 
such a term is negligible. Suppose that u,(W) is a Breit-Wigner resonance with widths 
uhose energy variation can be neglected. Then 

u,w = (a0 ,,, r2/4 
2 . (13) 

(M - W)2 + 5 

l%e cros6 section (Uo)mx is the peak cross section; its value depends on the 
particular channel or channels being considered. With (13) inserted, Eq. (12) becomes 

u(w) 
r2 E .kt 

= bo)*x -J- 
s 0 

2(M - W + k) 
E 

7 

2dk . (14) 

0 (M - W + k)2 + $ 

It is probably simplest at this stage to integrate numerically in order to see what (14 
gives. 

For reference and orientation we evaluate (14) at W = M. This is essentially, 
but not quite, the peak cross section, the maximum being infinitesimally higher in 
magnitude and in position. We find 

u(M) = &i&J ii t(“o)max 0 - (15) 

The first factor can be approximated as (wt/2)/sin(wt/2) 2 (1 + w2t2/24). It iS 

equal to unity within 0.004 or less up to PEP energies. Thus u(M),= (P/M? umax. 

Numerically, for the p" meson, with M = 770 MeV, t = 0.063, ? = 150 MeV, we find 
(P/M)t 2 0.90. For the w" meson, with l' = 10 I&V, (P/M)t = 0.76. The reduction 
in peak cross section because of radiative processes is thus not negligible and is 

larger the smaller the width (provided the energy resolution is good--see the next 
section). 

For completeness we note that the lowest order radiative correction gives a. 
factor 1 - I t MM/r 11 instead of (r/M)', corresponding to the first terms in an 

expansion of (r/M)t = e&t Iln(h.!/f)) in powers of t. For the w" the linear 

radiative correction factor is 0.723 instead of 0.758. Inclusion of E a,(M) from Eq. 
(2) or (6) adds 0.072 to the 0.723, giving 0.795. 

The high-energy radiative tail is given by Eq. (11) with 

(heal0 = Jj r(~7,)~~ . (16 
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V. Cross section for a resonance whose width is very narrow 

compared to the energy resolution 
Although the general case of a resonance whose width is comparable to the 

energy resolution can be dealt with effectively only by numerical integration, the 
limitoppositeto that of the previous section can be discussed simply if the resolution 
function is known. If the resonant cross section (13) has a total width r that is 
very small compared to the !L%RM AW of the resolution function G(W - W;) we can 
approximate uo(WH' - k) in the integrand of Eq. (8) by 

uo(W’ - k :) = (Area)o S(W' - M - k) . (17) 

Then we obtain t 
Z(W) = t(Area) dW' G(W - W').W+a e(w' - M) . 

0 

This can be written as 

Z(W) = t(Area)o f i$ ($): G(W - M - x) . (18) 
0 

Here we have made a very slight approximation by putting (M/2E1)t = 1 in the 
integrand. 

If the resolution function is known the integral can be evaluated (numerically 
If (W L M) is positive and large compared to the width of the resolution function, 
the slowly varying factors x -1(2x& can be evaluated at x = \W - M and with a 

normalized G, the result (9) for the cross section in the radia'Ave tail is obtained, 
independent of the exact shape of G. 

For a-Gaussian resolution function the peak cross section (actually the value 
at W = M) can be found explicitly. Writing 

G(x) = - exp(-x2/2U2) , (19). 

and introducing z = x2/2u2 in Eq. (lg), we find 

I 
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a(M) = $Area)o.G(0).(T.) t j- ~‘-1 ecz dz 

0 

= G(0)(Area)o g ( )” p/2 r (1 + $)I (20) 

The factor in square brackets can be approximated as 

[2t’2 r (1 + $-I 2 1 + 4 (In 2 - 0.5'772...) 

=1 + 0.058t . 

Since t < 0.1 even at PEP energies, this factor can be set equal to unity. The 
observed peak cross section for a resonance whose width is negligible compared to 
the energy resolution is therefore closely given by 

G(M) = g ( ) 
t -GtO)(Area)o (21) 

where o is the standard deviation of the energy resolution function and 
G(o) = l/o p. Th e radiative processes thus decrease the peak cross section by a 
factor of ( ~U/IV~)~. Typical values at the $( 3105 ) are M = 3105 MeV, u = 0.78 tiV, 
t = 0.076. This gives (2a/M)t = 0.561, a very significant reduction. 

The corresponding calculation with the lowest order radiative correction 
formula gives 

E 
Z(w) = (Area)o G(W - M) + t 

_- 
@W-M-k)- G(W-Mjl 

0 

The peak cross section with the Gaussian (19) is 

a(M) = 1 - 
I: 

(22’) 

This is just what one obtains by expanding Eq. (20) to first order in t. For the 
$J( 3105 ) parameters quoted above, the factor in square brackets is 0.414. If we add 

the E term from Eq. (4), this increases to 0.499, compared to 0.561 for the 
exponentiated result. 
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VI. Area method of determining resonance widths 
in the presence of radiative corrections 

The area method is the most reliable one for determining resonance parameters 
because the details of the energy resolution are minimized to a great degree (In 
principle, they are eliminated entirely.). The method is well known in nuclear 

physics. The only new aspect here is the presence of soft-photon processes. Firstly, 
consider only the energy resolution. If the resonant cross section is a,(W) then 
the folded cross section is 

S(w) = 
5 

G(W - W' ) ao(W' ) dW' . 

We now integrate the cross section, smeared by the resolution function, from Wmin 

to a variable upper limit W. The lower limit Wmin is chosen in practice to be 
where the resonant part of the cross section first begins to be visible above the 
background. The integral is 

W 

A( ‘Wmin > = JW a(W’ ) dW' = 
J I 

dW' dW" G(W' - W") u,(W") . 

W min 'min 

The behavior of A(W,Wtin) as a function of W is shown schematically in Fig. 3(b 
In Fig:3(a) the cross section and the folded cross section are cketched. 

M 

Fig. 3(a) 

M 

Fig, 3(b) 

1. 
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At positive values of (W - M) large compared to the observed width robs of 
a(W) the integral becomes constant, Its value is found by interchanging orders of 
integration above, Since G is normalized we find 

lim 
(w-M brobs 

A(W,Wdn) = dW" ao(W1) E (A.rea)o . (23) 

The plateau value of A(W,Wmln ) is thus equal to the area of the original cross 
section, independent of the form or details of G(W - WI). 

The method needs only slight modification because of the radiative corrections. 
We begin with the smeared cross section with radiative corrections, Eq. (8), and 
integrate it from Wmin to W: 

A(W,W& dW" G(W' - W")t 
t 

uo(W" - k) . 

