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Abstract The asymptotic behavior of form factors for two- and

three- particle bound states are investigated in the case of spin-%

constituents in order to shed some light on the underlying

structure of the pion and nucleon. Here the Blankenbecler-Sugar approach
proves to be a powerful tool for studying dynamics at infinite momentum.
For a two-body interaction which for large momentum transfer behaves as
V{q,k) = [(q—k)z]—l_A we obtain for the two~ and three-body form factors

2.-3/2-4

F, = [Q ] and F3 > [Qz]_B—2A respectively in the case of scalar

and pseudoscalar couplings and F, = [QZ]—]—A and F3 = [QZ]—Z"2A for
the vector coupling. The experimental pion and nucleon form factors are,
e.g., consistently recovered assigning a quark-antiquark and three-quark

structure to the pion and nucleon respectively and the quarks interacting

via vector—gluon exchange (i.e., A » 0).



I. Introduction

In a recent paper] we have investigated the asymptotic behavior of form
factors for two- and three-body bound states for spin-zero constituents.

It has been proven that the large-momentum-transfer behavior of the

hadron form factors provides-an excellent means of studying the hadronic
constituents and their dynamics. Neglecting the spin of the nucleon and
assuming spin—zero constituents of the pion and nucleon, we have shown

by consistently looking at the pion and nucleon form factors2 that the
"pion" and "nucleon" are likely to have a two- and three-particle structure
respectively (at infinite momentum) and the constituents interacting
(relativistically) via a Bethe-Salpeter (BS) kernel V(q,k) which for

large momentum transfer (q—k)2 behaves like V(q,k) = const.

This result is very much in favour of the quark model (even though the
case of spin—-1/2 constituents has yet to be discussedi so that 1t seems
desirable to extend these ideas to the more realistic case of spin-1/2
constituents (i.e., to the "true" pion and nucleon). A similar result
has been reported even for spin-1/2 constituents

employing dimensional counting techniques.3 Here, binding corrections
are, however, neglected which is rather doubtful and, in fact, leads to

a different result in case of spin—1/2 constituents as we shall see.

Unfortunately, the three-body spin-1/2 case is extremely’difficult to
handle relativistically: Here, the vertex function consists of 16

invariant amplitudes compared to 4 in the two-body case. However, we
need not also go into the discussion of the complete BS equation. For

the large momentum transfer behavior of the form factors it is sufficient



to know the Blankenbecler—Sugar (BLS) vertex function4 which takes the
constituents on the mass—shell.

In this work we shall systematically investigate the large momentum
transfer behavior of form factors of two-— and three-body s-wave bound
states5 adopting the BLS approach. We are primarily interested in the
case of spin-1/2 constituents considering various kinds of interactions.
But we will also review the spin-zero case using the BLS equation for
two main reasons. First, this may serve as a test of our approach.
Secondly, as we shall see later, the form factors become in general a
convolution of two nonrelativistic clusters at large momentum transfer
which allows a relativistic description of bound state form factors in

terms of instantaneous wave functilons.

The paper is organized as follows. In Sec.II and Sec.III we shall
investigate the large momentum behavior of the BLS vertex functions for
two- and three-body s-wave bound states being composed of spin—zero and
spin-1/2 constituents. In the case of spin-1/2 constituents we will
consider scalar, pseudoscalar and vector couplings. As a by-product re-
lativistic (three-dimensional) Faddeev equations are presented which is
an interesting subject by itself. In Sec.IV and Sec.V the asymptotic

behavior of form:factors for two— and three-body bound states

~
¢

is derived from the asymptotic form of the vertex functions. It turns
out that the form factors can be expressed as an integral over a two-
dimensional disc in the Breit frame which has a nice physical inter-

pretation. Finally, in Sec.VI we add some concluding remarks.



