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This document is a working paper on the phenomenology of the ¢,
which consists of two principal parts. It has evolved during a series of
seminars on the ¥ with broad participation of the theoretical and experimental
community at SLAC. The first part is a brief synopsis of the main tests and
conclusions which can be extracted from the data, and is concerned with results.
The second part is a collection of more detailed discussion of various points
of the first section, and some independant discussions.

References to discussions in the second section are made in the first

section by author.



TABLE OF CONTENTS

First Section
I. Introduction
II. Line Shapes and Partial Widths

III. Spin and Parity from Crossections and Angular Distributions

Second Section
1. Radiative Corrections and Resonance Parameters in e+e—
Anihilation J. D. Jackson
II. ¥ Radiative Corrections Y. Tsai
III. Interference Effects in Hadron Channels J.Bjorken,S.Brodsky
IV. Interference in Hadrons R. Pearson
V. Front-Back Asymmetries at Resonance -Peak
A. Weldon
VI. Tests for the Charge Conjugation of the ¢
S. Brodsky
VII. On the Effects of Nonconservation of Parity for a Resonance

- + _
in the Channel e+e — 4o J.D. Jackson

VII. P and C Symmetries in Hadronic Final States

J.Kiihn
1 -
IX. Isv@ )= 3@ ) ? B. Ward
. X. Detailed ¢ Effects in e'e —e'e” and u+u-
R. Budny

- + - -
XI. Calculations of e+e —e e and y+u with Beam and

Radiative Corrections R. Giles



Phenomenology of the ¢

1. Introduction
The principal channels to be investigated are
efe” —p —e'e”
—y ='W
~ i — hadrons .
The energy dependence of the phenomenon across resonance is of importance:
we define three regions of interest — the peak region W =W__ + AW, with AW
the machine resolution. For W a few MeV below the peak we have the inter-
ference region, where the resonant Breit-Wigner amplitude interferes with the
electromagnetic background. The radiative tail dominates the region a few MeV
above the peak.
We assume there is a single resonance in the observed peak, unless other-
wise indicated. s
The second section contains a discussion on the extraction of partial widths
from the cross section data, and numerical estimates based on the available
preliminary data. The third section is a discussion of spin and parity assignments

based on the two reactions with leptonic final states.



II. Line Shapes and Partial Widths

Ultimately, direct fitting of the shape of the resonance curves with energy
should extract the most information on partial widths, but a simple procedure
suffices for orientation purposes.

First, ignore radiative corrections. Then from Breit-Wigner

A (2T1) Tere AT + (inkecference)

Ldu’— bm:kﬁ»—uanoi] = wE (o) + T/

If all final states are summed, then the area under the peak measures re"‘e“ .

More generally,

2TE(aTH) Totem Thad
w [

which must be corrected for radiative effects.

A. Area under e ¢~ — all hadrons =

B. Contributions of neutral modes (other than v7) can be estimated from

the SP 16 (HEPL) experiment.
2 _ T T’ .
2T2TH) Tere Lutu
we T’Iw"of“

C. The area under the e'e” — u+/.f peak =

However, it is better to take



Area( 1) or \Peak he ighty 4~
Area(hadrons) (Peak height)hadrons

This should be independent of radiative correction and resolution. The same

- +
holds for the area under e+e —e e .

D. Radiative corrections: Ignoring the contribution of the interference

term, the integrated area under the Breit-Wigner peak (treated as a - function)

out to an energy w is given by a factor

4« w0 2(wW-We) 2 (w0 - Wo)
=5(wW) _ e” ‘f( T e T2 >,g‘/’ e s ¢ b —

~
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times the unradiated area (see figure).

T ¢ (2\—‘), A :(‘)3

Cquc \'(J PDJY\{Q\

’

( Fig. 1)
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That is (Area) = Aoe with cro(w) = A06 (w—wo).

1f W—W0 >> AW, the machine resolution, this correction is independent
of AW.

The radiative tail (for W >> W) is

~-S(w)
G(w) = —é‘— < Ao
{wW-wWe)

Other corrections are expected to be small ; however radiative corrections
to interference effects are not negligible. Structures with rapid energy
variation tend to be suppressed by a factor e~ 6

E. Numerical Estimates:

Numerical integration has been caried out, using the published data,
+ - - _
for the process e e —¢ 3105~charged hadrons with Wmin_3' 10 GeV and

W =3,12 GeV. We obtain
max
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From the ratio of two peaks we obtain
Thadccha reed) ., 2300  _ /4.3

(¢
T °

+ -
If ¥ couples to e e electromagnetically, then we expect

Tiet = Thad <<hmr3'e<9 ﬂmeﬁ@,eu{—m h+2 T

ete~

If it couples weakly, then perhaps one must include neutrinos to give 4I‘#+u_
rather than 2.

In conclusion
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These numbers are intended to be illustrative only.
References in the second part for this section are:
Radiative correections etc. ... J.D.Jackson and Y.Tsai

Interference effects in hadrons S.Brodsky and R. Pearson



III. Spin and Parity

This section is divided into three parts. In the first two sections the cases
J=0andJ > 1 are considered briefly. In the third section the case J = 1 is

considered in detail.

A. Spin 0: ;-
doru K
(i) I ¢ g —background) is not isotropic, then J¢ # 0.

(i) If %(e%‘ - p+/.t_) shows an interference dip (e.g. Fig. 1), then
d " # 0 because the initial e+e~ state for the background amplitude has Jz= + 1 and
cannot interfere with the J = 0 resonant amplitude. (For J, > 1 there can be

¥

interference in the angular distribution. )

Write the vertex as E(gs + igp Ys Ju. Then
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B. Spin > 1 (G. Ringland, D. Wright)

If the ¥ couplings to leptons preserves chirality then

do e

ds2

e

If C and P are conserved, then A(s) = B(s). The distributions are plotted for

= AG) {d;(e)(‘_(, ‘B(s) (d‘i_l (9)(

J =2, 3,9, 10. They are self explanatory. (Figs. 2-3).

The most general analysis for spin J is too cumbersome to be informative.
C. Spin 1: (Budny, Cvitanovic, Giles, Pearson...)

If there exists no CP violation and no anomalous moment couplings, the ¥

+ - —
contribution to the e e — £ amplitude can be written:

|
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aﬂ(P/) [gv X/‘%Jg \5‘“?5 ]TE(F) {I-E( K) igvbfc{'z,q)/"}/g—l ('(-QCK'>

where gy and g, are real.

This gives differential cross sections
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where we have assumed universality of electron and muon couplings. (If not:
2 2
gy — Byle)gy () and g, — g, (€)g, ().)
The interference terms between ¢ and the photon are reflected in the behavior

of the total cross sections and angular distributions:

Total Cross Sections

+ -
The interference terms cause dips in the total cross sections for both u
+ - + -
ande e . For u u the dip is a near zero of the theoretical cross section on the

low energy side of the peak.

. v +3A 2 1MV £ dasio

Y

There is a corresponding enhancement on the high energy side. After smearing by

the beam resolution (fig. 4)

= Soy-Fo9,

- o = m S
m EdJ'P 5 MeV Rv-"“'SlO )l O—\v\cka\-ouu&

The presence of the interference dip in ee u+u— implies that ¢ cannot have
pure axial couplings.
The sign of the effect in 0 ete™ mm ot is reversed and markedly less

pronounced. E > m because the predominant interference is with the t-channel

dip
photons cancelling the interference with the s-channel photons (Fig. 5 ). Any
such dip will be buried under the radiative tail on the high energy side of the peak.
It is worth mentioning that experimentally one need not measure the cross
section at the dip where event rates are low in order to see the interference terms.

Any measure of the skewness of the total cross section relative to a pure Breit-

Wigner near the peak will suffice.
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changes by a factor ~» R over the regionm, -1, MeV —~m , +1 MeV,

o 4

Angular Distributions

+ - + -
ee —up
Any large parity violation in the ¢ itself (gV ~g A) is observable as a front-

back asymmetry at the peak in e =—u'u”

do’o{ (H-Cabéa) (Fig. 6 )

For nearly pure V or A the distribution at the peak is (1 + 0082 #), so one must
look in the interference region to distinguish the two cases.

For pure vector the angular distribution is 1 + 00529 at all energies —
there is no front-back asymmetry.

For purely axial vector ¢, there is a front-back asymmetry

T goo(@<a0® - T qe<e( 13a®

H'—:—.

Tsa® ¢ (130®

that is negative in the interference region and positive in the radiative tail of

magnitude ~ 35%. (Fig. 6)
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For the e+e— reaction, the information in the angular distributions
is more difficult to extract. The background Bhabha process has a front-
back asymmetry A=0.66. For V=A, this asymmetry is changed only
slightly near the peak (Fig. 7 ). For either pure V or pure A, A is decreased
at the peak by the addition of a large (1 +00529) term. The effects in the
interference region are relatively small.

1
Is there more than one ¥ (or ¢ ) ?

Various theories could have more than one neutral ¥, conceivably
degenerate in mass to an MeV. (See Barshays preprint; also colored " p0”
degenerate with colored " wO” is another such option.) A variety of
interference effects are possible, depending on whether the two lines overlap,
one is broad, one narrow, ect.. The consequences for experiment are

(i) Branching ratios, distributions, ect. on the high side of the resonance
may differ from those on the low side, and
(ii) The line shapes may be peculiar.
1

A general study for the lepton channels, assuming two spin one ¢ s,

is given by B.Ward.

References in the second part for this section are:
Effects of P and C symmetry on angular distributions ..
A. Weldon, S. Brodsky, J. D. Jackson, and J.Kuhn
Two d)ks B. Ward

Calculations of crossections .... R.Budny, and R. Giles
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A simple coherent discussion of the problem of radiative corrections for the
production of resonances in e'e” annihilation is given with emphasis on narrow
resonances such as the $(3105) and ¥(3695) where the finite spreads in the energies
of the beams are a significant factor in extracting partial widths from the data.
Examples for the (3105) and ¥(3695) are given,

I. Introduction

The problem of radiative corrections is famillar and well understood by
workers at electron accelerators or e+e- storage rings. These notes probably
contaln nothing new for such experts, although the occurrence of resonances that are
narrow compared to the beam energy resolution introduces aspects not normally
considered. The purpose of these notes is to collect in one place the formulas
relevant for the analysis‘of resonant line shapes and parameters in e'e” annihilation
and to apply them to determination of the partial and total widths of the ¢(3105)
and Y(3695). Acknowledgments are due to J. D. Bjorken, G. Feldman, H. Lynch,

Y.-S. Tsai, and D. R. Yennie for teaching me about various aspects of radiative
corrections.