Since we are concerned with resonances whose observed tidths are sm~~ll compared with 
W it is permissible to neglect the energy variation of a factor (w2E'f)t --even for 
the P" it causes an error of less than l&and also put the upper limit on the dk 
integration as M/2. Then an integration by parts in the dk integral gives 

A(W,, ) = iw dW' [ dW" G(W' - W" 
W min -(p 

p2 dk (2k)t dcfo(y,; k, . 
0 

If we now perform the dW" integration and integrate by parts, .we obtain 

A(WA&) = j-1 dW* %' a ($ j- dW" oo(W" - k) dG($ '") . 
-Do 

Now we can do the W' integration: 

M/2 

A(W,Wmin) = 5 dW" uo(W" - k) - W") - G(Wh - W") . 

0 I 
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Since W = Wmin is the energy below which there is no resonant cross section, the 
last term G(Wtin - W") can be dropped. Then a change of variables in the dW" 
integral gives 

A(W,Wmin > -= r” dk ($)t j- dW’ u,(W') G(W - k - W') . (24) 
0 -Q) 

To see the bahavior of A(W,W&,) we note that the integral over dW' is confined 
by the resonant cross section o,(Wl) to a range of the order of +r around 
W' = M 
IW - k' 

The resolution function, on the other hand, is nonvanishing only for 
- W’I 2 AW. If (W - M) is large compared with the larger of r and ,AW, the 

range of the dk integration is confined to k 2 (W - M) f I' f AW. Since the factor 
(2k/M)t is slowly varying provided k is not too small, it can be evaluated at 
k=(W- M) in this limit and taken outside the integral. The remaining integrals 
are just. as in the radiationless situation, provided (W - M) >> AW. We thus obtain 

A(W,Wmin) + [3!!+Q]" .(Area)o 

or 

(Area) = 
0 (w-M;;:r,Aw [zv+m-j t .A(w,wdl > - (25) 

This is the generalization of F.q. (23) to include the effects of the radiative 
corrections. The integral A(W,Wtin) continues to increase sl,owly with increasing 

W because of the radiative tail, Eq. (9), rather than levelling\off to a plateau 
as in Fig. 3(b). The factor [M/2(W - M)lt, which is larger than unity but decreases 

with increasing energy, corrects for the rise in A(W,Wmin). The product is larger 

than A(W,W&& compensating for the reduced cross section near the resonance, but 

levels off to a well-defined plateau that is the true area of U,(W) in the absence 
of soft-photon processes. In practice, one calculates A(W,Wtin) as a function of 
W and then begins multiplying by the correction factor for values of' W slightly 
above the resonance. 
VII. Example of determination of re for $(3105) and values for 

other widths 
To illustrate the use of Eq. (25) we consider the integration of the cross 

section u(e+e- + hadrons) to determine re for the J1(3105). We use the data from 
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Augustin et al., SLAC-PUB-1504, November 11, 1974. These are not the latest or best 
data, but they are accessible in the literature, A summary of partial width informa- 
tion to date is given after the working out of the example. 

The data on e+e- + hadrons near 3.1 GeV are plotted on a linear ordinate 
scale in Fig. 4. A background cross section of 30 nb has been subtracted. Also 
shown are the radiative correction factor lM/Z(W - Mutt the integral A(W,Wtin) 
and the product of the two. 

The plateau value for the area according to Eq. (25) is 

(Area) 0 
= 11.5x103nb XMeV , 

For a narrow resonant line (13) the area is given by (16). If a J = l- 
assignment is assumed the peak cross section for a reaction a+b is 

(uo)max = 12rr rarb 
7-T 

where Pa,rb are the partial widths for the two channels and P 
The product PaI',/I' is thus determined to be 

i s the total-width. 

(26) 

= 4.34 x lo-l4 [M(MeV))2*[A.rea(nb x MeVg l&V . (27 

The numerical factor converts nb to (MeV)-2, as well as including the factor 
(6n2)-? For M = 3105 MeV and (Area)o = 11.5 x 10 3 nb x MeV, this gives 

re rhad 
~_ 

r = 4.81 x 10 -3 Mev 

A rough estimate of the error in determining the area and the resonant mass indicates 
a generous uncertainty of 5 to lo%, apart from systematic errors. 

Integration according to Eq. (25) of the cross section u(e+e- + u+u-) of 
Augustin et al. (called by them the cross section for 2-body, collinear events that 
are not pairs of electrons) gives 

(Area)Eu 2 7.8 x lo2 nb x MeV 



LAWRENCE RADIATION LABORATORY - UNIVERSITY OF CALIFOfiNlA 

PHYSICS NOTES 
SUBJECT 

Radiative corrections and resonance parameters in 
e+e' annihilation 

YEW0 HO. PACE 

JDJ/7L- 3 1L NAME 
J. D, Jackson DITE 
December 2, 1974 

2500 - 

2.0- 

1.5 - 
7 

.A(W,Wdn) '.O- 

. -.- c - 
\ 

- - 

&iA( 

_- -- 

w,w&n 1 

-5 0 5 . 10 15 20 

W - M (MeV) 

Fig. 4 



LAWRENCE RADIATlOh( LABORATORY - UNIVERSITY OF CALIFORNIA 

PHYSICS NOTES 
s,, BJ t CT 

NEW0 NO. PAGE 

JDJ/74:3 15 N*ME 
Radiative corrections and resonance parameters in 
e*e' annihilation 

J. D, Jackson DITE 
December 2, 1974 

with an error of 20% at most, apart from systematics, Assuming this cross section 

is truly e+e- * - we have -+P1-1 

l-r 
-9 = 3.3 x 1o-4 Mev . 

We thus have Pu/Phad = 0.068. Assuming that r = re + ru + rhad and that ru = P 
(This is consistent with the observed resonant contribution in the e+e- + e+e- 

e 

channel), we can solve for P e' rhad' r: 

re = 5.5 k 0.5 keV 

hid = 81 keV 

I 

(Data of Augustin et al., SLAC-PUB-1504 

r = 92 keV . 

The error on rhad and I' is probably less than 20%, apart from systematics. 
The same method of analysis has been applied to other data on the $(3105) 

(SP-17 memorandum from V. Liith, November 25, 1974) and on the $(3695) (preprint of 
Abrams et al., November 23, 1974 and private communication from W. Chinowsky). A 
summary of the results is as follows: 

+(31;5! 
ee + hadrons (Area) 

0 
= 12.1 x lo3 nb x MeV(+5%) 

re rhad 
r = 5.1 + 0.4 keV . 

The error estimate is generous. With Phad/P = 0.88 this gives 

re = 5.8 + 0.4 keV . 
. . 

With the same assumptions as above, I' f 97 keV 

Q(3695) 
+ - 

ee + hadrons (Area) 0 
= 4.0 X lo3 nb x MeV(+5%) 

re rhad 
r = 2.4 t 0.2 keV . 
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+ - -+ &J- ee This channel is relatively much smaller than for the $(3105) and 
it is difficult to extract a resonant cross section. A rough estimate gives .- 
rphad 2 2 x 10 -2 (+30%). This would imply Pe = 2.5 + 0.2 keV and P - 125 keV. 

