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Abstract The asymptotic behavior of form factors for two- and 

thAee- particle bound states are investigated in the case of spin-4 

constituents in order to shed some light on the underlying 

J structure of the pi,on and nucleon. Here-the Blankenbecler-Sugar approach 

proves to be a powerful tool for studying dynamics at infinite momentum. 

For a two-body interaction which for large momentum transfer behaves as 

V(q,k) = [(q-k)2]-'-a we obtain for the two- and three-body form factors 

F2 = [Q2]-3/2-A and F3 = [Q2]-3-2A respectively in the case of scalar 

and pseudoscalar couplings and F2 = [Q'] -1-A and F3 = [Q2]-2-2A for 

the vector coupling. The experimental pion and nucleon form factors are, 

e.g., consistently recovered assigning a quark-antiquark and three-quark 

structure to the pion and nucleon respectively and the quarks interacting 

via vector-gluon exchange (i.e., A -+ 0). 
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I. Introduction 

In a recent paper' we have investigated the asymptotic behavior of form 

faztors for two-andthree-body bound states for spin-zero constituents. 

It has been proven that the large-momentum-transfer behavior of the 

hadron form factors provides an excellent means of studying the hadronic 

constituents and their dynamics. Neglecting the spin of the nucleon and 

assuming spin-zero constituents of the pion and nucleon, we have shown 

by consistently looking at the pion and nucleon form factors' that the 

"pion" and "nucleon" are likely to have a two- and three-particle structure 

respectively (at infinite momentum) and the constituents interacting 

(relativistically) via a Bethe-Salpeter (BS) kernel V(q,k) which for 

large momentum transfer (q-k)2 behaves like V(q,k) = const. 

This result is very much in favour of the quark model (even though the 

case of spin-112 constituents has yet to be discussed) so that it seems 

desirable to extend these ideas to the more realistic case of spin-l/2 

constituents (i.e., to the "true" pion and nucleon). A similar result 

has been reported even for spin-l/2 constituents 

employing dimensional counting techniques. 
3 

Here, binding corrections 

are, however, neglected which is rather doubtful and, in fact, leads to 

a different result in case of spin-l/2 constituents as we shall see. 

Unfortunately, the three-body spin-112 case is extremely difficult to 

handle relativistically. Here, the vertex function consists of 16 

invariant amplitudes compared to 4 in the two-body case. However, we 

need not also go into the discussion of the complete BS equation. For 

the large momentum transfer behavior of the form factors it is sufficient 
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to know the Blankenbecler-Sugar (BLS) vertex function4 which takes the 

constituents on the mass-shell. 

In this work we shall systematically investigate the large momentum 

transfer behavior of form factors of two- and three-body s-wave bound 

states 5 adopting the BLS approach. We are primarily interested in the 

case of spin-l/2 constituents considering various kinds of interactions. 

But we will also review the spin-zero case using the BLS equation for 

two main reasons. First, this may serve as a test of our approach. 

Secondly, as we shall see later, the form factors become in general a 

convolution of two nonrelativistic clusters at large momentum transfer 

which allows a relativistic description of bound state form factors in 

terms of instantaneous wave functions. 

The paper is organized as follows. In Sec.11 and Sec.111 we shall 

investigate the large momentum behavior of the BLS vertex functions for 

two- and three-body s-wave bound states being composed of spin-zero and 

spin-112 constituents. In the case of spin-l/2 constituents we will 

consider scalar, pseudoscalar and vector couplings. As a by-product re- 

lativistic (three-dimensional) Faddeev equations are presented which is 

an interesting subject by itself. In Sec.IV and Sec.V the asymptotic 

behavior of form'factors for two- and thyee-body bound states 
\ 5 

is derived from the asymptotic form of the vertex functions. It turns 

out that the form factors can be expressed as an integral over a two- 

dimensional disc in the Breit frame which has a nice physical inter- 

pretation. Finally, in Sec.VI we add some concluding remarks. 
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II. Two-Body Wave Function for Spin-Zero and Spin-112 Constituents 

The BS equation for the vertex function of two spin-zero particles reads __ 

(c.. Fig.1) 