In e'e” annihilation the lowest order fadiative corrections arise from the
six dlagrams in Fig. 1(b).

e e
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The first two diagrams correspond to real photon emission and their sum contributes
incoherently to the cross section. The other four renormalization diagrams are higher
order in a and contribute in lowest order only by interference with the nonradiative
amplitude of Fig. 1(a). The calculation of the lowest order radiative corrections is
done in several places. The most immediately applicable reference is

G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971).
Their Eq. (16) is given below as Eq. (1).

A more complete treatment of the problem of the infrared divergences associlated
with the vanishing of the photon mass Involves the consideration of emission of
arbitrary numbers of very soft photons. A basic understanding of the soft photon
problem was achieved by Bloch and Nordsieck in 1937. A comprehensive modern treatment
is given by '

D. R. Yennie, S. C. Frautschi, and H. Suura, Annals of Phys. (N.Y.) 13, 379 (1961).
See also the Brandeis 1963 Summer school lectures by Yennie:
D. R. Yennie, "Topics in Quantum Electrodynamics", in Lectures on Strong and

Electromagnetic Interactions, Brandels Summer Institute in Theoretical Physics,

1963, Vol. 1, ed. K. W. Ford, Brandeis University (1964).

The consequence of including the multiple emission of soft photons is an
"exponentiation" of thevlowest order logarithmic corrections into power law corrections.,

A nice discussion of this exponentiation for soft photon emission by a classical

current source can be found in
J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, MCGraw-Hill, N.Y.
{1965), Sect. 17.10, p. 202-207.
Radiative corrections for high-energy electron scattering by nucleons and by

nuclei are treated authoritatively by

L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969)
with improvements in

Y. S. Tsai, SLAC-PUB-848 (January 1971).
II. Basic formulas

(a) Notation We consider ultrarelativistic electrons and use the following

notation:
W = total energy In the center of mass
E = W/2 = energy of each of the electrons in the initial state -
k = energy of an emitted photon

ot
t

) -




LAWRENCE RADIATION LABORATORY » UNIVERSITY OF CALIFORNIA MEMO NO. PAGE

PHYSICS NOTES JDJ/74-3 3

SUBJECT NAME

Radiative corrections and resonance parameters in .. D, Jackson
E

adi . X DAT
annihilati
e'e nn atlon December 2, 1974

oo(W) = g cross section for e'e” armihilation at energy W in the
absence of radiative correcticns

o(W) = cross section with radiative corrections

5(W) = cross section with radiative corrections and folded with a

resolution function

= mass of narrow resonant state

I' = total width (FWHM) of a resonance
Fa = partial width of a resonance into channel a
(Area)o = energy integral of an isolated resonant cross section, in the
absence of radiation corrections
G(W - W') = normalized resolution function, normally taken to be a Gaussian
o = standard deviation parameter of a Gaussian resolution function
AW = 2,35,8 0 = FWHM of a Guassian resolution function
(AW)obs = FWHM of o(W) -for an isolated resonance

The quaﬁtity t 1is the (classical) energy radiated per unit frequency interval at low
frequencies when electron and positron in head—oﬁ collision disappear. '

(b) Bonneau-Martin first order formula

Equation (16) of Bonneau aﬁd Martin for the cross section ineluding photon

emission and renormalization corrections can be written in our notation as

2
o(W) = oJW){l*»%?-(—%—-% +-]i'—g-t

2 o (W - k)
dk k k
+ ¢ ‘S T (; -5 EEF?) -SE;UFT-_ -1 . (1)

0
In the integral over dk the argument (W - k) in o, should more correctly be

1 W2 - 20k , but for narrow resonances our approximation is perfectly adequate.
Bonneau and Martin's upper limit of integration qmax has been put equal to E,
corresponding to the fact that an electron can lose all its energy in radiation. The
soft-photon emlission is contained in the dk/k +term and is just the classical result,
corrected for energy conservation by the cross section co(w - k)L It is convenient
to rewrite EQ. (1) with the soft-photon part displayed separately from the "hard"

photon terms:
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o(W) = GO(W)[I + e] + 0t f%— UO(W - k) - O‘O(W)]
0

E
-%S dk(l"g%) o (W - k) (2)
0
where
2
_ 2a T 17 L 13
e -2 (%-%) B ()

is a small number that changes slowly with energy. [For the ¢(3105), where
t = 0.076, € = 0.085.) The last term in Eq. (2) is small compared to the first two
unless the energy W 1s far off resonance. From now on we omit this "hard" photon
piece, although at appropriate points below we will come béck and pick it up.

With the omission of the "hard" photon terms, our simplified version of the
Bonneau-Martin formula reads

E

oW) = oW1+t { Elow-x-om] . (4)
0

(e¢) Exponentiated form of the radlatively-corrected cross section

The emission of arbitrarily large numbers of soft photons with energies less
than k leads to the introduction of a factor

exp[— t R.n(E/k)] = (%)t (5)

in the integrand of the integral in Eq. (4). Then we find that the radiatively

corrected cross section becomes
E
- ax ()" ) + € o (W) (6)
olW) = ¢ Tir ) co(w -k €0, .
0

The justification for keeping the ¢ GO(W) term after exponentiation is not clear.
The presence of the factor (k/E)' makes the integral convergent at the lower limit.
In fact,
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d [k B
tST(E)'l’
0

showing that the radiative processes redistribute the cross section in energy W but
do not affect the total probability. This argues for the omission of the term ¢ GO(W)
in (6). The first part of € 1is very small (0.0027) and can be viewed as some sort

of "inner" correction to the width Fe in the entrance channel. The second, energy-
dependent, part of € 1s larger, but is not greater than 0.1 even at PEP energies of
W = 30 CeV. For simplicity, we omit the ¢ GO(W) term from (6) from now on. The
reader who wishes to add its contribution may do so.

(d) Folding with the energy resolution function

The incldent beams in a storage ring have inherent spreads in energy coming
mostly from the quantum fluctuations in the emission of synchrotron radiation. Each
beam is approximately Gaussian in energy and so the total energy W is distributed
approximately in a Gaussian fashion. If the normalized resolution function for a mean
beam enefgy W is G(W - W'), the observed cross section is

o«

S aw' o(W') (W - w') . (7)

-0

(W) =

The resolution function G 1s assumed to fall off sufficiently rapidly that the
limits of integration can be taken formelly as #= without damage to the physics.
Using the radiative correction formula (6) for o{(W') this becomes

o0 E'
t
(W) = tS aw' G(W - W') I %(%‘r).oo(w' -x) . (8)
oo 0

In using Eq. (8) for relatively narrow resonances it will be convenient to
make certain quite justifiable approximations. For example, with OO(W) as a reson-
ance whose width T 1is small compared to its mass M, it is justified to replace the
variable upper limit on the k integrationby E = L] and to approximate

) - @@ @

(Recall that t = 0.076 for M = 3105 MeV.)
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ITI. High-energy radiative tail

A characteristic feature of the cross sections is a radiative tail on the
high-energy side of a resonance, as shown schematically in Fig. 2. This corresponds
physically to the emission of a photon by one or the other of the incident electrons
causing the energy of annihilation to be in the neighborhood of the resonance mass M,
even though the incident energy W 1s considerably higher. For energies sufficiently
above the resonance that (W - M) 1is large compared to the larger of the line width

' and the width AW of the resolution function, Eq. (8) yields a simple result:
o

t
(W) = t(hrea) gy (‘”g”) (9)

where

(Ar_ea)o = ja(W')dW' (10) W

is the area of the cross section without radiative corrections. If we return to Eq.

(2) and pick up the "hard" photon terms, this becomes

0°(W) = t(Area) - [( - M)tw—f—m - g wz;:zM] . (11)
The last two terms are important only very-far from the resonance. The first term is
basically the 1/AE bremsstrahlung spectrum, modified by a slowly varying factor
incorporating the multiple soft-photon emission. The lowest order (Bonneau-Martin)
cross section gives (11) with this factor omitted. Note that Eq} (11) is independent
of G(W - W') and depends only on W, M and (Area) .
IV. Cross section for a resonance whose width is large

compared to the energy resolution
For a resonance like the po and even the wo, its width T 1s large compared
to the beam resolution. Then the resolution function G(W - W') can be taken as a

delta function and the observed cross section G(W) is essentially equal to (6). 4An

integration by parts gives

E
o) = - g a (5) Fogw-w (12)



LAWRENCE RAD{ATION LABORATORY - UNIVERSITY OF CAL|FORNIA MEMD. NO. PAGE
DUHY o1 Ao MATYTCO P - e
PAYSICS RUTES JDI/74-3 7
SUBJECT NAME
Radiative corrections and resonance parameters in J. D. Jackson
+ - : . DATE
eTe” annihilation December 2, 1974

In writing (12) we have dropped a term GO(W/Z), the assumption- being that, if oo(w)
is a resonant cross section peaking at W =M and W 1s not too far from resonance,
such a term is negligible. Suppose that co(w) is a Breit-Wigner resonance with widths

whose energy variation can be neglected. Then

%/,
2 .1
(M -w) T

o () = (o) (13)

The cross section (co )ma is the peak cross section; its value depends on the

'q
particular channel or channels being considered. With (13) inserted, Eq. (12) becomes

E
) re 1\ 2(M - W+ k)
o(wW) = (oo)max_l-,— S (f) dk . (14)
0

\ 2
2
o= ]

It is probably simplest at this stage to integrate numerically in order to see what (14)
glves.

For reference and orientation we evaluate (14) at W = M. This is essentially,
but not quite, the peak cross sectlon, the maximum being infinitesimally higher in

magnitude and in position. We find

t
o(M) - %({z) (% pax - (15)

The first factor can be approximated as (wt/2)/sin(mt/2) = {1 + 7r2t2/24). It is
equal to unity within 0.004 or less up to PEP energies. Thus U(M)\ ~ (I’/M)t ey’
Numerically, for the po meson, with M~ 770 MeV, + = 0.063, T = 150 MeV, we find
(I‘/M)t ~ 0.90. For the «° meson, with T = 10 MeV, (I'/M)t ~ 0.76. The reduction
in peak cross section because of radiative processes is thus not negligible and is
larger the smaller the width {provided the energy resolution is good--see the next
section).