As discussed in my Physics Notes JDJ/74-1, this estimate of P must be viewed only 
as a lower limit. It is possible at the moment that the R+I1- channels are contam- 

inated with 11+R- + neutrals coming from sequential decays $(3695) + $(3105)w"wo 
and JI(3105)n'. Attributing all of the observed leptonic enhancements to 

$(3695) + a+ll- thus gives an upper limit on Pll/Phad and a lower limit to P. 
VIII. Quick and dirty method of estimating (Area)o 

While the area method is most reliable in determining (Area)o, a fair‘ 
estimate can be made quickly using the radiative correction factor for the peak 
cross section. For a resonance seen in good resolution (Sect. IV) we found a factor 

(r/d and for one seen in poor resolution (Sect. V), (2abd where u is the 

standard deviation of a Gaussian resolution function. Since the FWKM of a Gaussian 

is AW = 2.354&s, a general radiative reduction factor for whatever conditions of 
narrowness is 

(0 1 max with radiative = 
processes 

l ('max)no radiative (27) 
processes 

where AWobs Is the observed FWHM of the line. This interpolates between the two 

limits smoothly and is in error by less than 1% in comparison with (20/M)t. 
If the observed line is assumed to be Gaussian in shape, its area, without 

radiative tail, is 

lArea lobs = 1.~4%~~)obs~~~obs . (28) 

. 
If the line shape is a Breit-Wigner, the coefficient 1.0645 becomes w/2 = 1.57. 
We assume here that the resonance is narrow and the resolution function is Gaussian, 
so that the observed line shape is approximately Gaussian. 

The true area can thus be estimated from Eqs. (27) and (28 ) to be 

(Area)o z (291 

The radiative tail produces a skewing of the symmetrical line shape, but makes only 
a small effect on AWobs. 
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As an example of the use of (29) we consider the J1(3105) data of Augustin 
'et al. used previously in Fig. 4.- The observed peakcross section and FWHM are 

(0 1 = 2300 nb, AWobs = 2.5 MeV. With M max obs = 3105 h&V and t = 0.076, Eq. (29) 
gives 

(A=a)o = 1.0645 x 1.72 x 2300 x 2.5 = 105 x lo3 nb x MeV . 

This is to be compared with the value of 11.5 x 103 nb x MeV found by the area 
method. 

For the $(3695), the data of Abrams et al. has (umax)obs = 725 nb, 

"ohs 2 3.0 MeV, giving (Area)o 1 1.0645 x 1.74 x 725 x 3 = 4.0 x 103 nb W MeV, 
compared to 4.2 x 103 nb s MeV found from the same data by the area method. 
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+: Extraction of Decay Widths and Coupling Constants. 

How to Deal with Radiative Corrections and Machine Energy Width 

Y. S. Tsai 

A. INTRODUCTION 

The effects of radiative corrections and beam energy spread on the exper- 

iment can be divided into three categories: 

1. Effects on angular distributions 

2. Effects on the energy dependence of the cross section a(w) 

3. Effects on the: area under a resonance Jcqesonance dw. 

In this report we consider only the last two. 

We shall treat the radiative corrections in two steps. The first step deals 

with corrections necessary to obtain the decay widths and the interference ef- 

fects. The second step deals with those corrections which are necessary only 

when one is interested in obtaining the coupling constants of $ to various parti- 

cles. The first step essentially reduces the experimental cross section into 

the cross section represented by Fig. 1. The resultant decay widths can be 

represented by diagrams shown in Fig. 3, where the blobs represent all pos- 

sible effects. The second step essentially takes care of the higher order elec- 

tromagnetic contributions to these blobs. 

There are many reasons for splitting the radiative corrections into two 
. 

parts; let us list a few: 

1. It is more natural to define the partial decay widths with all the ef- 

fects of the blobs in Fig. 3 retained. The higher order electromagnetic con- 

tribution to the blobs can be subtracted when we evaluate the coupling constants. 
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2. We shall exponentiate the lowest order radiative correction in Part 1 

of the radiative corrections. The blobs in Figs. 1 and 3 are not obtainable by 

exponentiating the lowest order electromagnetic corrections. For example, 

the correction due to the vacuum polarization is I/ 11 - 4 dvac 1’ instead of 

exp @vat 1, where Gvac is the lowest order correction. 

3. The vacuum polarization correction is absent if #is not coupled to a 

photon; for example, if 11, is a neutral weak boson. Since we do not know what 

$is at this moment it is best not to perform corrections which may not be 

justified. 

B. THE EFFECTS OF BEAM ENERGY SPREAD 
AND THE SOFT PHOTON EMISSION ON THE SHAPE OF u(w) 

The energy dependence of the experimental cross sections for ef + e- - 
+ p++py.ande +e--e + + e- near the resonance will reveal whether $ has the 

same quantum number as that of a photon. However the experimental cross 

section oexp(w) is quite different from the theoretical cross section qh(w) 

because the machine energy has certain width and also the energy of the elec- 

tron is degraded by the bremsstrahlung emission. Let the mean energy of the 

machine be?w and let us denote the machine energy distribution by G(w ,w’)dw’. 

For concreteness let us assume that G(w,w’) has a Gaussian form: 

G(w,w’) = 1 
&A exp 

[- W-W’)~/PA~)] , 

where A is related to the full width at half maximum (FWHM) by 

(1) 

A = (FWHM)/Z. 3548 M 1 MeV . (2) 

Let us denote by B(w’ ,w”) dw” the probability distribution of the c. m. 

energy after the bremsstrahlung emission, w’ being the energy before the 

bremsstrahlung. The energy loss by bremsstrahlung is w’ -w”. Since energy 

loss is always positive we have 

B(w’,w”) = 0 if w1 -WI’ < 0 . (3) 
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The expression for B(w’,w”) can be obtained from exponentiating the AE de- 

pendent part of the radiative corrections given by Schwinger: 

es = exp [- c Pn (2AE/w’)J =/“’ B(w’ , w”) dw” (4) 
w’-AE 

where 

Differentiating both sides of (4) with respect to AE, we obtain 

1 .!J(w’- w”) . 

(5) 

03) 

The desired relation between g exp(w) and a,(~“) is given by 

uexpW = 4; dw’ 4 m dw” G(w, w’) B(w’, w”) cth(w”) 

J 
c-3 

E 
0 

d-w” F(w,w”) Q&W”) . (7) 

The lower limit of the dw’ integration comes from (3). B(w’,w”) is too singu- 

lar at w’ =w” for computer evaluation of (7). This singularity can be elim- 

inated by integration by part in the following way: 

F(w,w”) = /,I: dw’ G(w, w’) B(w’, w”) 

= kA (*)’ Am exp[-(y-z)2] dz’ 

= & (err,” (x+~)~x eqx2 dx , (8) 

where y = (w-w”)/(J2A). There is no singularity in the integrand of (8); hence 
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it can be evaluated by a computer. 