+,(d = i 
P f 

d4k V(q,k) G& P + k) G2(; P - k) 4+(k) 
P 

(11.1) 

where 6 G;;2(p) = ~~-1. If we write i G1 ($P+k)G2(+P-k) = E2+R2 

defining 

E2 =2~r ds'= 
I 

1 S+(l-(; Pr+k)2) S+(l-(; P'-k)2) 

= 7~ b(ko (11.2) 

where 2 s=P ,s'=P' 2 and 3' = 'h , the BS equation can be cast 

into the equivalent BLS equation 7 

x Jr: (3 = Tr I d3% W&i;) 

where 

(11.3) 

xp = $,<i, , (II.4) 
P 
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and 

w= (1 - V R2)-' V . (11.5) 

It:s obvious that the BLS equation (11.3) bears all the information 

of the BS equation. Once the BLS vertex function is known, the BS 

vertex function is given by the right hand side of Eq.(II.3) simply 

replacing 4 by q. 

In the spin-zero case we assume the BS kernel having the asymptotic 

form 

V(q,k) = [(~-k)~l-+ 
(q-k) 2+a 

(11.6) 

with ~3 > 0 which is all we need for our further calculations. It is 

obvious that 8 = 1 corresponds to a ?,$3 interaction whereas the 

limiting case 8 + 0 corresponds to A$4. Later on we are interested 

in the BLS vertex function for large momenta 3 and ;; so that it is 

sufficient to consider W = V only because the higher contributions 

to the BLS kernel (such as VR2V, etc.) behave at least like 

[(q-k)21-2e. Hence, Eq.(II.G) leaves us with the BLS interaction 

V(G) 
(q-g2 -5 al 

[(&ii>2l-e 

. 

(11.7) 

We could base our further calculations4 directly on-the asymptotic 

behavior of the BLS kernel W which would have saved us giving any 

arguments in favour of the approximation w=v. However, we 



6 

believe that starting from the BS interaction kernel is much more 

transparent as far as the contact to Lagrangian field theory is 

concerned . But one should bear in mind that both ways would lead 

to the same conclusions. 

We are now interested in the large momentum behavior of the BLS 

vertex function. By means of the consistency argument widely applied 

in our previous paper' we obtain the asymptotic form of the vertex 

function (generally $ and < large) 

(11.8) 

for 8 > 0 . In case of the h+4 theory we take the limit e-+-o 

at the end of the calculation which is analogous to the analytic 

regularization in perturbation theory. 8 

We like to point out that the asymptotic behavior (11.8) is not 
3 

uniform in q . If we write $=x3+;; 1' Eq.(II.8) gives 

x (&G;l-e for -+<x-c++- whereas for 1 . 

rt 
x = + 2 ,>we find 

So far the two-body spin-zero vertex function. For spin-l/2 

constituents we can now proceed in a similar way. As before we start 

off with the BS equation (11.1) where G;*(p) = ~(~)p-l now. Again 

we write 1 1 i Gl(TP+k) G2(TP-k) = E2 + R2 defining g ( consistently) 



7 

E2 = 4~ 6(ko-+ ' A+(+s+Z)2- J I+($-Z)2)) 

nJi) ($) = -pp + ’ , p ($) = + f w; (& P +;;, 
r=l 

which leads us to the BLS equat :ion 

xy(;) = 4Tr I d3$ Wrs*r's' (;,;c) 
P 

x [ (L&$+~+(+w)2)2 - ?-sl-’ p (iz) . 
3 

(11.10) 

Here we have written (the analogue holds for V ) . 

and (note that x (<)=+ (4) 
;h‘ d 

is a 4 x 4 matrix in this case) 

(11.12) 

where r,s,r',s' = 1,2. Since we have only retained positive energy 

particles this corresponds to pairs of quarks and time reversed anti- 

quarks in the language of the quark model for mesons. 