IT. Two-Body Wave Function for Spin-Zero and Spin—1/2 Constituents

The BS equation for the vertex function of two spin-zero particles reads

(cf. Fig.1)
¢ (q) =i f a*k v(q,k) Gl(% P + k) Gz(%_- P - k) ¢, (k) (II.1)
where6 G_l (p) = pz-l If we write 1 G CLP+k)G (lp—k) = E,+R
1,2 : 1°2 232 272
defining
= . ta-d pra?) sta-d proy?
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1 > 1 > >
V4G B+ K2 +7/1+(5 B - §)2 _
x 2 Z [(/4+(%§+K)2+/{+(%§-K)2)2—f2 -s] !
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where s = P , s and B' =P , the BS equation can be cast

into the equivalent BLS equation7

/4+(%§4§)2+-/G+(%§?K)2

X, (D)

P

m f 3% W, ®)
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X, @ = 6,@) , a= GO IR - 1GE-D2), I (I1.4)
P
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and

-1

W=(l~-VR \ . (I1.5)

2)

-

It is obvious that the BLS equation (II.3) bears all the information
of the BS equation. Once the BLS vertex function is known, the BS
vertex function is given by the right hand side of Eq.(II.3) simply

replacing q by q.

In the spin—zero case we assume the BS kernel having the asymptotic
form

V(g,k) = [(q-k)217° (I1.6)
(g=k) 2

with 6 > O which is all we need for our further calculations. It is
obvious that © = 1 corresponds to a A¢3 interaction whereas the
limiting case 6 - O corresponds to A¢*. Later on Wé are interested
in the BLS vertex function for large momenta P and 3 so that it is
sufficient to consider W = V only because the higher contributions
to the BLS kernel (such as VRZV, etc.) behave at least like
[(q—k)zl_ze. Hence, Eq.(I1.6) leaves us with the BLS interaction

V(g,k) _ _= [(q-k)2]17®
(q=k)? » =

=[~}:(/1+(%-1;+3)2— /1+(—é—i’>—21))2-— ‘/l:-(—;-i’)+ﬁ)2+ /1+(—;-§—K)2)2—(3—K)2]_e .

(I1.7)

We could base our further calculations. directly on' the asymptotic
behavior of the BLS kernel W which would have saved us giving any

arguments in favour of the approximation W = V . However, we



believe that starting from the BS interaction kernel is much more
transparent as far as the contact to Lagrangian field theory is
cencerned . But one should bear in mind that both ways would lead

to the same conclusions.

We are now interested in the large momentum behavior of the BLS
vertex function. By means of the consistency argument widely applied
in our previous paper1 we obtain the asymptotic form of the vertex

function (generally B and 3 large)

> “pa—0 1 1> > ) 1> > > 2=~
x,(@=[q?2] 7 = [-[;(/1+(-2-P+q)2-/;+(—Z—P-q)z)2 - q?] (11.8)
P
for 8 > 0 . In case of the A¢* theory we take the limit 0 = O

at the end of the calculation which is analogous to the analytic

regularization in perturbation theory.8

We like to point out that the asymptotic behavior (II.8) is not
uniform in E . If we write E =xP+ El » Eq.(I1.8) gives
1

x+(3)=[3i]_e for - 7 <X <H %— whereas for x = #* %j,ye find

xﬁ@ = [ +qlq,[17°.

So far the two-bddy spin-zero vertex function. For spin—1/2
constituents we can now proceed in a similar way. As before we start
off with the BS equation (II.1) where G;l(p) = y(l)p—l now. Again

we write 1 Gl(%P+k) GZ(%P—k) =E, + R2 defining9 (consistently)
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2@ =vOp e, 2P -5 Z ORRHO)

which leads us to the BLS equation

N »/+(—P+k)2 /+(—é—3 k)2

(q’k) R
¢G+(—P+k)2 ¢q+(%P k)2

]
2@ = b j a%k wSHr S
P

-

i s

LB 2l (B2 - 2ms @ (11.10)

Here we have written (the analogue holds for V )

qrs.r's! (q k) = w (1f+q) Wy e ?—q) W(Q:k) Wt 2'(2

D (B vy (BB (1I.11)

and (note that x3(3)=¢+(a) is a 4 x 4 matrix in this case)

P
rs ,~> “r, Iz > “s, 1> > >0 -
X, (D = w (GP+a) vy GP-a)x, (2) (11.12)
P P
where r,s,r',s' = 1,2, Since we have only retained positive energy

particles this corresponds to pairs of quarks and time reversed anti-

quarks in the language of the quark model for mesons.