It should be pointed out that crth is not the lowest order in the electromag- 

netic interaction. Let the lowest order in (Y cross section be a0 and write 

%h = t1 + “$ (9) 

6’ contains many terms, the most obvious one being the noninfrared part of the 

vertex correction, 

6 vertex = -4 2-3ki(w/me) 
C 1 . 00) 

The vacuum polarization correction is necessary only when we know for sure 

that z,!~is coupled to leptons or hadrons electromagnetically. This will be dis- 

cussed later. 

C. EXTRACTION OF PARTIAL DECAY WIDTHS 

For this purpose we need to bow only the area of a Breit-Wigner curve. 

Let us consider formation and decay of z/shown in Fig. 1, and parametrize the 

+ 
e’ 

e- 

Fig. 1 

theoretical cross section %h by a Breit-Wigner formula 

qp) = 
r($ - 2e) I?($ - f) 16 T (2 Sti+ 1) 

(w~-M~)~ + Ft2M2 (2S,f 1,2 ’ 
(11) 

where SJ, is spin of Ic, and Se is i. For a narrow width, the Breit-Wigner for- 

mula can be approximated by a b function, 
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1 

( w~-M~)~ + r; M2 
--+ -L 6(w2-M2) 

rt - 0 Mrt 
(12) 

AW - 

Fig. 2 

Let us integrate the experimental curve from wmin to wmax as shown in Fig. 2. 

W max is chosen so that 

W max-M >> FWHM (13) 

Using Eqs. (7), (ll), and (12), we have 

-Background 1 dw = 2n2(2Sll+ 1) 

x qb2e) r(Q---f) 
rtM2 

wmax dw m 

-L / 
G(w, w’) B(w’, M) dw’ , 

min M (14) 

“Background” means all processes which are not represented by Fig. 1 or Eq. 

(11). - 

Under the condition (13), we expect that the value of integration becomes 

independent of the detail of machine width; hence G(w,w’) can be replaced by a 

6 function : 

G(w,w’) - rS(w’ -w) . (15) 
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Therefore 

where 

max 00 

i J dw’ G(w, w’) B(w’, M) 
W min M 

W 

/ 

max 
= dw B(w, M) = e6 

M 

6 = - $ [en (M2/mt) - 1] fn((g M/Aw) 

(16) 

Notice that we have integrated the experimental curve from wmin to wmax, 

but Aw is defined as Aw = wmax - M, not wmax - wmm. Substituting (16) into 

(14) we have finally 

area = pax [gexp(w) - Background] dw 
min 

= r($-2e) r(Q-f) (2s +q 

rtM2 
6r2+ed , (18) 

where 6 is defined by (17). 

We have done numerical integration on the left-hand side of (18) for the 

process ee - %lo5 - charged hadron with wmin = 3.10 GeV and wmax = 

3.12 GeV. We obtain 

area = 8600 x 1O-33 cm2 MeV , 

E= F - 1 =0.076 , 1 (19) 

es 
1 

= exp =1.415 ’ (20) 
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and 

r($ -. 2e) r(q +. charged hadrons) = 4 

rt 
(21) 

The data for e + e -+ Z!J - @ are not very good. The ratio of two peaks yields 

u (e + e -+ # -+ charged hadrons) = I?($ - charged hadrons) = 14 3 . (22) 
o(e i-e -$+Zp) rQl--+ WI 

If Z/I couples to e+e- eiectromagnetically then we expect (assuming 

= r(+- 2e) 

rt = r($ -. charged hadrons) + 2r($ - 2~) + I’(# - neutrals). 

If 7~ couples to leptons directly via weak interaction, then probably 

r(+ - 2e) = r(+-a) = r(+-22ye) = r(+-2uP). 

Hence 

rt 
= r(+ - charged hadrons) + 4I’(lc, - &) + r($ - neutral hadrons). 

We conclude 

rt 3 
w- 2e) = 4-g4 w 

- keV 
+ charged hadrons) (25;21) 

1+6 
r($- charged had) = 14.3 r,- 2cl = 14.3 

vert@) 
1+5 vert(e) r(+ + 2e) 

= ‘73 keV rt 3 
I?($ - charged hadrons) (2sG+1) 

We note 

rt 2 r(* - neutrals 
I’(+ - charged hadrons) = 1+14.+r(q - charged hadrons) 

-2/J) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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This factor is at least 1.14 if F(JI - 2e) is electromagnetic, whereas it is at 

least 1.28 if I’($ -. 2e) is weak. 

5 vert(e) and ‘vert@) are vertex corrections for electron and muon respec- 

tively and they are given in the next section. 

D. DETERMINATION OF COUPLING CONSTANTS 

Fig. 3 

The widths obtained contain all the noninfrared part of the radiative corrections 

represented by blobs in Fig. 3. For J? 
I1-2i-J and r+harged hadrons the fina1 

states can also contain an arbitrary number of photons because we did not do 

the radiative corrections to the final state. The vertex correction can be 

computed easily. Using (lo), we obtain 

6 vertex = .056 for electron (29) 

6 vertex = .019 for muon (36) 

Thus in principle there is 3. 7% difference between I’ 
IC-ze 

and re2p. * 
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We ask whether zj = $35105 could be a neutral weak vector boson. Let us as- 

sume the coupling of 7~ to e+e- to be 

Then 

r(J, -2e) = 
gf + 8; 

12a M [ ’ + ‘vertex @)I ’ 

(31) 

(32) 

Substituting (27) into (32), we obtain 

N 6 x 1O-6 . (33) 

Now if #- 2e decay were semiweak, (gt + gi)/M2 would be roughly equal 

to the Fermi constant 10s5/dp. Indeed 

(g; + &M2 = .7 x lO-5/M; . (34) 

Therefore the decay $ - 2e is consistent with being semiweak. 

Electromagnetic Interaction 

We ask whether the decay $ - e 
+ + e- is consistent with being electro- 

magnetic as shown in Fig. 4. 

. 
+ e 

e- 

Fig. 4 
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The decay width is 

(e2g ? 
rtll) - 2e) = s M(l + 6) 

0 

(35) 

where 5 is the radiative correction. 5 has three parts: 

6 =6 vertex@) + 5va,(e) + *va,k) + 6va,(had) , (36) 

where 6 vertex(e) is given by (30), and fi vat(e), bva,tiL and 6va,(had) are 

vacuum polarization contributions from electrons, muons, and hadrons, 

respectively. 

6 vat(e) = p 
[ 

6 vacw = $ [ 

-g++Qn 52 M me 1 = 0.024 

- B 5+ZQn M 3 5 3 = 0.008 

6 vac@W - ~va,60 

Thus we obtain 

6 = .096 

and 

47r& = 3r($ - 2e) (137) 2 

M(l. 096) =O.l 

(37) 

(38) 

(39) 

(40) 

(41) 

assuming r+2e w 6 keV. 