For completeness we note that the lowest order radistive correction gives a.
factor [1 -t ln(M/I‘)] instead of (I'/M)t, corresponding to the first terms in an
expansion of (F/M)t = exp[—t Zn(M/F)] in powers of t. For the w® the linear
radiative correction factor is 0.723 instead of 0.758. Inclusion of € GO(M) from Eq.
(2) or (6) adds 0.072 to the 0.723, giving 0.795.

The high-energy radiative tail is given by Eq. (11) with
(16)

(Area), = Zrlog)y, -
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V. Cross section for a resonance whose width is very narrow

compared to the energy resolution

Although the general case of a resonance whose width is comparable to the
energy resolution can be dealt with effectively only by numerical integration, the
1limit opposite to that of the previous section can be discussed simply if the resolution
function is known. If the resonant cross section (13) has a total width T +that is
very small compared to the FWHM AW of the resolution function G(W - W;) we can
approximate oo(W' - k) in the integrand of Eq. (8) by

GO(W' -k) = (Area)o S(W' - M -k) . (17)

Then we obtain

5 1 we - M\*

This can be written as

0

t
o(w) = t(Area)o-s dx (%— oW -M-x) . (18)
4]

x

Here we have made a very slight approximetion by putting (M;/ZE')t =1 in the
integrand.

If the resolution function is known the integral can be evuluated (numerically)
If (W - M) is positive and large compared to the width of the resolution function,
the slowly varying factors x—l(2x/M)t can be evaluated at x =W - M and with a
normalized G, the result (9) for the cross section in the radialive tail is obtained,
independent of the exact shape of G.

For a_Gaussian resolution function the peak cross section (actually the value
at W = M) can be found explicitly. Writing

G{x) = exp(—x2/202) , (19).

21 C

and introducing 3z = x2/202 in Eq. (18), we find




LAWRENCE RADIATION LABORATORY - UNIVERSITY OF CALIFORNIA MEMO NO. Face
PHYSICS NOTES JDJ /743 9
SUBJECT NAME
Radiative corrections and resonance parameters in g;“D. Lackeon
e*e~ annihilation December 2, 1974
v C ia
(M) = %(Area)o-G(O)-(T2{?c> 5 z2 e % dz
0
20\ [.t/2 %
= 6(0)(Area), (’M’) -[2 r (1 + 2-)] (20)

The factor in square brackets can be approximated as

[zt/z r(:- %)] =1+ % (t2-0.5772..)

1 + 0.058t

i

Since t < 0.1 even at PEP energies, thls factor can be set equal to unity. The
observed peak cross sectlion for a resonance whose width is negligible compared to

the energy resolution is therefore closely given by

t
s = (§) -a0aren), (21)

where ¢ 1s the standard deviation of the energy resoiution function and
G{0) = 1/0 J 2n'. The radiative processes thus decrease the peak cross section by a
factor of (ZGVM)t. Typical values at the Y(3105) are M = 3105 MeV, ¢ = 0.78 MeV,
t = 0.076. This gives (20/M)t = 0.561, a very significant reduction.
The corresponding calculation with the lowest order radiative correction
formula gives
E
(W) = (Area) JG(W - M) + ¢ S di[G(W-M—k)—G(W-M)]
0

The peak cross section with the Gaussian (19) is

(M) = [1 -t 2n(-2-.]:%2-c7\)‘] -G(0) + (Area) - (22)

This is just what one obtaims by expanding Eq. (20) to first order in t. For the
Y(3105) parameters quoted above, the factor in square brackets is 0.414. If we add
the € +term from Eq. (4), this increases to 0.499, compared to 0.561 for the
exponentiated result.
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VI. Area method of determining resonance widths

in the presence of radiative corrections

The area method i1s the most reliable one for determining resonance parameters
because the details of the energy resolution are minimized to a great degree (In
principle, they are eliminated entirely.). The method is well known in nuclear
physics. The only new aspect here is the presence of soft~photon processes., Firstly,
consider only the energy resolution. If the resonant cross section is oo(w) then

the folded cross section is
FHw) = S oW - W) cxo(w’) aw!

We now integrate the cross section, smeared by the resolution function, from wmin
to a variasble upper limit W. The lower limit wmin is chosen in practice to be
where the resonant part of the cross section first begins to be visible above the

background. The integral is

W w
A(w,wmin) = S o(W') dw' = j dW'S aw" G(W' -~ wm) oo(W")
whin wmin

The behavior of A(W,Wmin) as a function of W 1is shown schematically in Fig. 3(b).

In Fig.-3(a) the cross section and the folded cross section are =ketched.

(Area)O

Fig. 3(a) Fig, 3(b)
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At positive values of (W - M) large compared to the observed width T = of
(W) the Integral becomes constant. Its value is found by interchanging orders of

integration above, Since G 1I1s normalized we find

11 ACH,W = \awr o (W) = (ar : 2
(W—M)>1:I‘Obs min) g o (W) (Area) (23)

The plateau value of A(W,Wmin) is thus equal to the area of the original cross
section, independent of the form or details of G(W - W').

The method needs only slight modification because of the radiative corrections.
We begin with the smeared cross section with radiative correctlons, Eq. (8), and

integrate it from wmin to W:

v o E"
t
AW, ) = 5 aw' S AW GIW! - W)t i % (%Tr) o (W' - k) .
W ?
min

Since we are concerned with resonances whose observed widths are small compared with

W it is permissible to neglect the energy variation of a factor (M/ZE")t --even for

the p° it causes an error of less than 1%--and also put the upper limit on the dk

integration as M/2. Then en integration by parts in the dk integral glves

w ‘ > M/2 s\ b do (W - k)

AR g aw j aw" G{W' - w") g ak (‘H‘) — -
v Lo 0

min

If we now perform the dW" integration and integrate by parts, we obtain

v M/2 @
ACY . . 2\ . . ac(w'- W)
M) = aw a (3 aw" o (W - k) =g .
wmin 0 =

Now we can do the W' integration:

M/2 s
AW, ) = S dk (% S aw" o (W' - X)IG(W ~ W") - G(W , - w")]
0

-
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Since W = wmin 1s the energy below which there is no resonant cross section, the

last term G(Wmin - W") can be dropped. Then a change of variasbles in the dW"
integral gives

/2 v
2k
A(w,wmin) E dk (‘M" S daw! oo(w') GW-%-w) . (24)
- J
To see the bahavior of A(W,Wmi

by the resonant cross section oo(W') to a range of the order of *[' around

h) we note that the integral over dW' is confined

W' = M. The resolution function, on the other hand, is nonvanishing only for

W~k - W'| <AW. If (W - M) is large compared with the larger of T and AW, the
range of the dk integration is confined to k = (W - M) # T *+ AW. Since the factor
(2k/M)t is slowly varying provided Xk 1s not too small, it can be evaluasted at
k=(¥W - M) in this 1imit and taken outside the integral. The remaining integrals
are Just as in the radiationless situation, provided (W - M) >> AW. We thus obtain

t
ALY ) [2—(%—“-)-] (Area),

or

t
- M .
reads = wiome aw [m] AW ¥ygn) - (25)

This is the generalization of Eq. (23) to include the effects of the radiative
corrections. The integral A(W,Wmin) continues to increase s;pwly with increasing
W because of the radiative tail, Eq. (9), rather then levelling off to a plateau

as in Fig. 3(b). The factor [M/Z(W - Mz]t, which is larger than unity but decreases
with increasing energy, corrects for the rise in A(W,Wmin). The product is larger
than A(w’wmin
levels off to a well-defined plateau that is the true area of OO(W) in the absence

), compensating for the reduced cross section near the resonance, but

of soft-photon processes. In practice, one calculates A(W,Wmin) as a function of
W and then begins multiplying by the correction factor for values of "W slightly
above the resonance.

VII. Example of determination of Fe for Y(3105) and values for

other widths
To illustrate the use of Eq. (25) we consider the integration of the cross
section o(e'e” + hadrons) to determine r, for the ¥(3105). We use the data from




LAWRENCE RADIATION LABORATORY - UNIVERSITY OF CALIFORNIA MEMO NO. PAGE
PHYSICS NOTES 103/74-3 13
SUBJECT NANME
Radiative corrections and rescnance parameters in J. D. Jackson
e*e— amnihilation December 2, 1974

Augustin et al., SLAC-PUB-1504, November 11, 1974. These are not the latest or best
data, but they are accessible in the literature, A summary of partial width informa-
tion to date is given after the working out of the example,

The data on e e” + hadrons near 3.1 GeV are plotted on a linear ordinate
scale in Fig. 4. A background cross section of 30 nb has been subtracted. Also
shown are the radiative correction factor [M/2(W - M)]t, the integral A(W,Wmin)
and the product of the two.

The plateau value for the area according to Eq. (25) is

3

(Area)o = 11.5 x 10” nb x MeV ,

For a narrow resonant line (13) the area is given by (16). Ifa J =17

assignment is assumed the peak cross section for a reaction a + b is
rr
. 12m “a'b
(0, )pay T T (26)

where ra,rb are the partial widths for the two channels and I' 1is the total width.
The product rarb/r is thus determined to be

I‘ 1" - B

ab M

-T- = —> (Ar )j]
6w [ eac’ab

4.34 x 10‘14[M(Mev):]2-[Area(nb x MeV)] MeV . (27)

The numerical factor converts nb to (MbV)’z, as well as including the factor
(6“2)-1. For M = 3105 MeV and (Area)o = 11.5 x 103 nb x MeV, this gives
rr -
e had ., 81 x 1077 Mev
A rough estimate of the error in determining the area and the resonant mass indicates
a generous uncertainty of 5 to 10%, apart from systematic errors.
Integration according to Eq. (25) of the cross section ole'e” » p'u”) of
Augustin et al. (called by them the cross section for 2-body, collinear events that
are not pairs of electrons) gives

2

(A.rea)gu ~ 7.8 x 10° b X MeV
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with an error of 20% at most, apart from systematics, Assuming this cross section

is truly ete” p+p- we have

1“er -4
St = 3.3%x1077 Mev
We thus have rp/rhad = 0,068. Assuming that T = Ty * Fu + rhad and that Fu = Fe

(This is consistent with the observed resonant contribution in the e e” + e e

channel ), we can solve for Ter Tpagr T
Fe = 5.5 % 0,5 keV
Tag = 81 keV (Data of Augustin et al., SLAC-PUB-1504)
' = 92 keV .
The error on rhad and ' 1s probebly less than 20%, apart from systematics.