In the spin-1/2 case we take the BS kernel of the asymptotic form

V(g,k) = <‘§ P2 W y2q7178 (11.13)
(@2 » o :



For definiteness we consider the couplings T(l) =1, F( D Yél) and

Fﬁl) = Ysl) which for A - O corresponds (asymptotically) to a A$w¢,

A@Y5¢¢ and Ay ¢¢u interaction respectively. The asymptotic form

of VIS» ;x's! (q k) is then given by

gt v o~ -~ 1 >
VST S (q,k) L L= [(q-k)2]7] [t(-—§+3,2P+k)t(2P '5, P—K)]l/2

(q-k)2 -
(I1.14)

for the scalar and pseudoscalar coupling where
@3 = A2z /131232 - G302 and
yEss ,r's' ( k) s [(q-F)2]" 1- A(qz)l/Z(kz)l/Z (II.15)

(q-k)?2

for the vector coupling. The last two terms in Egs. (II.14) and (II.15)

correspond to the estimate of

o] GEryr {0 wi (@B 1w dB-Hr @ W) ' dgyy (11.16)

. . >
The large momentum behavior of the vertex function er(q) can now be
traced as in the spin-zero case. It is again sufficient .to consider

W =1V only for the same reasons given before. We obtain

E2@ = 1921770 P+§,]f) t(1+ q ]P)]l/2 (11.17)
B

for the scalar and Ys interaction and

I+ »

2@ = 121770 (eGP, aB) + t(3B-q,58)] (I1.18)
2 2

for the vector coupling for A > O . The J F(u)w ¢(u) interactions



can be included defining the physical solution as in the spin-zero case

(i.e., A - 0 at the end of the calculation).

Some further remarks concerning the asymptotic forms (II.17) and (II.18)

are in order. First, we like to recall that the large-momentum behavior

. . . > : . :

is not uniform in g as in the spin-zero case. Secondly, in case of

the Yy coupling the leading asymptotic behavior is governed by the =z
1 > > > . . . . .

near i-i (k = z P+kl) region of integration in Eq.(II.10) in contrast

to the spin—zero and scalar and s calculations. Here, the naive (and

. . 3 . + .-*
wrong ) procedure of inverting the limits P, q > © and the integration

-+
over k leaves us with an infinite integral.

ITI. Three-Body Wave Function for Spin~Zero and Spin-1/2 Constituents

For the three-body case we shall assume only two—-particle forces
interacting in a ladder-type pattern as shown in Fig.2 so that the

dynamics of the three-body system is governed by the BS interaction

kernel introduced before and some relativistic Faddeev equation.l’lo

(1),,(2),,3)

Making use of the Faddeev decomposition ¢=¢ o " +d we can

write down a BS type of equation for the various components of the

vertex function

(1 Cf 4, (D)
¢ " (pyspyspq) = | d pé T (pz,p3;pé,p2+p3-Pé) Gz(pé) G3(p2+p3-p§)

(IIT.1)

(3)

2
x [g! )(p],pé,p2+p3-p§) + 677 (PysPy>Py*P37RY) ]

1)

and similarly for ¢(2) and ¢(3). Here T( denotes the
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two-body BS T-matrix, i.e., T(l) =V +V G2 Gy T(I). Symbolically,
this can also be written
(1) (1) (1 (1)
o= 0 TV 6,6, T 76,6, ®
¢(2) = T(Z)G3G1 0 T(Z)GBG1 ¢(2) (I11.2)
3) (3) (3 . (3)
b 1’66, 1760, 0 ¢

In the following it will prove to be useful to consider the second

iteration of the vertex equation (Fig.3)

(1) (1)

¢ Vit V2 Vi3 ¢

PRGN Vyl Yy Vyy [€16,6, (%) (III.3)
(3) (3)

9 Va1 Y3y Vi3 ¢

where we have written

Vit Vi2 Vi3

V2] sz v23 = - (I1I.4)