This is to be compared with similar calculations for the leptonic widths of 

p, 0, and Cp mesons 

47rg2 = 0.087 
U-Y _^ 

41rg2 
w 

= 0.067 

41rg2 = 0.5 PY 

Thus the coupling of 1c, to y is reasonable compared with those for other 

vector mesons. 



Final Comments 

11 - 

The formalism of the radiative corrections presented in this note involves 

the least controversial part, the soft photon phenomena, of the radiative cor- 

ret tions. This is evidenced by the fact that D. R. Yennie, J. D. Bjorken, and 

the author all immediately wrote down the same formula (Eq. 6) after we heard 

about the problem. The possibility of using the area under the resonance 

curves to obtain the decay widths was noted immediately by many people, in- 

cluding David Jackson, J. D. Bjorken, and myself. Bob Pearson made the 

linear plot of the experimental curve which made possible the numerical inte- 

gration, counting the squares on graph paper, shown by Eq. (18). 



Interference in the Hadron Channels 

J. Bjorken, S. Brodsky 

The interference effects in the annihilation process e+e-- f for specific 

hadron channels f and the total hadronic cross section can be a rich source of 

information on the hadronic couplings of the I). We assume in this section that 

$ has Jp= l- and couples to Leptons electromagnetically. 

There are two amplitudes which contribute to the hadronic width for a 

Note that the decay of the + through the photon involves the non-resonant 

(b -f coupling - to avoid double counting. Thus 

. 
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where R” is the ratio (T O /a0 had &C off resonance. For the u (3105) we can 

estimate J? had - 75 keV and I’:( - 3x5 KeV = 15 KeV 

For e+e- - f, there are now three contributing amplitudes 

In the interference region, (s-m2)2 >> m2r2 

which we can compare with the P+P- channel interference 

Thus 

Further it is clear from the structure of the matrix elements that 
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and 

For the muon channel interference, one estimates 

outside the machine resolution region. Further, since I’ had’rp+p - - 20forthe 

@ (3105), then rf(int)/r,(y) of order 3 to 5 are possible. Thus large interference 

effects could be seen.? At minimum the interference is the same as the muon 

channel. This is the case if the $J decays directly to hadronic states orthogonal 

to the states coupled to the photon. For example, if the Ic, is a unitary singlet, 

no extra interference is present. Further information is gained by examining 

the interference effects channel by channel. Further, as emphasized in Section 1 , 

the ratio of cross sections af /crf for various hadronic or leptonic channels at 
1 2 

the same beam energy near the resonance peak can provide a sensitive test of the 

sign and ratio of interference effects. 

Note that the above treatment is consistent with the unitarity equation 

t However, These effects can be obscured by the presence 

of a large contribution from direct hadron production spread by machine 

resolutim. 
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The contribution of a B. W. to A (s) is equivalent to a B. W. in D(s) with a 

shifted mass - provided the background is energy-independent. Thus the 

contribution of the resonance is 

However, note that g” is complex. The contribution Iti 
5- el’t’t WI-r 

corresponds to the cut 

which is the my mid) and mfo nk’y) contribution to the interference. 



R. Pearson 

Interference in Hadrons 

A parable in which the four elements of the universe are represented by 

(no numerators allowed) 

and their couplings: 

the hadrons 

the leptons 

s’x, = 

the hadronic component of 11, is then: 



I 
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The coupling to y is via two means. 

So one may define A = A o +zgiqiQi(s). Additional beasties appearing in the 

y are a and & So one has the full photon propagator 

\ I ZZ - 
-?- l-T(5) 

with 

keeping only the leading corrections in e2 one obtains: 

If one assumes scaling for e+e-- had. background, this gives ImQi(s) = ImL(s) = 

- 1/12x -which allows a simple form for Irnk , viz. 



I 

then one has for u lM = +Trd - I, 7-r 
--5- 

.-.____ 
i 1 - 3-i L 

where we shall let Ik A - h , cg”--g2 
1 

G 
h,x6, = o( ( AS Cj/ t (c>-b";m~~ a,'+ c;'$ (W'Lf- ~3--~~?/1+4j? 

35 (s- bA’;,‘c yg I-; 

or if it pleases one, one may define a factor of e out of A and 2 to give 

i. e. . 

the first term represents direct hadron production from the $j. 

The second term can be rewritten as 
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where Q2 = Z qi is often called R. 

The third term represents the interfewnce between direct hadron production 

and production through the photon, and is highly model dependent because of the 

factor q*Q. If to take a simpleminded example g measured baryon number 

g-Q- 0. 

The experimental observation of such an effect is moreover quite difficult 

as the second piece has precisely the same energy dependence of the direct term. 



A. Weldon 

Front-Back Asymmetry at Resonance Peak 

(Parity) 

Look at resonance, i. e. J = J* = fixed. Take forward, backward asymmetry: 

Use C(JJP; m,m) = 0 when I odd 4 m = 0. Thus only A = + 1 and p = + 1 

contribute to front-back asymmetry. Use C(JJ1; - 1, 1) = - C(JJd; l,- 1) for 

P odd. Sum polarizations: 



I 
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Construct eigenstates of P and C: 

In terms of these states, 

Thus if I + > is an eigenstate of parity (either 1 A > or I B >), no asymmetry 

is possible. 

NOTE: If 1 + > were degenerate (i. e., two particles with opposite parity), an 

asymmetry would be possible from the first term above. 



Tests for the Charge Conjugation of the II, 

S. Brodsky 

One of the intriguing possibilities concerning the $1 s - especially if they 

have anything to do with the weak interactions - is that one or more of these 

particles has positive charge conjugation. There are two main tests pertinent 

to e’e- colliding beams 

(a) Direct decay into 27 or other C = + final state 

(b) A front-back charge asymmetry off resonance due to interference 

with the normal one - y processes. We shall discuss this test in some detail 

below. 

It should be emphasized that even if the angular distribution for e+e- + lJ+lJ- 

at each of the $ peaks shows a 1 + cos28 distribution, it is still possible that one 

or more $ 9s could be an axial vector, J pcJ-+ . If + is a neutral carrier of 

the weak current, it could well be an axial vector. If there were degenerate 

vector and axial vector +I s, then a linear cos8 term would occur at the resonance 

peak in e+e- - ~2~ and other channels. This is equivalent to the parity violation 

tests, discussed elsewhere. 

The main characteristic of a state with even C is &at it couples with equal 

magnitude and sign to particles and antiparticles. The interference of the (real) 

one photon amplitude for e’e- - ,us- with the real part of the e+e- - ICI - P2’ 

with C(+ ) = +, then changes sign (odd in cos.0) when the p+ is detected along the 

positron versus the electron direction. Thus: 
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da where Nf (0) is the rate ~~ when ~1’ is detected at an angle 8 to the direction 

of the incident positron beam. 