The same method of analysis has been applied to other data on the Y(3105)
(SP-17 memorandum from V. Liith, November 25, 1974) and on the ¢(3695) (preprint of
Abrams et al., November 23, 1974 and private communication from W. Chinowsky). A

summary of the results is as follows:

y(3105)
e'e™ + hadrons (Area)o = 12.1 x 10° mb x MeV(+5%)
I‘e I‘had

5.1 £ 0.4 keV .

The error estimate is generous. With rhad/r = 0.88 this glves

Fe = 5.8 £ 0.4 keV

With the same assumptions as above, T = 97 keV

W 3695 )
e'e” + hadrons (Area) = 4.0 x 10° nb x MeV(+5%)

e ‘had 2.4 + 0.2 keV .

RL-

2187
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ete” » uty” This channel is relatively much smaller than for the ¥(3105) and
it is difficult to extract a resonant cross section. A rough estimate gives
T /Thaq = 2 % 1072 (£30%). This would imply r, = 2.5+ 0.2 keV and T ~ 125 keV.
As discussed in my Physics Notes JDJ/74-1, this estimate of T must be viewed only
as a lower 1limit. It is possible at the moment that the £+l- channels are contam-
inated with 2'2° + neutrals coming from sequential decays y(3695) + (3105 r°n®
and W(3105)n°‘ Attributing all of the observed leptonic enhancements to
P(3695) + 252" thus gives an upper limit on Fz/rhad and a lower limit to T.

VIII. Quick and dirty method of estimating (Area)o

While the area method is most reliable in determining (Area)o, a fair’
estimate can be made quickly using the radiative correction factor for the peak
cross section. For a resonance seen in good resolution (Sect. IV) we found a factor
(I'/M)t and for one seen in poor resolution (Sect. V), (20/M)t where o 1is the
standard deviation of a Gaussian resolution function. Since the FWHM of a Gaussian
is AW = 2.35480, & general radiative reduction factor for whatever conditions of

narrowness is

(omax)with radiative (\ :) max)no radiative (27)
processes processes
where AW is the observed FWHM of the line. This interpolates between the twc

1imits snbothly and is in error by less than 1% in comparison with (2c/M)t
If the observed line is assumed to be Gaussian in shape, its area, without
radiative tail, is

(Area)obs = 1'0645(0max)obs'Awobs . (28)

If the line.shape is a Breit-Wigner, the coefficient 1.0645 becomes m/2 = 1.57.
We assume here that the resonance is narrow and the resolution function is Gaussian,
so that the observed line shape 1s appréximately Gaussian.

The true area can thus be estimated from Eqs. (27) and (28) to be

(Area)o > 1.0645 ('ZW;;; (omax)obs'Awobs . (29}

The radiative tail produces a skewing of the symmetrical line shape, but makes only
a small effect on AW .
obs
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As an example of the use of (29) we consider the Y(3105) data of Augustin

et al, used previously in Fig. 4. The observed peak cross section and FWHM are
(cmax)obs
gives

ob

(Area) = 1.0645 x 172 x 2300 x 2.5 = 105 x 102 mb x MeV

This is to be compared with the value of 11.5 x 103 nb x MeV found by the area
method.

For the (3695), the data of Abrams et al. has (Omax)obs = 725 nb,

AW, = 3.0 MeV, giving (Area) = 1.0645 x 1.7, x 725 x 3 = 4,0 % 107 mb % MeV

compared to 4.2 X 103 nb ® MeV found from the same data by the area method.

= 2300 nb, AW s - 2.5 MeV. With M = 3105 MeV and t = 0.076, Eq. (29)

b



¥: Extraction of Decay Widths and Coupling Constants.

How to Deal with Radiative Corrections and Machine Energy Width

Y. S. Tsai

A. INTRODUCTION

The effects of radiative corrections and beam energy spread on the exper-

iment can be divided into three categories:

1. Effects on angular distributions

2. Effects on the energy dependence of the eross section g(w)
3. Effects on the' area under a resonance [ Teosonance dw

In this report we consider only the last two.

We shall treat the radiative corrections in two steps. The first step deals
with corrections necessary to obtain the decay widths and the interference ef-
fects. The second step deals with those corrections which are necessary only
when one is interested in obtaining the coupling constants of i to various parti-
cles. The first step essentially reduces the experimental cross section into
the cross section represented by Fig. 1. The resultant decay widths can be
represented by diagrams shown in Fig. 3, where the blobs represent all pos-
sible effects. The second step essentially takes care of the higher order elec-
tromagnetic contributions to these blobs.

There are many reasons for splitting the radiative corrections into two
parts; I;t us list a few:

1. It is more natural to define the partial decay widths with all the ef~

fects of the blobs in Fig. 3 retained. The higher order electromagnetic con-

tribution to the blobs can be subtracted when we evaluate the coupling constants.
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2. We shall exponentiate the lowest order radiative correction in Part 1
of the radiative corrections. The blobs in Figs. 1 and 3 are not obtainable by
exponentiating the lowest order electromagnetic corrections. For example,
the correction due to the vacuum polarization is 1/11 - %évac l2 instead of
exp (6vac), where (Svac is the lowest order correction.

3. The vacuum polarization correction is absent if y is not coupled to a
photon; for éxample, if $is a neutral weak boson. Since we do not know what
Pis at this moment it is best not to perform corrections which may not be
justified.

B. THE EFFECTS OF BEAM ENERGY SPREAD
AND THE SOFT PHOTON EMISSION ON THE SHAPE OF g(w)

The energy dependence of the experimental cross sections for et+e —
IJ.+ +u . and et + e” —e' +e near the resonance will reveal whether y has the
same quantum number as that of a photon. However the experimental cross
section aexp(w) is quite different from the theoretical cross section ath(w)
because the machine energy has certain width and also the energy of the elec~
tron is degraded by the bremsstrahlung emission. Let the mean energy of the

machine bew and let us denote the machine energy distribution by G(w,w')dw'.

For concreteness let us assume that G(w,w') has a Gaussian form:

Gw,w') =

2 2
e [- w-w?/2a%) ®
2T A
where A is related to the full width at half maximum (FWHM) by
A= (FWHM)/2.3548 ~ 1 MeV . @)

Let us denote by B(w',w') dw" the probability distribution of the ¢. m.
energy after the bremsstrahlung emission, w' being the energy before the
bremsstrahlung. The energy loss by bremsstrahlung is w' - w". Since energy

loss is always positive we have

Bw',w")=0 ifw'-w"'<O0 . 3)
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The expression for B(w',w') can be obtained from exponentiating the AE de-
pendent part of the radiative corrections given by Schwinger:

w!

el = exp [~ € In (2AE/w")] = B(w',w') dw" “)
w'-AE
2
where e =2% % - 1] . ®)
T m?

Differentiating both sides of (4) with respect to AE, we obtain

€
B(w!, w") = [e (&) /(w'~w">1‘€] B(w'-w") - ®)

The desired relation between o-exp(w) and crth(w") is given by

T oo™ = |

w

[oe] [>e]

dw'f aw'" G(w,w') B(w',w'") o (w')
" 0 th

zf dw'" F(w,w") 0, (W) . )
0

The lower limit of the dw! integration comes from (3). B@w',w") is too singu-
lar at w' =w" for computer evaluation of (7). This singularity can be elim-
inated by integration by part in the following way:

0

F(w,w") = f dw' G(w,w') B(w',w")
WH
€ 00
= Ji (2\%‘&) ./0' exp [—(y—z)z] @
21 A
) € o 2
= \/_E (2 ‘fiA) f ) Ex e™ ax (8)
2r A -y

where y = (w-w'")/(/24). There is no singularity in the integrand of (8); hence



it can be evaluated by a computer.

It should be pointed out that Gh is not the lowest order in the electromag-
netic interaction. Let the lowest order in a cross section be % and write
O{:h =(1+ 5')00 9)

5' contains many terms, the most obvious one being the noninfrared part of the

vertex COI‘I‘GCtiOD,
S = =2 - 3n(w/m 10
vertex 7 [ ( / e)] ) ( )

The vacuum polarization correction is necessary only when we know for sure

that y is coupled to leptons or hadrons electromagnetically. This will be dis-

cussed later.

C. EXTRACTION OF PARTIAL DECAY WIDTHS
For this purpose we need to know only the area of a Breit-Wigner curve.

Let us consider formation and decay of y shown in Fig. 1, and parametrize the

Fig. 1
theoretical cross section %h by a Breit-Wigner formula

D26 Ty p 1TESHD
7, (W) 559 5.0 5
w’-m%? + 1M (28_+ 1)

11)

where Szp is spin of y and Se is %- For a narrow width, the Breit-Wigner for-

mula can be approximated by a 6 function,
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Fig. 2
Let us integrate the experimental curve fromw__. tow as shown in Fig. 2.
min max
w is chosen so that
max
W -M >> FWHM (13)
max

Using Egs. (7), (11), and (12), we have

W
max 2
T w) - Background| dw = 27 (2S5 +1
fw , et -Backe ] EsTY
min

w 0
w L@—2e) T@—1f  max o f G(w, w') B(w', M) dw' .

2
r.M min M (14)

"Background" means all processes which are not represented by Fig. 1 or Eq.
(11). )

Under the condition (13), we expect that the value of integration becomes
independent of the detail of machine width; hence G(w,w') can be replaced by a

5 function:

Gw,w') — S(w'-w) . (15)



Therefore
W
max .o
f f dw' G(w,w") B(w', M)
w__. M
min
w
max s
=f dw B(w,M) = e (16)
M
where
5= 27‘“ [gn <M2/mz> - 1] 0 (2 M/Aw) 7
Notice that we have integrated the experimental curve from W oin to Wohax®
but Aw is defined as Aw =w -~ M, notw ~W_ . . Substituting (16) into
max max min

(14) we have finally

max
area = .4; [crexp(w) - Background] dw

min
= Ty—2e) T(p—1 611‘2 (Zsﬁ) eé (18)
2 3 ’
l"tM

where 6 is defined by (17).