V3 V35 Va3
1D @ a1 3 1) 2D 1@

I TEY 1P 0@ 1) 5@ 5D

ROMPE RO 2 (D47 B 7@

Similar to the two-body case we then define4 G1G2G3 = E3+R3 , where
E; has only three-particle singularities, which leads us to the

three-body analogue of the BLS equation (II.3)



¢)) _ (n

9 Vit Vi2 Vi3 PV Vg Vs ¢
2 _ _ (2)

¢ = | V21 Va2 Va3(Rs Vo1 Voo Va3 B3 |9 (TTL.5)
3) : (3)

! V31 V35 Vi3 V31 V3p Vs ¢

Let us now first discuss the spin-zero case. In order to calculate

3 we introduce c.m. variables q(l) and k(l) by

- L (1)
Pp=3P ta 4y
by = Lo = L D K= S(p, = py)
(n 1
~Jdp 1 (1) _ (D) q =~ 35(p, + Py = 2p))
P3—§-P E—q k 32 3 1

(III.6)

Similarly, we define q(z), k(z) and q(3) k(3) by cyclic permuta—-

3

tion of the particle indices in Eq. (I1I1.6). Then E3 may be written
(again s = P2, s' = prl and P! = ?)

= (2m)2 J ds' si= 6701 - gp'-q()2)

x 5+(1—(~:]§P' - q(1)+k(]))2) (5+(l—(%P' - _;_ q(l) _ k(l))Z)

1
2

= 72 6(q(l) 2//+( P+q(l))2+]//+(]§L]+(l) +(1))z+1//+(1+ 1+(1) z(Dy2)

x a(kélk%(/n(g?_%a“)&“>)2-%+%§_¥<1>-—g<1))2>) L 2y

/€+(%3+3(]))2 //+( P—]+(1) +(1))2+//+(1+’1+(]) (D2

£ 0, -

A+%3G“)ﬂ /+d§1+ﬂ)+0)ﬂ A ENOETON

. [(‘/]+(%i,*+zl>(l))2+,/]+(?13_§>__;§(1)+K(1))2+/1+(_:1);-1;__é_<—1>(1)_K(l))2>2_§2_s]—1

(I11.7)
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and, equivalently for any other choice of variables, i.e., q

or 3(3), K(3). This gives explicitly

KD @M gy . J 233’ jdgg(l)' Wy @D, O L
P

« L' gy <1>(+<1)' FALOAN
P

«EG@ @) D@ @y
P

' ' ~ ~ ~ ~ ]
+ J a33® Jd3K(3) Wy @) 1 23)' 1 ()]

« B @ 1B B G® g™ (111.8)
? :
and similarly for (2) (9(2),+(2)) and x(3)(+(3) +(3)) Here wij
P P

means the three-body analogue of W with V replaced by Vij and
i
¢( )

(we now parameterize the Faddeev components in the form

63 (P )y
P

(1) >(1) +(1) (1) (1) ey
(q ) = 6.7 (q ),
iﬁ‘ B

HOME Jiedk P+q<1>)2_1/ AE L@y - LA dp 2O @2 30y

Ko A A5 é+(1)+k(i))2_£(%§_%€(i)_§(i))z)’ 7Dy (111.9)

We are now interested in the large-momentum behavior of the BLS vertex
(1) (1) +(i)

(q )
P

functions . For this purpose we keep only the first



order term (in the expansion) of wij in the BLS equation (III.8)

following the same arguments as before, i.e.,

wij = Vij We put also

T(¥l=V since they have the same high momentum behavior up to logarithms

The two-body BS potential V is taken to be of the (same) form (IIL.6).

Hence, we are left with the kernel (in the simplest parametrization)

1, G0 ED @G G

L L@

1 (1)
x ~ = 1 V(—q
Gp-qt-q® 2y

HOMMORS

~

vy, GO GO ZO Ly, o e,

1 ~(1) 173" ~(3)'
X - p 7 V(-q - 59 » k )
(%P—q(l)—q(3) )2_1 2
~ ~ ~ t o~ 1 ~ -~ ~ ]_ 1
AR OIS RS A M PO G
~ ~l ] ~ 1 ]
(— 1 MO OO N
dp @2,
Vit = Vi2 ¥ Vi3, Vop TV F V935 Vg3 = gy + Vg, (111.10)

whose large momentum behavior can easily be deduced from Eq. (I1I.6).