As an example, we suppose the # has simple axial vector yPy5 coupling 

to the electron and muon current, with coupling constant gf) and gf) , 

respectively. Then, using Budny’s paper, we find 

where 

and 

Thus A is negative below resonance if gA gA (e) 01), o . Note also 
L 



so approximately for the $ (3105) 

where at s = rzz- n k p 

which is a sizeable interference. For 60’ to 90’ detection 

givesa 50% asymmetry at n = 20. 

We also expect a similar interference for any hadron channel; e. g. a 

front-back asymmetry of r+ vs. K-, K+ vs. K-, p vs. p, etc. , in inclusive 

or exclusive processes. The effect is larger than the muon case due to the 

increased ratio 
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for inclusive 7r* . For the II, (3105), this ratio is 2, and gives a 50% 

asymmetry at n=40. However, the asymmetry is presumably smeared and 

reduced by the quark-jet effects, as well as machine resolution. The above 

discussion is meant to be representative of the magnitude of the effect due 

to a positive charge conjugation particle. Radiative corrections, which 

induce a background charge asymmetry at the 1% level, are relatively 

unimportant. 
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The observable consequences in the angular distribution and in the longitudinal 

polarization of the muons of a prity-violating spin 1 resonant state are summarized. 

Particular attention is focused on the possibility of lack of universality between 

electrons and muons. 

I. Introduction 

While there is increasing evidence that the $(3105) and q(3695) are exotic 

hadrons of some sort rather than intermediate vector bosons, the situation is 

sufficiently uncertain that the consequences of other assignments should be explored. 

In this note we consider the channel e+e- + u+n- and examine the observable effects 

in the angular distribution and the muon longitudinal polarization of a spin 1 resonant 
+ - state that couples to e e and p'p- with interactions that may not conserve psrity. 

In the angular distribution we include interference with the s-channel photon pole 

amplitude, but for simplicity ignore such interference for the muon polarization. 

The channel e+e- 
+ - 

-ee can be treated similarly, but is complicated by the 

additional t-channel photon exchange. It seems probable that the channel e+e- -+ ~+p- 

is more useful in establishing the presence or absence of a small effect than 
+ - + - 

e e -Lee since the latter process has an asymmetric angular distribution from the 

t-channel contribution. 

There are discussions in the Russian literature on the effects of an interme- 

diate vector boson on these reactions and R. V. Rudny (Oxford, now SLAC) has made 

detailed calculations. Here, however, we focus on the possibility of different 

couplings of electrons and muons to the intermediate vector particle. After all, we 

must keep searching for ways in which the muon can be distinguished from the electron! 

II. Basis of the calculation and notation 

The computations are elementary lowest order Feynman diagram calculations. We 

give no details, but merely summar ize the notation. The two diagrams considered are 

given below 
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The lepton-resonance couplings are 7,(gV + gAyg) for e+e- and ya(gi + gAys) for 

11+)1-, the convention on the Dirac matrices being the EBul.1 choice in which the standard 

(V - A) coupling is ya(l + 73). Time-reversal invariance is assumed; the g's are 

all taken to be real. With the Jr(3105) and $(3695) in,mind, we neglect the lepton 

masses throughout. For simplicity we average over initial spins. If the storage ring 

beams are transversely polarized, the results are applicable to averages over azimuth. 

In the formulas it is convenient to have two sets of symbols. We define 

B = 
2gV gA a; gd 

gV2 + gA2 
, +Q = ,* ,2 ' (1 

gv +gA 

and alternatively, 

yA=$--J (3) 

We thus have !3 = 2yvrA , @' = 27; 7; if conversion is necessary. The sums of the 

squares of the coupling constants can be expressed in terms of the partial widths for 

the decay of the resonance of mass M , 

2 2 32 r[ re 
gv +gA = M 

. 
72 12 

l2flr 
gv +gA = 

P . 
M 

(4) 

The differential cross sections are expressed in units of the standard 

asymptotic QED cross section for e+e- -+ 2~~: 

(5) 

where cx = l/l37 and W is the total c.m.s. energy. It is useful to have symbols for 
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the r.esonant and interference terms in the cross section. We thus define 

and 

16) 

(7) 

III. Differential cross section 

The c.m.s. differential cross section, averaged over initial spins and summed 

over final spins, is 

do 
ZE 

- 2 Re AR[ 7v7{(1 + c0s2 e) f 27A~i cos 8 I . I 8) 

The angle 8 is the angle between the directions of the momenta of leptons of the same 

charge initially and finally. The first term is the s-channel photon contribution, the 

second the resonant term, and the third the interference. The negative sign in the 

interference term is a consequence of the assumption of a normal,resonance with a 

counter-clockwise rotation through resonance on an Argand diagram. This term can 

contribute positively, of course, with suitable relative signs of the Couplings. 

Ten specific examples are listed in the table below. The couplings are cited 

in a stylized notation, with V, -f v mean- gA = gi = O and g& 2 0; V f A, 

V * A meaning gv = gA, g; ='gA and g&, > 0; and so on. 
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Examples of Angular Distributions 

Number Couplings (e, cl) Coefficient of 1% I2 Coefficient of -2 Re 
41 

1 v, +V 1 + cos2 9 + (1 + cos2 0) 
2 A, +A 1 + cos* 9 k2 CO8 0 

3 VfA,V+A (1 + cos e)2 3(1 + cos ey 

4 V fA, -(V ?A) (1 + cos e);! - 3(1 + cos e>2 

5 VfA,V%A (1 - cos e)2 4(1 - cos e)2 

6 V -+A, -(V 7A) (1 - cos e)' - a(1 - cos e)2 

7 v, k+ 63g i + ~0s~ 8 ~'(1 + ~0s' e) V 
8 (Bv' gA)' ' i + ~0s~ 8 Y$ + cos2 0) 

9 A, k;, g;) 1 + cos2 0 2yA CO6 0 

10 k, g,), A 1 + cos2 8 27, COS 8 

The table contains sune interesting if not surprising results. The first three 

entries (with upper signs on the first two) correspond to the universality of the 

electron and muon couplings. The first two are normal parity-conserving situations. 

The resonant amplitude squared has the familiar (1 + cos2 e) behavior, while the 

interference term reflects whether the resonant and background amplitudes represent 

states with the same parities or not. The third entry is the classic (V f A) parity- 

violating situation. Both terms show the strong forward peaking of (1 + cos g)2, 

independent of whether the universal coupling is (V'- A) or (V + A). For both the 

NXW) and JEW%) such a strong asymmetry is excluded by the data. 