In the spin-l/2 case we take the BS kernel of the asymptotic form 

V(q,k) ‘Al) p) (u> [q~k)2]-‘-~ 
(q-k;2 + 00 (v) 

(11.13) 
. 
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For definiteness we consider the couplings ,W = 1, r (') = yii) and 

,(i> = ,(i> 
1-I 1-I 

which for A+0 corresponds (asymptotically) to a 644 3 

I ~Y+W and &u~+v interaction respectively. The asymptotic form 

of v rs,r's'(q,") is then given by 

V rs,r's'(q,") 

(q-k;2 -t co 
[(&2]+-A Ct(~+;,~+~)t(~-‘;;,~-~)l*‘2 

(11.14) 

for the scalar and pseudoscalar coupling where 

t<;,f2> = ( F 6 )2 - ($-$')2 and l+p2 - 

V rs,r's'(q,") 

(q-k); + a, 
[ (4-~)2]-‘-A(42) ‘D&-2> ‘/2 (11.15) 

for the vector coupling. The last two terms in Eqs.(II.14) and (11.15) 

correspond to the estimate of 

(11.16) 

The large momentum behavior of the vertex function x"(c) can now be 
3 

traced as in the spin-zero case. It is again sufficient.,to consider 

W = V only for the same reasons given before. We obtain 

for the scalar and y5 interaction and 

x;s(d, c: [;q-‘-A [t (+3+&g, + t ($&;i,$)] 

(11.17) 

(11.18) 

for the vector coupling for A > 0 . The do ~(JJ Cp (u> interactions 
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can be included defining the physical solution as in the spin-zero case 

(i.e., A -f 0 at the end of the calculation). 

h 

Some further remarks concerning the asymptotic forms (11.17) and (11.18) 

are in order. First, we like to recall that the large-momentum behavior 

is not uniform in < as in the spin-zero case. Secondly, in case of 

the y 
u 

coupling the leading asymptotic behavior is governed by the z 

near + (j& z F+gL) region of integration in Eq.(II.lO) in contrast 

to the spin-zero and scalar and Y5 calculations. Here, the naive (and 

wrong ) procedure of inverting the limits s,;-- and the integration 

over c leaves us with an infinite integral. 

III. Three-Body Wave Function for Spin-Zero and Spin-112 Constituents 

For the three-body case we shall assume only two-particle forces 

interacting in a ladder-type pattern as shown in Fig.2 so that the 

dynamics of the three-body system is governed by the BS interaction 

kernel introduced before and some relativistic Faddeev equation. 1,lO 

Making use of the Faddeev decomposition $=$ (*)+$(2)++(3) we can .: 

write down a BS type of equation for the various components of the 

vertex function 

p (Pl*P2*P3) = ,d4P; T(1) 
i 

(P~,P~;P~>P~+P~-P;) C~(P;) C~(P~+P~-P;) 

(111.1) 

x [1$(2) (pI*p;,p2+p3-p~) + Q(3)(Pl,P;,P2+P3-P;)l 

and similarly for $ (2) and $I(~), Here T(l) denotes the 
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two-body ES T-matrix, i.e., T (*I = V + V G, G, T (1). Symbolically, 
L 3 

his can also be written 

p 

($ (2) 

@(3) 

I 

0 T(*)G G 23 T(')G G 
, 

= T(2)G G 
Tc3)G3~' 

0 T (2),2~3 

12 T(3)G G 12 

0. 3 1 

\ / 

f p 

p (111.2) 

$(3) 
\ , 

In the following it will prove to be useful to consider the second 

iteration of the vertex equation (Fig.3) 

’ p 

p 

($3) 
\ 

I \ 

v11 v12 v13 
= 

v21 v22 '23 G1G2G3 

lV31 '32 v33 , 

where we have written 

i 
vll v12 v13 

'21 '22 '23 

i 
'31 '32 '33 

= 

I = 

p 

p 

I 4(3) 

(111.3) 

- (111.4) 

r(')G T (2)+T(1)G T(~) 

Ty2) 
2 

T(*)G ~(~1 

(l)fT(2) 

T(')G ~(~1 

GlT(3) T(2)G T 

TT3) 

GITO ,(2)63,(‘) 
3 

Tc3)G Tc2) 
1 G2T") T(3)G T ("+T(3)G1T (2) 