The particular sets of relative momenta are related by

A I O L IO B O
@ <L ® 3 M m (T1.11)
v v v

91* V310 Vg, are obtained from (IIL.10) by permutation of indeces.
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The asymptotic behavior of the BLS vertex function can now be read off
from the BLS equation (III.8). For © > 0 the only consistent solution

has.the asymptotic form

X—Ei) (a(l)Jz(l)) ~ [(‘%a(i)ﬂ;(i))2]—6[;1(;1)_2]_6[(%P—;;(i))z]_]
P . :

e LG )y2178 (D2 Lp-g W21 ()

(for the limiting case © > O see the two-body case). As we would

expect from the two-body calculations the asymptotic behavior (III.12)

is not uniform in 3(1), ﬁ(l) . If we write 3(1) =x P + ail)and

K(l) =z P+ ﬁil)we find Xil)(é(l),ﬁ(l)) = ]?I-]_ze for x = - %
11 P (1) ~(1) (1)

and /lor z = t(§-- EX) whereas x (q ' ) = const. elsewhere.

P

The spin—1/2 case (when treated in form of the BLS equétion) is very
much the same as the spin-zero calculation. The only problem arises
from the somewhat more subtle spin structure of the BLS kernel. We
shall consider a spin-1/2 bound state, and the two-body interaction be
of the form (II.13). Formally the integral equations (III.2)-(III.3)

and (III1.5) remain the same but now G;l(p) = y(l)p~l and

D i) \O

N %1y A53)(%\ 1>(1) (1),

| - 1(1)
By > Eq e Y 34
(111.13)

(2)

and similarly for any other parameterization (i.e., in terms of ¢ s

k<2) or q(3), k(3)). The projection operation Ail) can be absorbed

into the wave function and the kernel following Sec.II. Writing
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B @D, &0y - gD @D D)y noy where ¢ P @k D) i
P,M B,M M

the corresponding BS vertex function; M denotes the spin of the

beund state)

Xil)rsm(g(l)_,g(l))‘ (lf,gj(l)) 2(1+ 1>(1) (1)),
P,M
y w3(3g 13(1) +(1>) (1)(+(1) +(1))

B,M

wf?m r's'm' (~(1) k(1) ~(1)' k(1) y = o r L P+q(])) (1+ ;+(1) (l))

x W3 (55 LARE A w11(~<1>,,<1>;a<1>',§<1)')w & P+q<1) )
s Bl D B g (DT, (ITT.14)

and similarly for the other components, we are led to the integral

equation (e.g.)

Xi})rsm(a(l)’ﬁ(l)) _
B,M

[

) Jﬂ?ﬂqd%ﬁ)ﬁmrsm(dn (10 (D (DY

i=1

N .\ -vrv,>"_>"
« €GO D) [ Dre! G0 7 ®) (1II.15)
- P,M

As far as the asymptotic behavior of the BLS kernel (cf. Eq.(III.15))
(1)

is concerned we may focus our attention on Vi' (with T = V), e.g.,
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rsm,r's'm" ~(1)7 (1), ~(2)' "y o A3 (D (1) r' 13 1(2)"'_>(2)"
V13 (@ 'k K )=w ( +q )F(U) v, 3 P 54 k )

1—> 1—>(1) (1)) FEZ P ~>(2) ) Wm(l—r 1-(1) —>(1))
3

) 1
2( v) 2 (3 35 24

1] \
L RHOM O

AL D-1 gD Ty21714G(D LD @ ppimbgely () 1@y

(III.16)

which asymptotically becomes

rsm,r's'm

yromrlsmt () L) 2@ (@) L GO @)1

x [(q p-q(1-q(2)"y2)7]

-(D), 1 (2)'+f((2) y211=4 [(_%_ (I1I.17)

y [t(%_§+g(l)’%_"1§_%€(2)'__K(Z)') (}: 13(1) >(1) ;§+g(2)')