The last seven entries correspond to different couplings for muons and 

electrons. Entries 5 and 6 show that with (V - A) at one vertex and (V + A) at the 

other the angular distribution peaks strongly backward instead of forward. Perhaps the 

most interesting circumstances are contained in the last four entries in which one of 

the leptonic couplings conserves parity while the other does not. Inspection shows thal L 
these situations are distinguished from the parity-conserving cases (1 or 2) only in 

the magnitude of the interference term. This is easy to understand. With parity 

cocserzd at one vertex, only the corresponding part of the coupling at the other verte: 

is operative in the interference term. The angular behavior is as if parity were 

conserved throughout, 

j is not fully operative 

but the m&nitude is reduced because the coupling at one vertex 

. 
1 
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Observation of the interference term for a narrow resonance like the Jr(3105) 

Is difficult because the effect is washed out by the energy spread in the beams. For 

this reason it may be possible to establish the existence of an interference minimum 

and to distinguish a J = l+ assignment from a J = l- assuming parity conservation, 

but it is unlikely that parity-violating effects of the sort given in entries 7, 8, 9, 

10 can be distinguished from parity conservation throughout, except perhaps in the 

extreme of purely V coupling at one vertex and purely A coupling at the other. 

IV. Longitudinal polarization of the muons 

We have seen that there is a possibility with different couplings of the muons 

and electrons of a parity violation being manifest only weakly in the angular 

distributions. it is natural then to seek evidence of nonconservation of parity in 

the longitudinal polarization of the muons. For simplicity we neglect the interference 

between resonant and background amplitudes. We have in mind the q(3105) where the 

resonance is observed-to be approximately 15 to 20 times the background. Furthermore, 

for reasons of counting rate in any experiment, data would probably be taken at the 

resonant peak where interference effects are negligible. 

The c.m.s. differential cross section for observation of a /.L- at angle' 8 

with helicity h is 

The sum of this cross section over A = 2 l/2 gives the resonant term in FQ. (8). 

The longitudinal polarization is 

(ii)+ - (ii)- 
[ 

B'(i + ~05~ e) + 2 B cos 8 

P 
loa3 = (da)++(du), = - 1 + COS2 8 + 2 B3' cos 0 1 

(10) 

I 
b+?zere 5 and 9' are defined in IQ. (1). For positive muons the sign is opposite 

[ (and the angle 8 is suitably redefined relative to the incaning pOSitrOn). 
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We note in Eq. (10) that even if @ = 0 or B' = 0 (so that the angular - 
distribution shows no asymmetry) there is still longitudinal polarization provided 

prity is not conserved at one of the vertices. Observation of the longitudinal 

polarization therefore allows differentiation among the possibilities 7, 8, 9, 10 of 

the table given above, even between type 7 and type 8, for example, with their 

identical angular distributions. For @=@I or B=O, 9' f 0 the longitudinal 

polarization is equal to +', independent of angle. For @ = 0, p' f 0 this is 

easily understood as a result of the production in a parity-conserving interaction of 

a particle that subsequently decays via a prity-violating interaction, e.g., A -, HIT-. 

When @' = 0, @ f 0 the longitudinal polarization changes sign for 8 < ,$ and 

e> ;. The integrated cross section (9) is the same for both helicities. The 

absence of net longitudinal polarization reflects the Prity conservation in the decay 

of the resonant state. 

V. Summary / 

The effects of nonconservation of prity with a J = 1 resonance in the 

channel e+e- -+ p+p- are explored. With the same couplings for electrons and muons, 

parity-violating effects show up directly in the angular dependence of the differential 

cross section. If the electronic and muonic couplings to the resonance are different, 

however, the angular distributions are less definitive. In lX3rticular, if either 

coupling conserves prity, the angular variation of the differential cross section may 

be very difficult to distinguish fran the completely prity-conserving situation. 

Even in these circumstances the longitudinal polarization of the muons provides a means 

of establishing parity violation if it exists and of determining which leptonic 

coupling is responsible. 



J. Kuhn 

P and C symmetries in hadronic final states 

Consider the differential, semiinclusive cross section dG(Ef,, Ei, 0’, 6 -, 8 ‘-) 

for the reaction e++e--r&-+X. (s+, e- are the angles between T’, 2 + and 
-- -a+ 
T ,e ; I s’- I the angle between ;;” and ; -; of- 5 0 if (‘;;‘x q -)e;’ 5 0) 

Fig. 1 

P invariance => du(E+, E-, e+, e-, e+-) = do(E+, E-, e+, f3-, -0+-l 

(P-transformation and rotation of Fig. 1 yields Fig. 2) 

Fig. 2 

Tests for P invariance are also possible with integrated cross sections, e. g. , 

s dE+ dE- k (. . . , 
dE+dE- 

e+-) = s dE+ dE- A (. . . , 
dE+dE- 

-e+-) . 
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C invariance => da(E+, E-, fj’, O-, 0”-) = da (E-, E+, 8- O-, r- e’, e+) 

Fig. 3 

(C-transformation and rotation of 
Fig. 1 yields Fig. 3) 

CP invariance => da(E+, E-, O’, 8-, 0”-) = do (E-, E+, r- 8+, - O+-) 

( 480°- 8’) 
,e- 1 



If we assume @couples to leptons via one photon, we get simple tests of 

C symmetry! (a la Pais and Treiman) 

Define W by 

&(E+, E-, 0+, 0-, e+-) = W(E+, E-,z+, z-, z+-) A-’ dE+dE-dz+dz-dz+- 

where z = cos e 

A= 1 - (z+)~ - (z-)2 - (z+-)2 + 2 z+z-z+- , 

One y-exchange yields a parity symmetric W: 

W = AI + A2z+z- + A3(z +2 + z-~) + AJz+~-z-‘) 

A are functions of Ef, E-, z+- , 

C invariance implies 

A1 2 3(E+, E-,z+-) = AI 2 3(E-, ET, z+-) 
, , , , 

A4(E+, E-, z+-) = -A4(E-, E+, z+-) 

Integration over z+ and z- yields test for C symmetry, e.g., 

(9 i/l dz+dz- W = AI+iA3 should be symmetric in E+, E- ; 
-1 

(ii) L ‘dz’~‘,- W(E+, E-, z+-, z+, z-) - W(E+, E-, z+-, z+, -z-) 

=A1 J- dz+ 
1 

dz- 2A2 z+z- = 2A2 ; 
0 

should be symmetric in E+, E- 

etc. 



We consider now in more detail the exclusive channel e+ + e--+ VT+++ x- + N , 

where N is any neutral particle. The most general matrix element is ($ is 

assumed to have spin 1): 

9’ : =; P -+ CrB ); 
Q= E n+” 3-P NT l- d 13 d” 14 = /-I $&# + i 7fk ) 

gV and gA are arbitrary complex numbers. A*, B, C are functions of the 

invariants q2, qr+, qx- . We define 

-+t n- :z ?;),;t, ; $= J/(2E &I iii-,, = 7pY-2 ) 

a’ : = A’ ,n’“, ; e-,c := 8, I:- (2.E h=h!73-I), 
After performing the usual calculations, we arrive at the following conclusions: 

1) If ~1, couples to leptons electromagnetically, the angular distribution 

2 2 is proportional to (nI - n13), where nl is normal to the production plane. 