We have done numerical integration on the left-hand side of (18) for the

process ee — %105 — charged hadron with Woin = 3.10 GeV and Wonax -

3.12 GeV. We obtain

33

area = 8600 x 10 cm? MeV ,

€= 270‘ [2 fn (M/m,) - 1] =0.076 , (19)

5 3.1 7 1 00
€ 'exP['O'mGXm2><o.015]'1.415 . 20)




and

I'(y — 2e) I'(y — charged hadrons) _ 3
T, 4.94 (55| keV . 21)

The data for e + e — y — 2u are not very good. The ratio of two peaks yields

If Y couples to ete” electromagnetically then we expect (assuming T'(p) — 2u)

= I'(y — 2e)

r, o= I'() — charged hadrons) + 2T (p — 2u) + I' () — neutrals). 23)

If p couples to leptons directly via weak interaction, then probably
Tig—2e) = T@—2p) = T@—~2v,) = I‘(lP—“ZV”)- 24)
Hence

I‘t = T'(y — charged hadrons) + 4I' ¢ —~ 2u) + I' (¥ — neutral hadrons). (25)

We conclude

T
t 3
- = ] 26
I'@—2e) 4.94 T (¢ — charged hadrons) (Zs¢+l) kev @6)
1+56 (u
I'(y — charged had) = 14.3 T = 14,3 — YT 1y 2e)
P — 2u 1+ Gvert(e)
Iy 3
= T3 kev T (y — charged hadrons) (Zs¢+1) 27
We note
T

t - 14+ 2, T (y — neutrals)
T (¢ — charged hadrons) 14.3 ' TI'(y — charged hadrons)

28)
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This factor is at least 1. 14 if I'(p — 2e) is electromagnetic, whereas it is at

least 1.28 if I'(p — 2e) is weak.

5vert(e) and 6vert(u) are vertex corrections for electron and muon respec-

tively and they are given in the next section.

D. DETERMINATION OF COUPLING CONSTANTS

' + +
e
w : i
e u

I —2e) T(p—2u)

' —~1)

Fig. 3

The widths obtained contain all the noninfrared part of the radiative corrections

represented by blobs in Fig. 3. For sz_’?# and Fz]r—-charged hadrons

states can also contain an arbitrary number of photons because we did not do

the final

the radiative corrections to the final state. The vertex correction can be

computed easily. Using (10), we obtain

5vertex = .056 for electron (29)
5 = .019 for muon (30)
vertex
Thus in principle there is 3. 7% difference between I and T

—2e -2



Weak Interaction

We ask whether y = zp3105 could be a neutral weak vector boson. Let us as-

sume the coupling of ¥ to ete” to be

[ K=
H' = oM @y, + 87,75 - (31)
Then
2 2
gv + €A .
T —ze) = 127 M[l Overtex(e)] (32)

Substituting (27) into (32), we obtain

& +g2)/ (4)

-6 4 T'(y — neutral h@]
4.5 x10 [l *14.3 + T'( — charged had)

6x107° . (33)

Q

Now if 3 — 2e decay were semiweak, (g‘zl + g‘i)/M2 would be roughly equal

to the Fermi constant 10_5/M123. Indeed
2. 2,92 _ -5, 2
(gv+gA)/M = .7%10 /Mp . (34)
Therefore the decay i — 2e is consistent with being semiweak.

Electromagnetic Interaction

We ask whether the decay y — e’ + e is consistent with being electro-

magnetic as shown in Fig. 4.

2
(7 eM ng

Fig. 4
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The decay width is

where § is the radiative correction. 5 has three parts:

6 = 6vertex(e) + 5vac(e) + 6vac<u) * 6vac(had) ’

where § (e) is given by (30), and -Svac(e), 5vac(u) and évac(had) are

vertex

vacuum polarization contributions from electrons, muons, and hadrons,

respectively.
e 5.2, ™M]|_
6vac(e) —[;r—— —§+§ﬂn —r'r'l—'e-] = 0.024
(22 5,2, M|_
R _[Tr S+ 340 mu] 0. 008

Ovac(had) ~ 5vac(u)'
Thus we obtain
6 = .096

and

30 — 2e) (137)° _

M(L. 096) 0.1

2
41rgziw =

assuming T ~ 6 keV.

y—2e

(35)

(36)

37

(38)

(39)

(40)

(41)

This is to be compared with similar calculations for the leptonic widths of

ps w, and ¢ mesons

arg® = 0.087
WY
ang® = 0.067
oY
2
4 = 0.5
"Epy

Thus the coupling of to v is reasonable compared with those for other

vector mesons.
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Final Comments

The formalism of the radiative corrections presented in this note involves
the least controversial part, the soft photon phenomena, of the radiative cor-
rections. This is evidenced by the fact that D. R. Yennie, J. D. Bjorken, and
the author all immediately wrote down the same formula (Eq. 6) after we heard
about the problem. The possibility of using the area under the resonance
curves to obtain the decay widths was noted immediately by many people, in-
cluding David Jackson, J. D. Bjorken, and myself. Bob Pearson made the
linear plot of the experimental curve which made possible the numerical inte-

gration, counting the squares on graph paper, shown by Eq. (18).



Interference in the Hadron Channels

J.Bjorken, S.Brodsky

The interference effects in the amnihilation process e+e-—~ f for specific
hadron channels f and the total hadronic cross section can be a rich source of
information on the hadronic couplings of the . We assume in this section that
% has J P 1" and couples to leptons electromagnetically.

There are two amplitudes which contribute to the hadronic width for a

specific decay channel ¥ — f:

T [mfemg B

T« EM T’p(d)“\‘ N Tﬂﬁ(m‘)

Note that the decay of the ¢ through the photon involves the non-resonant

% —fcoupling — to avoid double counting. Thus



where R® is the ratio Gl'(x)ad/ U:+/~l" off resonance. For the ¢(3105) we can

estimate T. ., ~ 75 keV and I‘hgi) ~ 3x5 KeV = 15 KeV

had

+ - . .
For e e — f, there are now three contributing amplitudes

T

0
WE + WA g )

T o [ MG
S~ i eim T

In the interference region, (s--rnz)2 >> m2I‘2

m 2 [_'YV\(;K?‘- i p(d) ]

o >
O—F = (TF + 2 Re P (‘(;hqw«\“}( ch(e,\—g>

+ -
which we can compare with the p y channel interference

Ty = G0 e Y
Y A T2 Re WMt Mg
S~
= Gla- [ 1FECS))
Thus
PQ’W\%‘W\\T(O\\

Te= oo [ 1+ €)1+ 2

Re WG-C m{\(\ﬁ)>J

Further it is clear from the structure of the matrix elements that

2% ME M{,(d) Tc(mir)

[ W*f MP(K) Tk )



Hence

- ﬂ[(mﬂ
oz = Re 5/4)4_ I é(%)((‘“w(x) )]

and

— - £ .
T had ~ ?/U:f' T Livee)] (nf)

| £ T¢
é‘ s —_—

For the muon channel interference, one estimates

O €(s) 2 0.4

outside the machine resolution region. Further, since rha d/1"/’1_,_‘1_ ~ 20 for the

Y (3105), then I‘f(int)/I‘f(y) of order 3 to 5 are possible. Thus large interference
effects could be seenf At minimum the interference is the same as the muon
channel. This is the case if the ¥ decays directly to hadronic states orthogonal
to the states coupled to the photon. For example, if the ¢ is a unitary singlet,
no extra interference is present. Further information is gained by examining
the interference effects channel by channel. Further, as emphasized in Section
the ratio of cross sections crfl/ Ufz for various hadronic or leptonic channels at
the same beam energy near the resonance peak can provide a sensitive test of the

sign and ratio of interference effects.

Note that the above treatment is consistent with the unitarity equation

Tad(s) = = 4T T DCS) = — 4Bt 1, L
S -7

t However, These effects can be obscured by the presence
of a large contribution from direct hadron production spread by machine

resolutiam.



The contribution of a B. W. to 7 (s) is equivalent to a B. W. in D(s) with a
shifted mass — provided the background is energy-independent. Thus the

contribution of the resonance is

-
-~

_ ~47«X 1
< IV\A .
2 S-wmte M

Req

2. o
However, note that g~ is complex. The contribution T % S- i T

corresponds to the cut

which is the m‘; mf(d) and mf0 mf(y) contribution to the interference.



R. Pearson

Interference in Hadrons

A parable in which the four elements of the universe are represented by

(no numerators allowed)

v /s
’7[» 1/ S-mj

@ the hadrons 725 @)

L

O the leptons S L; ()

and their couplings: S A, =

g —<2D L ~—AD
(Y:ovxeS—'O e /\MO

the hadronic component of ¢ is then:

S —

A4
S-wms - S ZséfGQL(s)

YY\NZ& = ((+L ?QQ (s )>
1

S“mhzﬂd“'lmmq& Tm&/_z _mﬁzgz I—M/\Qk(s>

1l




The coupling to y is via two means.
LS 3.« .
ST Q)
So one may define A = A 0 +Zgiqui(S)' Additional beasties appearing in the
i

v are O and @ ‘ So one has the full photon propagator

TR S e e [O + @ + ((\‘;3 L’“(}\S)JA%

I
\

with

L
A S

Miand + 1M T, g

Ty =l LE F Z i DU +

keeping only the leading corrections in 82 one obtains:

L z 2 = A z 2
1 (S~ M)+ W Thad My 2=y (14 Re(N)
T=TEY | T (semEY v Tl N

Tk E T =M T (X)

If one assumes scaling for e+e_—> had. background, this gives Iin(s) =ImL(s) =

-1/127 .which allows a simple form for Imn, viz.



—ad)

T - L

. < —~ z =
2 (Snt@ad) 4+ mt T’m”-:}ﬁ Z.\ ( "'\Q>‘8<S+ gc (S;W’“MQ»
Y

4 ,;w ((Z3NTg- (Zpg V)

T X T T
then one has for crhad = 4;;2" " ILMTI z
; [t

whereweshaﬁletReA-»A, Egiz-..gz) Z‘Z‘: - Ql ) f_/jhgg = %’;@

bl o (NS g Gerid) QY+ s gt (@G- (@) /T

35 (

Sowy )" e it Thl
or if it pleases one, one may define a factor of e out of A and @ to give

Pobe SLL ] em ]

2

o FRs3g N\ [ (6 mid) 58 /64Ty [AS(S‘—mzlvd)g@*‘fgz(gr@;//wnj
O‘ A

(S-mi Y+ w® T

the first term represents direct hadron production from the ¥.

The second term can be rewritten as

2z

(5 mmﬂ+ A’ Tt

0, R @& TEEYY

- mgHTem?® Thg



where Qz =2 qi is often called R.