13 1~>(1) ( ) s +(l) +(2)'

x t( ,E ( ))

> > - ' —>+2'—>2 1/2
. t(E]P(%P_qu)_q(z) ),; ; @' 3@ 1/

for the scalar and Vs coupling and

rsm,r's'm

e E @) @Y L L L@ y2y1-

% [(q(l) (2 )'+11(2)')2]_1 A[( P- q(l) ~(2)! )2]_1

1

7
1 1
x GDH? @@ [eapg®, dpg g,

< t(%?+3(2) 1§ +(1) +(2)' 11/2

111,18
*tp 3 S )
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for the Yy interaction. In the spin factors the internal line

pg (Do (@

3 appears on the mass shell which provides the leading

contribution. Here, §&_ means the signature of the parallel component

Pooye
of the vector 1§4€(1)¥E(2) .

In case of the scalar and s coupling the asymptotic behavior of
the BLS vertex function can now be read off from the asymptotic form
of the BLS kermel (III.17) giving (A > 0 ; for A =~ O see the two-
body case)

Xéé)rsm(a(i)’z(i)) [ (- %&(i)+i(i))2]—1~A[a(i)2]—1-A

1 1+(1) (1) 1>

« [agp-a@H217! [eddBg P, By et , )
1
R ) dp g 132
+ [(—q(l)+k(1))2] 1- A[ (1)2] 1- A[( P~ (1))2] 1
« [t(%f+g('), ;3) t(;f'%q(l) £, §$)
1
N RIORION TIONEE (OIS a1z 19)

It can easily be checked that this is a consistent solution which
means, naively, that the integral (III1.15) remains finite once
the E(i), K(i) dependénce of the kernel is taken out of the in-
tegral. For the Yy coupling this simple procedure does not work

as we already found in the two—body spin—1/2 case. The asymptotic

behavior one would read off from the kernel leads to an infinite
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integral when applied consistently. As in the two-body case, if we

invert the limits and the integration, we end up with a divergent

-

integral. Correctly, we obtain

Xéi)rsm(a}(l),'ﬁ(i)) ~ [(_ %(i)_{f((i))Z]_l-—A [E’l(l)z]—l"A

[ (%P—a (1) )2 17 e (%fﬁ(i) ,lf)t (%f—-;?;(ihﬁ(i) 13)

X

<+

t2(1§;1+(1) >(1) ]P)] N [(_q(l) k(l))z] 1 A[ (i)2 ] ~1-A

x [p-q )21 e @3g D, 3p>t(;ﬁ—%€(l) Ay , 1)
+ 231 @, 1 i (III.20)

IV. Form Factor for Two— and Three—Body Bound States:

Spin-Zero Constituents

We now come to use the estimates of the BLS vertex functions and
calculate the asymptotic behavior of the form factors for two- and
three-body bound states. In the spinless case we willdrecover the
results of our earlier work based on the BS equation which may be
considered a test of the BLS approach. Apart from this, we expect
the BLS vertex fqnction giving quite generally the right asymptotic
behavior of the form factors when written in the Breit frame. We
shall see that this circumstance also has a nice physical inter-

pretation.

The two-body BS form factor reads in the Breit frame (Fig.4)
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1 1 1 0. ()

F(Q?)= Jd”k b, (e5Q) — : ,
-P (7P+k-Q)2—l (—2—P+k)2—1 (EP—k)Z—l P

(IV.1)

where Q = (O,2§). The single particle propagators can (in the
) | . 1 1 1 _
Breit frame}also be written G1(§P+k Q)G1(§P+k)G2(§P k) = K2 + L2

where (in the spirit of the BLS approach; see Eq.(II.2))

K. = 2n2 f ds' v 6+((%P'+k-—Q)2-l)<S+((%P'+k)2-l)6+((-;—P'-k)2—l)

m

4[%|

1
skp =5 B B, , Ky =

(IV.2)

By construction K, has only two—particle singularities while L,

2
evidently is accompanied by three-particle singularities., TFor

> . . . . . .
P » «» the contribution arising from L2 now vanishes relative to

the (leading) K2 contribution, i.e.,

1

G, (z2+k-Q) Gl(-%-P+k) Gz(—;-P—k) - K (1V.3)

2 2

(o]

which makes the BLS approach a very useful tool for studying the
asymptotic behavior of form factors of composite systéés (note that
Eq. (IV.3) makes implicit use of the interchangeability of the limit
P > o and the integration over k (Eq.{(IV.2)) which, however, is

justified for the cases we are going to consider here).