2 

Similar to the two-body case we then define4 G1G2G3 = E +R 3 3 , where 

E3 has only three-particle singularities, which leads us to the 

three-body analogue of the BLS equation (11.3) 
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f pi 
p I ]- 
d 3) 

, I 

v11 v 12 v13 

'21 '22 '23 

'31 '32 '33 

R3 

I 

v11 v12 v13 
, 

'21 '22 '23 E3 

\'31 '32 '33, 

p 

(+a 

$(3) 

(111.5) 

Let us now first discuss the spin-zero case. In order to calculate 

E3 we introduce c.m. variables qw and k(l) by 

Pl =+P+q (1) 

1 * ('1 P2 = 3p - F + k(l) 
k(l) = $P2 - P,) 

1P 1 ('1 P3=J -24 - k(l) qw = - -$P2 + P3 - 2P') 

(111.6) 

Similarly, we define q(2), kc21 and q(3>, kc31 by cyclic permuta- 

tion of the particle indices in Eq.(III.G). Then E3 may be written 

(again s = P2, s' = P" and 3' = 'if) 

E3 = (2lT)2 
f 

ds' & 6+(1 - ($p'-q('))2) 

x (j+(‘-(+’ - 3 q(‘)+k(‘+) &+(I-(+’ _ + q(‘J _ k(‘+) 

= IT 2 6(q(1)-2/~+L 
0 

3 '+(J-p+q 3 1+(-$+(')+~(*))2+~ J 1+(7-pp '+ ‘W>4(1))2) 

x &(k(')-;( ~~(~~~(~)~~(~))~- '+($+')4('))2)) &$'),$*)), 
0 

($1) ,p> = 

4--+J++~(*)+$('))2+J+(;$ ;;;(')4(*))2 

J;+(9+$('))2 A+(+$+(')+$'))2 ~+(#$')4('))2 

x [(~~~+~+(~~(')+~('))2+~+(~~14(*)4('))2)2-~2-s]-' 
3 2 

(111.7) 
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- 

and, 
-t(2) equivalently for any other choice of variables, i.e., q , jp 

or ;;(3), z(3) . This gives explicitly 

-h 
(pp) = ,/ &‘)’ 1 d@)’ w11(9(l),~(‘); ;(‘)‘,k(‘)‘) 

X t’ 
(go ',Z(l)') X(')(;;(*)',~(')') 

3 

+ 1 d3$2)’ 1 &(2)’ w12 (,(1>,,(1);,(2>‘,,(2>‘) 

x c ($2) ’ $2) ’ ) x (2) ($2) ’ ,p ‘) i: 
+ [ &3)’ [ ,3j$3)’ W13 (;1(‘) ,,(‘) ;;(3);i(3); 

J J 

X f 
(;t(3) ',Z(3)') x(3)($3)',$3)') 

75 
(111.8) 

and simi larly for x:) (;(2),z(2)) and ~:~)($(~),z(~)). Here W.. 
P 1J 

means the three-body analogue of W with V replaced by V.. and 
iJ 

(we now parameterize the Faddeev components C$ (i> in the form 

;(i>,(l( ,+($l$i)+$(i))2- 
2 3 2 

(i)-$(i))2), c(i)). (111.9) 

We are now interested in the large-momentum behavior of the BLS vertex 

functions x (i> (;;(i) ,2(i) 
3 

). For this purpose we keep only the first 
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order term (in the expansion) of W.. iJ 
in the BLS equation (111.8) 

following the same arguments as before, i.e., W.. = Vij iJ 
We put also - 

- Tcix- -V since they have the same high momentum behavior up to logarithms. 

The two-body BS potential V is taken to be of the (same) form (11.6). 

Hence, we are.left with the kernel (in the simplest parametrization) 

v 
13 

(,(l),,(1);,(2)',,(2)') = V&(l), ; q(l) t 

1 
X 

1 
v(p 

(p "(l)-q(2)')2-1 

v 
'2 

(,(l),k(1);,(3)',,(3)') = V&(l) - L;;(l) 
, 2 

1 
X 

(~p-,(')-q(3)')2-* 
v(J') 

3 

p ‘> 

l"(2)' 
P ) iz2)'), 

73)') 

l"(3)' -- 
29 , iz3)') , 

'23(' 
-(2>,,(2);,(l)‘,,(1)‘) 3: v(p)- r p _ q(l)‘) 

'2 

1 
X 

(~pJ2Lqw ')2-l 

v(-;w _ p;- p’) , 

.i 
3 

V 11 = '12 + '13 , '22 = '21 + v23 9 v33 = v31 + v32 9 (111.10) 

whose large momentum behavior can easily be deduced from Eq.(II.G). 