No parity violation is possible. Any C violation can only show up in different 
. 

energy distributions of 7;’ and 7r-. There is no change of the angular distribution 

in the interference region. 



2) If this simple form fails to describe the angular distribution, we have 

to apply the following general formulas: 

Direct term: 

We should mention, that one can have parity violation, if A* and B are different 

from zero, even if the coupling of # to leptons is pure vector. 
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B. Ward 

A number of models (not to be elaborated upon here) would suggest that 

7 # $ and, perhaps, ?f # $1. In view of this possibility, we have decided to 

investigate, to some degree, the extent to which it can be checked by the kine- 
+- matical aspects of e e e e+e- 

+- 
and e e -+ p+p- in gross. 

Of course, the most general situation (arbitrary spin, arbitrary interaction 

vertices, etc. ) would require an immense amount of effort. Here, in view of the 

present general trend of the data, we shall focus on a spin 1 assignment with the 

following form for the effective interaction density: 

(For convenience, we are writing gV A, 9, A in units of e. ) We shall also, for 
, , 

simplicity, take m = m-. 
+ iii 

A more general analysis appears in the appendix. 

Further, we shall presume & A = gV A and point out where appropriate the 
I > 

change in our results when this assumption is relaxed. 

The relevant kinematics is summarized by Fig. 1. 
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where 0, as usual, is the center of momentum scattering angle of the positron 

in the Bhabha process, for example. 

In Fig. 1, the propagation functions for $J ,T are to be understood to have 

their denominators modified to 

(4) 
9 

in view of the manifest instability of these objects. The parameters ra then 

characterize this instability in the standard fashion. Having laid down our con- 

,ventions, let us now get on with the implications of Fig. 1. 

A quantity of direct experimental significance is the differential cross 

section. We shall only consider effects not explicitly dependent on lepton masses. 

Furthermore, in view of the present state of the data, we shall not consider the 

various polarized cross sections in the present discussion. These may appear 

elsewhere. Thus, here, we shall record only the respective unpolarized dif- 

ferential cross sections, hoping to pinpoint some gross feature which would be 

a signal for (1). We consider first e+e- - /J”/J-. 

Upon effecting the standard, trivial, manipulations we find (we are assuming 
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(5) 
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The most glaring gross feature of this last result is the dependence of 

the rrdip” terms on coupling constant . Within our framework we see that the 

occurrence of a dip or rise before the peak is entirely dependent on the phases 

of gV A. 
9 

The dip completely reverses to become a rise as gV A are varied from 9 

pure real to pure imaginary simultaneously. All dip terms vanish if 

For gi # git the last condition is clearly changed to 

f ;=qf. (6) 

Fq) 

It would, therefore, be very interesting if a definitive statement could be 

made about the lack or presence of a dip in the I-(-pair cross section. 

As we would have expected, the difference between (1) and the more simple 

situation where $ = 7 is simply in the energy dependence, as the angular structure 

for @ can only be that of s-channel vector and axial vector, namely 

This, thus, continues to be true if we let rn+ # rn?, r+ # rp But, of course, 

in this last situation, the energy dependence becomes slightly more complicated. 

To repeat, we have recorded this case in the appendix. Finally, let us remark 

that the only effect of taking gi # gi , istto make the replacement gt-gi$ 

for terms 
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quadratic in gi and to replace terms like 

for terms quartic in g.. 1 

We turn next to the Bhabha process. Again, by standard methods 



I 

-7- 
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. -8- 
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Again, the dip phenomenon is the most glaring feature, but the analoga 

of the remarks made above for /..@ do not strictly apply. For, even if the analogue 

of (6) does pertain, there still may appear a rfdip!l due to the term 

although admittedly it would be down from the terms respecting (6) by O(g’) 

and may thus escape observation. 

Furthermore, the appearance of terms CC (1 -COST) -’ in the inference 

between t-channel y and s-channel $ ,F means that the “dip” phenomena can be 

enhanced by considering data at angles away from cos6’ = 0, presumably. Addi- 

tionally, these terms will respect the analogue of (6), since they arise from s- 

channel $ ,T. Thus, a clever use of s-dependence and angular dependence taken 

together is probably the best way to investigate the dip phenomena, as one would 

have guessed. To repeat, a ‘very suggestive gross signal for (1) would be the 

absence of a dip in (5). The occurrence of a rise would also be very interesting, 

although it would not be as suggestive because of the possibility of negative metric. 

When pomrized cross section data becomes available, perhaps a clearer test will 

be the apparent T-violating terms in the respective cross sections. To repeat, 

the analysis relevant to this latter situation may appear elsewhere. 
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Appendix 

In the unlikely event that experiment permits probing of the respective 

resonances, we shall record in this appendix the differential cross sections for 
+- 

ee - p+p- and e+e- + - -e e when rn+ # mF, I?+ # I$, still taking, however, 

gi = g.. 
1 As we remarked above, the effect of relaxing this last assumption is 

trivial - gf - giEi, etc. (see page 5). 

For the pF( case, we find (again by the standard methods) 

t Sl(s-t-r--$) ($t 
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For the Bhabha process, we find 
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R. Budny 

Detailed ic, Effects in e+e--e+e- and p’~- 

The crossection will be calculated from 

assuming y (g +g y ) /.LV A5 with real gV and gA and complex MO. For 

generality, we will assume the beam is transversely polarized, and that 

the final polarizations are not summed in case the /J+ or F- helicity is 

observed, or storage rings with Longitudinally polarized beams are built. 

Our notation is 

s=4E2 , t=- s(1 -cos 0) /2 

Q=t/ (e2 (t- M$) , R=s/ (e2 (s- M$) 

e2=4aa 

c and Q, are the initial transverse polarizations 

q5 is the angle between this direction and the scattering plane 

h and h, are the final helicities. 

The differential crossection for e+e--e+e- is 



I - 

-2- 

where 

The differential crossection for e+e-- /.L+P- is given by this expression 

with s/t and Q set to zero. In the present experiment the beam does not 

live long enough to become polarized, and final helicities are not measured, 

thus the above expression reduces to 



The values of gv, gA, and F are sufficiently small that Q can be neglected 

in B l-B3,but the Re R and I RI 
2 

terms can become large. In these, 

If transverse polarization can be achieved, an interesting term to measure 

. is B 4. This can be large near the resonance. 

(ed. note: For further details see preprint by R. Budny “Detailed W* Effects 
+- 

ine e 
+- 

-e e I’ and “Effects of Neutral Weak Currents in Annihilation”, 

Physics Letters 45B, No. 4, 340 (1973). 

Some examples of crossections averaged over a gaussian beam 

are given in the following ( total crossections are integrated over 

%-lo < 0 < I 3b5, rtot = 75 keV). 
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