For large P the form factor then reads

2 - > 1> |
F(Q?) = E;Z szkl X (& m5P) [1+k7]
-P

> 1>
¥ (k. + sP) (IV.4)
8P p L2
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where only the BLS vertex function enters (remember ¢ (;) = x%(K)).

P
Physically this means that at large P the form factor becomes a
convolution of two nonrelativistic clusters (i.e., having a definite
number of constituents) which (later on) will allow an interpretation
of our results in‘terms of the (nonrelativistic) quark model.

(TY /4
LV et

<

that, given a nonrelativistic wave function, the form factor is most
adequately represented in the Breit frame because at large P the
interaction can take place instantaneously. Geometrically the form
factor (IV.4) can be interpreted as two flat (Lorentz-contracted)

discs penetrating through each other.

Taking now the estimate (II.8) of the BLS vertex function the
asymptotic behavior of the form factor for a bound state of two spin-
zero constituents becomes

1-6

F(Q2) = [Q2] (1IV.5)

just as in the BS calculation.l

In the three-body case we can proceed in the same way. The BS form

factor is written (Fig.5)

-p C%P+q(1)—%Q)2—l
1 1 1 (1 , (1)
$,(q" ",k )

gra{2-1 dedgMacMyz dp Ly Wy2 1

(Iv.6)
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where the photon is coupled to particle 1. Similar to the two-body
case we define G (= P+q(1) —Q)G (3P+q(]))G ( P-=q (]) k(])) X

. X Gg{ P“ e k(l)) = K + L3 where

=~
It

3 = on3fast o ot (e dD-Zoy2ony 6t g2y

X

6t (gp-ga V)21 st (dpr-Lg M2y

—>(1)—>
37 (1) 2 (1) _
—— §(qy - =|B]) E, , q . (1V.7)
4l?| P 3 3 P |§|

]

Here K3 has only three-particle singularities while Ly contains all

the other time orderings.

As in the two-body case we now have

Gl(%P+q(l) ~3Q)6 (3P+q(1))G 3 P——q(])+k(l))G 5 P— MW Dy . K,
_P)l'-) <]
(IV.8)
so that the form factor (IV.6) becomes for large B (¢§(&(1),£(1)) =
2y = 312 [ o) [ gap(D) > _ 23 (D)
F(Q°) = 532 J d a, | J d~k X_ﬁ(ql 3P,k )
x [»/1+(—;—EJ(_1)—K(]))2 »/l+(—;—3}_1)+§(1))2 (IV.9)

X

( 1+(%€i1)_ﬁ(1))2 + 1+(%3£‘)+K(‘))2)]‘1 G (1) §+ “UN
: p
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Here, again, the asymptotic behavior is completely described by the
BLS vertex function. Geometrically Eq.(IV.9) allows the same inter-—
- pretation as the two-body form factor but with particle 2 replaced

by the center-of-mass of particles 2 and 3.

If we now insert the asymptotic form (III.12) of the three-body vertex
function in Eq.(IV.9) we obtain for the asymptotic behavior of the

form factor for a bound state of three spin-zero constituents

F(Q2) = [q2]7%72%® (IV.10)

in agreement with the BS calculation.1

So far we have only recovered what we knew already before. 1In the

next section our prologue will, however, meet its expenses.