The particular sets of relative momenta are related by 

q(2) = _ ‘i q(*) + k(l) , kc’) = - ; q(l) - ’ (‘I 
2k ' 

q(3) = _ + q(*) _ k(l) , kc3) = + q(*) - $. k(l) (111.11) 

v21' '31' '32 are obtained from (III.10) by permutation of indeces. 
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The asymptotic behavior of the BLS vertex function can now be read off 

from the BLS equation (III.8). For 0 > 0 the only consistent solution - 

_ ha&the asymptotic form 

+ [ (~;(g+~(i))21-e $)21-e[ (L++]-* 
2 3 

(111.12) 

(for the limiting case e-to see the two-body case). As we would 

expect from the two-body calculations the asymptotic behavior (111.12) 

is not uniform in $i> -+(i> ,k . If we write i(i) -t(i) =x +q F I and 

s;(i) = z 3 + giijwe find x(i) (z(i) ,$(i)j = l$l-*-2e for x = _ $ 

$1 
ii 

and /'or whereas x, (q (i) +(i),g(i)) ~ const. elsewhere. 
P 

The spin-l/2 case (when treated in form of the BLS equation) is very 

much the same as the spin-zero calculation. The only problem arises 

from the somewhat more subtle spin structure of the BLS kernel. We 

shall consider a spin-112 bound state, and the two-body interaction be 

of the form (11.13). Formally the integral equations (111.2)-(111.3) 

and (111.5) remain the same but now G;'(p) = ~(~)p-l and 

E3 j E3 *y (F+;;(O) (2) (Lpp)+jp) p (pp-jp) 

(111.13) 

and similarly for any other parameterization (i.e., in terms of q (2) , 

kc21 or q(3), k(3)). The projection operation ,(i) can be absorbed + 
into the wave function and the kernel following Sec.11. Writing 
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(x(i) (;;(i>, c(i)) = 9(i)(;(i), ,(i)) now where 
?,M 

$ (i> (q(i) ,,(i)) is 

S,M -h ,M 
the corresponding BS vertex function; M denotes the spin of the 

hound state) 

x w3(7p-2q 
-m 1-t l+(l)~~(l)),(l)(~(l),~(l)) 

8,M 
, 

rsm,r's'm' 
wll 

(q(*),~(*);;l(*)',~(*>') = w;(~+$l));;($+l)&(l)) 

x ;"(l$ l;(l)-z(l) 
33 2 

) w 
11 

(q(l),$l);,(l)',$l)')wr' l+++(l)') 1 (7P 4 

(111.14) 

and similarly for the other components, we are led to the integral 

equation (e.g.) 

d3$(i)' d3d(i)twrsm9r's'm' (TIC') ,i;(l);i(i):g(i)) 
Ii 

X 
e 

(;;(i):$i)' ) X(i)r's'm'(;(i)',d(i); . 

P,M 

- 

As far as the asymptotic behavior of the BLS kernel (cf. Eq.(III.l5)) 

is concerned we may focus our attention on V ij (with I(') = V), e.g., 



x [(9(1)+~(2>‘+k(2>‘>2]-1-a ~(_L,-,(~)-,W’~q-l 
2 3 (III. 17) 

x [t (3P+q 
1-t +(I> 1-t l+(2) ‘$2) ’ 

+p > t($ ;l$l)+j$l) 
2 , 3P+q 1-t -+(2)‘) 

l)-;(l) 
,5, y-q 

1-t -W_;;(2) ’ 
1) 

16 

x w2@7¶ 
-“s 1-t 1+(1)+$(l) ) p; w;‘(g+p’) ;;(LJLp-p) 