The third term represents the interfemence between direct hadron production
and production through the photon, and is highly model dependent because of the
factor g-Q. If to take a simpleminded example g measured baryon number
gQ= 0.

The experimental observation of such an effect is moreover quite difficult

as the second piece has precisely the same energy dependence of the direct term.



A. Weldon

Front-Back Asymmetry at Resonance Peak
{Parity)

\ ; A 3 X 7 .
J\il o = 7‘22 GYIPY)E) T AMNT Wa e <AALTTT VA A
pot. ¥ 3/

x 2 ckrl"ﬂ‘)/\‘-))mif'{‘))«,'ﬁ) P} (cene)
£

Look at resonance, i.e. J =J!' = fixed. Take forward, backward asymmetry:

As

= \2)\
A0

_ AT
pef o\_n( 2R

s
_ . . 1 A-p o
= T AT AN 7 2 COTE AN CETR pop) 2 P Lme )

P 1 odd

Use C(JJ4; mym) =0 whenfodd + m=0. Thusonly A=+ 1 andpu=+1
confribute to front-back asymmetry. Use C(JJ¢; -1,1) =-C(JJdg; 1-1) for

£ odd. Sum polarizations:

@) - drg = S {\o/l-n\‘rs\vl N VA A A E Al

)

5 %% VA TI AV - RYAT Y, —sq\‘}

*2- Vs Lol 2 Bleee)
€ cda



Construct eigenstates of P and C:

P <
VL'\ } - '\a- 2
oy = T - R 3
e k‘) +
1By = TV AUy -y _
"
R R -
e L") —
(B9
Oy = Y s Ve YD oy
[£S
In terms of these states,
g\ftz)_w— Yy = 3y )1 / z ¥ -3 N -1
Ao = v {qu\r A48T 1 8y) + Re («mThr8y <8V T10S )
ML

20 NATIG AN 4 P oo )
€ cad

Thus if 1% > is an eigenstate of parity (either | A > or | B >), no asymmetry

is possible.

NOTE: If | ¢ > were degenerate (i.e., two particles with opposite parity), an

asymmetry would be possible from the first term above.

t

)



Tests for the Charge Conjugation of the ¥

S. Brodsky

One of the intriguing possibilities concerning the ¥'s — especially if they
have anything to do with the weak interactions — is that one or more of these
particles has positive charge conjugation. There are two main tests pertinent
toe e colliding beams

(a) Direct decay into 2y or other C = + final state

(b) A front-back charge asymmetry off resonance due to interference
with the normal one - y processes. We shall discuss this test in some detail
below.

It should be emphasized that even if the angular distribution for ele - p+#_
at each of the ¥ peaks shows a 1 + cosze distribution, it is still possible that one
or more ¥ 's could be an axial vector, JPC = l++. If ¥ is a neutral carrier of
the weak current, it could well be an axial vector. If there were degenerate
vector and axial vector ¥'s, then a linear cosé term would occur at the resonance
peak in e+e- —-u+/.1_ and other channels. This is equivalent to the parity violation
tests, discussed elsewhere.

The main characteristic of a state with even C is chat it couples with equal
magnitude and sign to particles and antiparticles. The interference of the (real)
one photon amplitude for e — p+u_ with the real part of the e — . [,L+#_

with C(¥) =+, then changes sign (odd in cosf) when the /,L+ is detected along the

positron versus the electron direction. Thus:



.‘\.
Ne) N M*(e} ~\N7le) 2 Re. Yﬂg My
— — — .
N " =
N* (@) + N (8) \ M\ N
where Nt (0) is the rate '?1__% when ui is detected at an angle ¢ to the direction

of the incident positron beam.

As an example, we suppose the ¢ has simple axial vector VY5 coupling

(e) (1)
A

and gA ,

to the electron and muon current, with coupling constant g

respectively. Then, using Budny's paper, we find

Cos X
\4 u&’é ’%u\
where
(e) (=) <
_ A~ —_
Qs — ~—-—1.g—‘-\ KQ €~M1«~LP\F
<,
ey ()
- A QY G-w) s
_Q"l_ (S— M.\'\’L A M‘LT\I
and

@) q PN\
me 1 (00)

Thus A is negative below resonance if glge) gX‘) > 0. Note also

-

R
S
(S-wmy- PN

\ i
[N

\ q;ﬂ Q . \\ Tﬁ—)e*c- v

¥y W e

V2w M‘(——



so approximately for the ¥ (3105) ( VW%QM* - ke ) T‘;?gk(’\/>
g -—:\"’ T
\%“( VA \ _ 02 Vst T vt v ~
My
h t : - L :
whereat S = WMV Bews My —nT/a
P = —3xot Mon n
5 K T wn* v 2 (¥n ™
By = + L -~ M2 2)*
4 ! ar Lxe TR \ + (\ML
For n-28 ) Bew = M- B RV

l\,\} - col &
L+y2

which is a sizeable interference. For 60° to 90o detection

SQ\\*’MﬁMQ/ g(@* YN densd ~ 2(2 -4 Bg

«
givesa 50% asymmetry at n = 20.

We also expect a similar interference for any hadron channel; e.g. a
front-back asymmetry of xt vs. T, K+ vs. K , pvs. p, etc., in inclusive
or exclusive processes. The effect is larger than the muon case due to the

increased ratio

r /2 Yo
toTEE Ty=wx
(/2

r 4(«')//(}/\" T_‘\Zz__?}/uy_




for inclusive r* . For the ¥ (3105), this ratio is 2, and gives a 50%
asymmetry at n=40. However, the asymmetry is presumably smeared and
reduced by the quark-jet effects, as well as machine resolution. The above
discussion is meant to be representative of the magnitude of the effect due
to a positive charge conjugation particle. Radiative corrections, which
induce a background charge asymmetry at the 1% level, are relatively

unimportant.
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The observable consequences in the angular distribution and in the longitudinal
polarization of the muons of a parity-violating spin 1 reéonant state are summarized.
Particular attention is focused on the possibility of lack of universality between
electrons and muons.

I. Introduction

While there is increasing evidence that the V(3105) and V(3695) are exotic
hadrons of some sort rather than intermediate vector bosons; the situation is
sufficiently uncertain that the consequences of other assignments should be explored.
In this note we consider the channel e+e- il u+u- and examine the observable effects
in the angular distribution and the muon longitudinal polarization of a spin 1 resonant
state that couples to e+e— and u+u- with interactions that may not conserve parity.
In the angular distribution we include interference with the s-channel photon pole
amplitude, but for simplicity ignore such interference for the muon polarization.

The channel efe” e+e— can be treated similarly, but is complicated by the
additionzl t-channel photon exchange. It seems probable that the channel efe” u+u-
is more useful in establishing the presence or absence of a small effect than

e+e- e e+e_ since the latter process has an asymmetric angular distribution from the
t-channel contribution.

There are discussions in the Russian literature on the effects of an interme-
diate vector boson on these reactions and R. V. Budny (Oxford, now SLAC) has made
detailed calculations. Here, however, we focus on the possibility of different
couplings of electrons and muons to the intermediate vector particle. After all, we
must keep searching for ways in which the muon can be distinguished from the electron!
IT. Basis of the calculation and notation

The computations are elementary lowest order Feynman diagram calculations. We

give no details, but merely summarize the notation. The two diagrams comnsidered are

given below

RL-21R7
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The lepton-resonance couplings are 7 (SV + gA7 )} for e+e and 7 (SV + gA 5) for
u u , the convention on the Dirac matrices being the Pauli choice in which the standard
(V - A) coupling is 7a(l + 75). Time-reversal invariance is assumed; the g's are
all taken to be real. With the V¥(3105) and V¥(3695) in mind, we neglect the lepton
masses throughout. For simplicity we average over initial spins. If the storage ring
beams are transveisely polarized, the results are applicable to averages over azimuth.

In the formulas it is convenient to have two sets of symbols. We define

! 1
) 2gy &), o cey 8, )
B - 2 2 2 o - 12_ + :2 ’
By & By T &

g , gy
7V = v s 7V = (2)
2 . 2 12 + 12
By T By v T8
1
g g
A ' A
AU ————— A ————— (3)
2 2 2
v T & v t 8

We thus have B = 27V7A , B' = 27v 7A if conversion is necessary. The sums of the

squares of the coupling constants cen be expressed in terms of the partial widths for

the decay of the resonance of mass M,

r
82+82‘_—12ﬂe
v A - M
) (%)
T
e, 2 _ 2Ty
By T8y M :

The differential cross sections are expressed in uriits of the standard

+ - + -
asymptotic QED cross section for e e —+pupu ¢

o) == (5)
uuQED_BWQ

where o = 1/137 and W 1is the total c.m.s. energy. It is useful to have symbols for

AL-21R7
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the resonant and interference terms in the cross section. We thus define

P - 2 e U (6)

and

| 3 Vil W-w
ReAR=5 Ie . (?)
{(M—w)2+~h—-]
I1I. Differential cross section

The c.m.s. differential cross section, averaged over initial spins and summed

over final spins, is

S

in ) ‘ i%; 1+ cos® @ + ]AR'E(l + cos® @ + 2 BB’ cos O)

o
HHQED

- 2 Re AR[ 7V7¢(l + cos 8) + 27A7A cos © 1) .

8)

The angle © 1is the angle between the directions of the momenta of leptons of the same
charge initially and finally. The first term is the s-channel photon contribution, the
second the resonmant term, and the third the interference. The negative sign in the
interference term is a consequence of the assumption of a pormal resonance with a
counter-clockwise rotation through resonance on an Argand disgram. This term can
contribute positively, of course, with suitable relative signs of the couplings.

Ten specific examples are listed in the table below. The couplings are cited
in a stylized notation, with V, %V meaning g, = gA =0 and gvgé 2 0; Via,
V1A mesning g, = g, g% ="5é and gvg% > 0; and so on.

RL 21R7
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Examples of Angular Distributions

Number Couplings (e, ©) Coefflcient of IAR‘Q Coefficient of -2 Re AR
1 vV, tv 1+ cos2 8 (1 + cos2 6)
2 A, A 1+ 0052 ] 2 cos ®
3 ViA VIA (1 + cos e)2 1(1 + cos &)
L Va4, -(V£a) (1 + cos 8)° - 3(1 + cos 8)°
5 VA VFA (1 - cos 6)2 (1 - cos 9)2
6 vV x A; -(v = 4) (1 - cos 9)2 - 3(1 - cos 9)2
T v, (g{v gA) 1+ cosz 2] 76(1 + cosz 8)
8 (gv, gA), v 1 + cos” @ 7V(l + cos” 9)
9 A (g &) 1+ cosi 6 2y, cos @

10 (gv, gA), A 1 + cos © 2y, cos 8

The table contains some interesting if not surprising results. The first three
entries (with upper signs on the first two) correspond to the universality of the
electron and muon couplings. The first two are normal parity-conserving situations.