V., Form Factor for Two— and Three-Body Bound States:

Spin—1/2 Constituents

Now we come to our main (new) results. Let us first consider the

two-body case. Decomposing the loop propagators into KZ’ and L2

where K, now is the spin-1/2 analogue of Eq.(IV.2) (for the general

procedure see Eq.(III.13)) we again can show that only K, contributes

to the asymptotic value of the form factor. Hence, we obtain for

i

large B

2 .
o > rs > 1 > .=1 Trs , > 1>
F(Q?) = ————832 Jdel x_ﬁ(kl—-z—?’)[nki] Xi? (kJ_+ ~2—P) (V. 1)
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~ -5
making use of the definition (II.12) and wm(—f)Yo wi(P) = 2,3]6mn as
?—%oo.
The asymptotic form of the BLS vertex function, Egs. (II.17) and

(I1.18), inserted in Eq. (V.1) then gives

Njw
I
>

F(Q%) = [q?] (V.2)

for the scalar and Ys interaction and

-1-A
F(Q%) = [Q?] : (V.3)
for the Yu coupling. For the moment we note that the large-momentum
behavior of the bound-state form factor for spin-1/2 constituents

depends apparently on the nature of the two-body forces.

In the three-body case we consider the spin-averaged form factor.

Employing the same technique as before we find

373 (1) >(1) rsm ,~» 23 >(1)
F(Q?) = —— szq Jd3k X (q,- 72,k"7)
3282 M?M' 1 B t 3
\ [/+(1+<1> XMy fag gDz (V.4)
. (/+(1+(1) (2, A+(_;_gl+§(1))2)]—1 FomG, 25 3y

-5

p,M
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Inserting the asymptotic form of the BLS vertex functiomn, Egqs. (III.19)

and (III,20), this gives the asymptotic behavior

F(Q2) = [q2] 3724 (V.5)

for scalar and pseudoscalar exchange and

F(Q2) = [q2] 272A (V.6)

for the YU coupling.

Here we have the same result that the asymptotic behavior of the form
factor depends on the dynamics of the two-body system. This is in
contrast to what the dimensional counting rules

are trying to make us believe. We agree with that analysis only in
case of the vector coupling (A - 0) while in case of éhe scalar and
pseudoscalar coupling we are off by half a (one) power of Q2 in the
two—~ (three-) body form factor.

The two-body form factor has recently also been discussed.by Ezawa12
for vector gluon exchange (A - 0). He obtains a monopole behavior in

agreement with the dimensional counting rules and our result.

VI. Conclusions i

We have given a thorough discussion of the asymptotic behavior of two-
and three-body bound state form factors for both spin-zero and
spin-1/2 constituents. Our calculations avoid some of the crucial

assumptions inherent in the dimensional analysis
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and, as a matter of fact, lead to a different result for

scalar and pseudoscalar couplings.

In order to match the (experimental) asymptotic behavior of the pion
and nucleon form fact;ors2 our results suggest that the pion and
nucleon have an underlying (non-relativistic) quark-antiquark and
three-quark structure respectively at infinite momentum where the
quarks interact via a vector—gluon exchange (being accomplished by

taking the limit A - O at the end of the calculation).

Our investigation was, of course, not exclusively guided by the aim of
verifying a quark-like structure of the pion and nucleon., We have
covered a large scale of possible two~body interactions which has a
wide range of applications in few—body problems. Because of the
intimate relation of the large momentum transfer behavior of the form
factors and the two-body interaction this (e.g., the deuteron form
factor) might give some information about the particle (e.g., the

nucleon—nucleon) forces at small distances.

The BLS approach has proven to be a powerful tool for studying infinite
momentum dynamics. In a forthcoming paper13 we shall complete our
survey of constituent structures of the hadrons by systematically
looking at the deep inelastic pion and nucleon structure functiomns,

especially its threshold behavior, adopting the same technique,
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Captions

Fig.l

Fig.2

Fig.3

Fig.4

Fig.5

The BS equation for the vertex function of a two-body bound

state.

Ladder—type diagrams for a system of three particles interacting

via a two-body interaction.

The once-iterated. Faddeev equation for the vertex: function of a
three~body bound state. The wavy lines represent the two—-body

BS T-matrix in the ladder approximation.

The electromagnetic form factor in the ladder approximation for

a two-body bound state.

The electromagnetic form factor in the ladder approximation for

a three-body bound state.
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