The resonant amplitude squared has the familiar (1 + cos” 8) behavior, while the
interference term reflects whether the resonant and background amplitudes represent
states with the same parities or not. The third entry is the classic (V T A) parity-
violating situation. Both terms show the strong forward pesking of (1 + cos 8)2,
indeperndent of whether the universal coupling is (Vv -Aa)or (V+A). For both the
¥(3105) and W(§695) such a strong asymmetry is excluded by the data.

’ The last seven entries correspond to different couplings for muons and
electrons. Entries 5 and 6 show that with (V - A) at one vertex and (V + A) at the
other the angular distribution peaks strongly backward instead of forward. Perhaps the
most interesting circumstances are contained in the last four entries in which one of
the leptonic couplings conserves parity while the other does not. Inspection shows that
these situations are distinguished from the parity-conserving cases (1 or 2) only in
the magnitude of the interference term. This is easy to understand. With parity
conserved at one vertex, only the corresponding part of the coupling at the other vertex
is operative in the interference term. The angular behavior is as if parity wvere
conserved throughout, but the magnitude is reduced because the coupling at one vertex

is not fully operative.

Rl
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Observation of the interference term for a narrow resonance like the V¥(3105)
is difficult becagse the effect 1s washed out by the energy spread in the beams. For
this reason it may be possible to establish the existence of an interference minimum
and to distinguisha J = l+ assignment froma J = 1~ assuming parity conservation,
but it is unlikely that parity-violating effects of the sort given in entries 7, 8, 9,
10 can be distinguished from parity comservation throughout, except perhaps in the
extreme of purely V coupling at one vertex and purely A coupling at the other.

IV. Longitudinal polarization of the muons

We have seen that there is a possibility with different couplings of the muons

and electrons of a parity violation being menifest only weakly in the angular

distributions. It is natural then to seek evidence of nonconservation of parity in

the longitudinal polarization of the muons. For simplicity we neglect the interference
between resonant and background amplitudes. We have in mind the ¥(3105) where the
resonance is observed to be approximately 15 to 20 times the background. Furthermore,
for reasons of counting rate in any experiment, data would probably be taken at the
resonant peak where interference effects are negligible.

The c.m.s. differential cross section for observation of a K at angle ©
with helicity A is '

do 1 2 3 2
el = 5 (o ) ‘ < - 1l+cos 8 +2PB' cos 8
(dﬂ)k 2 MU “QED AR : 16x

-aalgr (1 o+ cos® 8) +2 B cos 8]) .

(

The sum of this cross section over A = * 1/2 gives the resonant term in Eq. (8).
The longitudinal polarization is

ac) _ (ac .
(dﬂ - T \aq _ B'(1 + cos” ©) +2 B cos 8
Plo = e—————— = o 5 (10)
ng do + (gg)' 1l +cos © +2PB' cos O
aa/ T \aa/_

where 5 and 8' are defined in Eq. (1). For positive muons the sign is opposite
(and the angle © 1s suitably redefined relative to the incaming positron).

1 38
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We note in Eq. (10) that even if B =0 or B' = 0 (so that the angular
distribution shows no asymmetry) there is still longitudinal polarization provided
parity is not conserved at one of the vertices. Observation of the longitudinal
polarization therefore allows differentiation among the possibilitles 7, 8, 9, 10 of
the table given above, even between type 7 and type 8, for example, with their
identical angular distributions. For B =B' or B =0, Bt # 0 the longitudinal
polarization is equal to -B', independent of angle. For B =0, B'=¥ 0 this is
easily understood as a result of the production in a parity-conserving interaction of
a particle that subsequently decays via & parity-violating interaction, e.g., A - pr .
When B' =0, B £ 0 the longitudinal polarization changes sign for 8 < 2 and

2
® > % . The integrated cross section (9) is the same for both helicities. The

absenie of net longitudinal polarization reflects the parity counservation in the decay

of the resonant state.

V. Summary i
The effects of nonconservation of parity with a J = 1 resonance in the

channel e e = p'p~ are explored. With the same couplings for electrons and muons, g

parity-violating effects show up directly in the angular dependence of the differential

| cross section. If the electronic and muonic couplings to the resonmance are different,

however, the angular distributions are less definitive. In particular, if either ‘

coupling conserves parity, the angular variation of the differential cross section may

be very difficult to distinguish from the completely parity-conserving situation.

Even in these circumstances the longitudinal polarization of the muons provides a means

of establishing parity violation if it exists and of determining which leptonic

coupling is responsible.
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P and C symmetries in hadronic final states

I e
Consider the differential, semiinclusive cross section do(Ew, EW, 8,06 ,6 )

. +, - + - + - —+ —+
for the reactione +e —»mamr +X. (6 ,0 are the angles between 7 , e and

—_— -

77t 1677 the angle between 7 and 7 ; 6

+

- —t ot
Z0 if(7r+><7r )- e ><0)

Fig. 1
+
6 -
>
- - - - - +-
P invariance => do(E ,E",6 ,67,6 )= do(E ,E, 6,0 ,-6")
(P-transformation and rotation of Fig. 1 yields Fig. 2)
+
¢
~
Fig. 2

Tests for P invariance are also possible with integrated cross sections, e.g.,

deJ’dE‘;‘f—— (.., 6) = de*dE‘ X (-6

dE dE~ dE dE



C invariance => do(E E~, 0%, 67,6y =0 ® L E , 7-07,7-6", 6

v -
w)f

Fig. 3

A

(C-transformation and rotation of
Fig. 1 yields Fig. 3)

CP invariance => do(E . E7, 6 ,67,.6 ) =do(EE ,1-6",-8")

(180°- 67)




If we assume ¥ couples to leptons via one photon, we get simple tests of

C symmetry! (a la Pais and Treiman)

Define W by

1 - - -
wE e, 0,0 =wELE 22,2y a2 Bt aE T a

where z = cos @

A=1- (z+)2 - (z")2 - (z+-)2 +227 272"

One y-exchange yields a parity symmetric W:

_ + - +2 -2 +2 -2
W—A1+A2zz +A3(z +z )+A4(z -z )
A are functions of E+,E_,z+— ,
C invariance implies
+ - - - .+ -
A1’2’3(E ,E ,z )—A1’2’3(E ,E ,z )

AENE 2T = A, E 2T
Integration over z  andz” yields test for C symmetry, e.g.,

1
@ 211 f dz dz” W= A1+%-A3 should be symmetric in E*,E™ ;
1

1 1
(i) _/0. dz* _/(; " WELE 22520 - wEh B2, )
1, 4
= f dz+f dz” 24, 27z =24, ;
o o 2

should be symmetric in EY E”

etc.
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We consider now in more detail the exclusive channel e te — T +7 +N,
where N is any neutral particle. The most general matrix element is (p is

assumed to have spin 1):

N

- “t‘\ W= e DAL ) (-) 3¢

>M”< 4'32 = 'z,r(@)af(we) AL (€7) (-¢) K<
q* )

:21()7:;\*"’)? A‘*i B) K-’zc’ C)

\‘“
LSRN & }
£ o= TUTITENT MM Ty
& &ota
gy and g A 2re arbitrary complex numbers. Ai, B, C are functions of the
invariants q2, qr, qr . We define
-
%
+, . W nt T > 2 - »_ .
ntis VWY ML ES(2E R IT) =R AR

=N AN 6, ci= B, (- (2FE ITNT)

After performing the usual calculations, we arrive at the following conclusions:
1y If ¢ couples to leptons electromagnetically, the angular distribution

is proportional to (nf -n_2L3), where n | is normal to the production plane.

No pari.ty violation is possible. Any C violation can only show up in different

energy distributions of 1r+ and r . There is no change of the angular distribution

in the interference region.

S st =2 (o) [ A beg of

Sping q-



2) If this simple form fails to describe the angular distribution, we have
to apply the following general formulas:

Direct term:

- DN AT
4 E* s .

(1g, +I§; /)/ [( *‘*"--n;‘) fatt'+ (== %;1)/513(%:-”;,})/@1‘

Sy . NS - - + Y
+2 (' ~%3~13),R2aa* +,?V(%*m-%3“’a})~7zaa@+2,(n% fn*ns)pea
¥ . ' ,‘_* - . = 4 -
+4 e g j*[(%*«%')%u‘a + (AxR), Y b+ (753, Fon "G
A Sy 3 )

Interference term:

N AT WYY Tt =

5]30!"!5

. ~ 3 . D - %
=D A fr iy g% fm*xa?z’)a’“c”+(ﬁxﬂ)af]
= é_‘i R_Q QL_Nl {(?{L ’}Q‘L;>?\,\}( "I“ég’q[a J’S ‘3

i

4 E*

We should mention, that one can have parity violation, if A" and B are different

from zero, even if the coupling of y to leptons is pure vector.



B. Ward

Is @) = 3@"H?

A number of models (not to be elaborated upon here) would suggest that
9 #¢ and, perhaps, ¥' # ¥'. In view of this possibility, we have decided to
investigate, to some degree, the extent to which it can be checked by the kine-
matical aspects of e e =~ e’ e and e e ~ u+u— in gross.

Of course, the most general situation (arbitrary spin, arbitrary interaction
vertices, etc.) would require an immense amount of effort. Here, in view of the
present general trend of the data, we shall focus on a spin 1 assignment with the

following form for the effective interaction density:

eff » —
— —— 5 N : -y P 3 x 7YY ﬁ
°{I~ —8[ e(ﬂv‘ ?2}1)?;"69/9 * e(y;(“ﬂ,;\' )5))/6)?

(For convenience, we are writing g_, ,, & in units of e.) We shall also, for
V,A" "V,A

=m>. A more general analysis appears in the appendix.

Y Y-
Further, we shall presume 'g_v A&y and point out where appropriate the

simplicity, take m

change in our results when this assumption is relaxed.

The relevant kinematics is summarized by Fig. 1.
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Figure 1

We define, conventionally,
o R —';’__ -/ /J’J - / ity v 2
S (prg) = (p/g 2=lpop)=(9-7) @)
When we ighore lepton masses, we have

, 4 3
tx-5 (1-c4e8)



where 0, as usual, is the center of momentum scattering angle of the positron
in the Bhabha process, for example.

In Fig. 1, the propagation functions for ¢ ,¥ are to be understood to have
their denominators modified to

<7

-~ 2 '
L -m~+."m (4)
a a q

in view of the manifest instability of these objects. The parameters l‘a then
characterize this instability in the standard fashion. Having laid down our con-
ventions, let us now get on with the implications of Fig. 1.

A quantity of direct experimental significance is the differential cross
section. We shall only consider effects not explicitly dependent on lepton masses.
Furthermore, in view of the present state of the data, we shall not consider the
various polarized cross sections in the present discussion. These may appear
elsewhere. Thus, here, we shall record only the respective unpolarized dif-
ferential cross sections, hoping to pinpoint some gross feature which would be
a signal for (1). We consider first e e - u+/.z—.

Upon effecting the standard, trivial, manipulations we find (we are assuming

md): mﬁ,l"w ZPZ/I
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: PR 2 2
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2

[ ({\’egv ) ('Imjv ')'z—f— (Ke jﬂ )Q—CL—M i )z]

) _ 3 . 2 ‘
- ‘f[feg’v,l/ﬂﬁv -H\eﬁ/q lm‘jA 1 Vg

Y RT ( S(S“mi3[({’67[4)%-/1%7,4)3] ®

2\ 2 2 27
[(s-m3)"+ 17" my ]

-

+ <5 { (k’ezq Reiv‘ +1m ﬁ/? Imf;v )
. 2
[ (s m2ysrm]

2

_ < - . &
+ (Ke ?\( R@ﬁA,ImﬂvlwiﬁA) - (Kc’gy _.L'm% +f\7€ﬁ/}l/ﬂﬁv) j)j&



The most glaring gross feature of this last result is the dependence of
the "dip" terms on coupling constant . Within our framework we see that the
occurrence of a dip or rise before the peak is entirely dependent on the phases
of By A" The dip completely reverses to become a rise as gV,A are varied from

pure real to pure imaginary simultaneously. All dip terms vanish if
, Reﬁll I bed Ilf’ﬂ ‘jt_ I ’ t‘:AJ,V_’ ©)

For g; # 'g_i, the last condition is clearly changed to

LN

Reg Keg, = Limg. Lmg ;=AY (6?)

{ ¢

It would, therefore, be very interesting if a definitive statement could be
made about the lack or presence of a dip in the u-pair cross section.

As we would have expected, the difference between (1) and the more simple
situation where ¥ = ¢ is simply in the energy dependence, as the angular structure

for ux can only be that of s-channel vector and axial vector, namely

/ + C[—cl‘(éj ;mc/ cEe b ™)

This, thus, continues to be true if we let md) # ma, I‘w # I'—. But, of course,

$

in this last situation, the energy dependence becomes slightly more complicated.

To repeat, we have recorded this case in the appendix. Finally, let us remark

that the only effect of taking Ei # g » istto make the replacement giz—-gig,
i

for terms



quadratic in g and to replace terms like

J

(13,17 19,°)° by (I%/i/%ﬁ)(@/;}@,a) ) ete.

for terms quartic in g;

We turn next to the Bhabha process. Again, by standard methods

clo”eg < . z <2 %)

— = ‘i{“ (/#c'ew,zé) |+ LS (S-My ) (g\( t g\/

C{Q A/’S : 2 \2 Z\”,,Z']
[(s-mi )+ 1, "y

) ' 2 o 2 a2
.\ s~ {-?(/’1./271/7;4/‘) +(9Vz+f)+@*+f) }

.22, 12 2
[ (i )+ 1]

._ 2 % =2 <
4 c4e¥6/ S(S~mi) (7V‘+gv + Dt )

St [ (s=m )"+ 17mg ]

L 21+ /)

S 49/»2 )

4s(s-m) (ﬂiﬂ[ﬂ

+ caed +

[ (s-m2)~+ I’f m |
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o - 2 = A
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[ / S sutd/2 + m; )Z“+ V:mj :(
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S (s sini2 HMJ) (ﬁv +ﬂv )

[ (ssnotz +mi ) gzm; ]

2
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Again, the dip phenomenon is the most glaring feature, but the analoga
of the remarks made above for uu do not strictly apply. For, even if the analogue

of (6) does pertain, there still may appear a '"dip" due to the term

Y 3 (s-mE)(ssin’el: #mg ) -1 nf |

[(s-mZ Y+ rmg ] [ (ssinsz +m¢ Y r2mg ]
X2 (19,7019, 1) 8 (Re(49 ) + (57197 )°
2 v + 4 + e AN 7 v

4 4%2@‘7' +( f"}yf’/z r 4 Z"Zﬂ;‘z { >
)

although admittedly it would be down from the terms respecting (6) by O(gz)
and may thus escape observation.

Furthermore, the appearance of terms « (1 —cosB)_1 in the inference
between t-chamnel y and s-channel ¥ ,¥ means that the ""dip" phenomena can be
enhanced by considering data at angles away from cosé = 0, presumably. Addi-
tionally, these terms will respect the analogue of (6), since they arise from s-
channel ¢ ,¥. Thus, a clever use of s-dependence and angular dependence taken
together is probably the best way to investigate the dip phenomena, as one would
have guessed. To repeat, a very suggestive gross signal for (1) would be the
absence of a dip in (5). The occurrence of a rise would also be very interesting,
although it would not be as suggestive because of the possibility of negative metric.
When polarized cross section data becomes available, perhaps a clearer test will
be the apparent T-violating terms in the respective cross sections. To repeat,

the analysis relevant to this latter situation may appear elsewhere.
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Appendix

In the unlikely event that experiment permits probing of the respective
resonances, we shall record in this appendix the differential cross sections for
ete -——/.4+p— and e'e” ~ e'e” when m,, # my P # 1" , still taking, however,
g = Ei' As we remarked above, the effect of relaxmg this last assumption is
trivial — giz_ - gigi, etc. (see page 5).

For the pu case, we find {(again by the standard methods)

do /¥ 2
42

¥ 22y
s[-m g g ) +ilm 55 )]

[/5 m'z) + 1 ‘ILJ

(1+e8676) ||

v Slsm)gieg) - inm, (5:=47) ]
V')

2

[[sm)+ Mf}

4 f s ,_s” ‘ }(/jv!zﬂ%lz)
[(s-mZY i mi] [ /sf/ﬂf)i/f”ff]

L.\Y

2 { [ (smi o)+ my T 1 ( (57 Ve (540)

. - 2 2 22 Z, 4R <
) ¢ [Q’m{/ /s»msg/-/g%./s'/ﬁ% /]((jy*—f_z’* )~ (jv+q1 )

) } //[l ﬁ—mf)if;;zm;][ /s-m;.)zfgsz J) >
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For the Bhabha process, we find

. sl Ry i (32957 ]
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R. Budny

Detailed ¢ Effects in ete —e'e” and u'y”

The crossection will be calculated from

e o

assuming 'y#(gv+gAy5) with real gv and gA and complex MO' For

Z

generality, we will assume the beam is transversely polarized, and that
+ -

the final polarizations are not summed in case the u or u helicity is

observed, or storage rings with longitudinally polarized beams are built.

Our notation is
2

s=4E° , t=—s{l-cos 6)/2
Q=t/ (‘32 (t- M%)) , R=s/ (62(8- M%))
e2=47roz

¢ and §+ are the initial transverse polarizations
¢ is the angle betweén this direction and the scattering plane
h and h+ are the final helicities.

. . . + - + -,
The differential crossection for e e —e e is

325 4o o
T ;%7:_—' ((+ L\_\’\.}.)é*'El

“(1-hh)d o) Byt (It @) Byt £, 8, ame
[WR(P B4+34‘A/\2CPB§,]§+ (L\_—L\+>§ (Hc@@)L B¢

55, e [cotp Br com2@Br] S



where

i P
Bsm 2 Grog (416 [ Be= £ e rcl1er 1,

|

X Lo ¢
By= Re (T (GG +Cs4¢,) Ba= Ko (X C3#Cy-Co - ()

BS = A CL%C(«}*C%_{;‘;‘ ‘CC\) Eg = o <26< C3- CS>
< ) . - 2 2
C"—;:[H(gv'gﬂ)QJ G = TG -gaI R
Co= > ) 2
5= LT (qrega)Q)  Ca= 1+(3v4ga)R

Co= %i‘*<‘}V‘3A71®] Co= |+ (g’ng)zR

+ - + -
The differential crossection for e e — 4 p is given by this expression

with s/t and Q set to zero. In the present experiment the beam does not

live long enough to become polarized, and final helicities are not measured,
thus the above expression reduces to

X_f; IT _ 48, + (1- @0) By + (11 o) B3

[~ e NoR

Bim (2) [ 14 (30902 ReQ + (329407 (G |F]
B.=

[H (9v-9a)2ReR + (35-32?\?\7‘]
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5,2 (500 (40497)(2 )20 [ 2Q4R ]

w1 g N e

The values of g ,, g,, and I' are sufficiently small that Q can be neglected

. 2
in Bl—B3,but the Re R and | R|  terms can become large. In these,

T 05- Mg
Re R= -z‘ (J :) 2 Z
e ((s-mZ)Y+ Mo 1)
2.
2 -
IRl “= 2

et ((5-mZ Yy +m&rT)

If transverse polarization can be achieved, an interesting term to measure

~1is B4. This can be large near the resonance.

(ed. note: For further details see preprint by R. Budny "Detailed WO Effects
+ - -
inee — e+e " and " Effects of Neutral Weak Currents in Annihilation",

Physics Letters 45B, No. 4, 340 (1973).

Some examples of crossections averaged over a gaussian beam

; —(W-wo) /2T
o with 07 = 13026 MeV

are given in the following ( total crossections are integrated over

SO ¢ < 1308, L, =75 keV).
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gy2/4m= 4.500-06 g,%/4n= 0.0
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Calculations by R. Giles and R. Pearson

The results plotted include exponentiated radiative corrections and folding

with a Gaussian beam distribution: U(Ecms) = 1.2 MeV (standard deviation)

Resonance parameters:

rTCfI‘AL = 92 keV

r = T = 5.5 keV
+ - + -
p—~e p-pou

yassumed to be spin 1 with no CP violation

ATy = 4@y +eyvhvgv e ) (&, 8, Teal).
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