‘x $3) (VI (v(3) (~p;;u)-4(2)~ >+l>r(3) (11);;’ (l$$(2) ‘+7p ‘) 

x[ (,(1)+1(1)42) ‘)2]-~-q(qwJp ‘+$2) ‘)q-l-n[(lP-9(1)-,(2) ‘)2-l]-’ 
2 5 

(III. 16) 

which asymptotically becomes 

x t(Sp(jP 4 
l”(1)-;(2) 1) ,$5’2) l+;(2) ‘)]I/2 

for the scalar and y5 coupling and 

V rsm,r’s’m’ 
13 

(,(1),,(1);,(2)),~(2)‘) y [(,(1>_~(1>_,(2)‘)2]-1-n 
2 

x [(qm l--(2)’ 
.2’1 

+~(2)‘)21-‘-A~~~p_~(‘)-~(2)‘)21-1 

x (k(l)+ (k(2)‘2 i ) [t ++p ,.~p($?-$1)-~(2) ’ )) 

-t(2) ’ x t($?+q ,&-p-p ‘))p2 <III, 18) 
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for the yU interaction. In the spin factors the internal line 

.+P-q -W)_qw appears on the mass shell which provides the leading 

Gntribution. Here, 5, means the signature of the parallel component 

of the vector pl 
1-t +(1)~;(2) ' . 

In case of the scalar and y5 coupling.the asymptotic behavior of 

the BLS vertex function can now be read off from the asymptotic form 

of the BLS kernel (111.17) giving (A > 0 ; for A -+ 0 see the two- 

body case) 

xb 
(i)rsm(;;(i),$(i)) ~ [(- ~(i)+k(i))21-l-A~q(i)21-l-A 

+ ~(~(i)+k(i))~1-l-A~;l(i)21-l-A~(~p-q(i))2~-l 
2 3 

I-+ -t(i) 
x [t$P+q , $6 t<q-y 1-t *+(i>$i), is) 

3 

1 

x t<pyl 
1-t l+(i)+j+(i) , g-p) t(L$p, i$)]' (111.19) 

It can easily be checked that this is a consistent solution which 

means, naively, that the integral (111.15) remains finite once 

-t(i) -t(i) the q , k dependence of the kernel is taken out of the in- 

tegral. For the y 
1-1 

coupling this simple procedure does not work 

as we already found in the two-body spin-112 case. The asymptotic 

behavior one would read off from the kernel leads to an infinite 
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integral when applied consistently. As in the two-body case, if we 

invert the limits and the integration, we end up with a divergent 
4r 
integral. Correctly, we obtain 

--l-A E--(i)21-l-A 

x [ (+p-,(i) 

+ t2 $&.$iLgW ,$, l + [+I 
l~(i)+k(i))21-1-A[q(i)21-l-A 

x [(;P-q( 

+ t2(3P-p 1-t l-+(i)+j$i) ,~~I * (111.20) 

IV. Form Factor for Two- and Three-Body Bound States: 

Spin-Zero Constituents 

We now come to use the estimates of the BLS vertex functions and 

calculate the asymptotic behavior of the form factors for two- and 

three-body bound states. In the spinless case we will recover the 

results of our earlier work based on the BS equation which may be 

considered a test of the BLS approach. Apart from this, we expect 

the BLS vertex function giving quite generally the right asymptotic 

behavior of the form factors when written in the Breit frame. We 

shall see that this circumstance also has a nice physical inter- 

pretation. 

The two-body BS form factor reads in the Breit frame (Fig.4) 
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F(Q2)- d4k $ (k-+2) 
1 1 1 

-3 
k+) 

(+P+k-Q)2-l (;P+k)2-l (;P-k)2-l P 
(IV.]) 

- c, 

where Q = (0,2$). The single particle propagators can (in the 

Breit frame) also be written Gl(iP+k-Q).G1(iP+k)G2(iP-k) =K2+L 2 

where (in the spirit of the BLS approach; see Eq.(II.2)) 

K2 

=& 
6(kp - ; 

. S+(($P'+k-Q) 2-l)6+((;P'+k)2-l)6+((+P'-k)2-l) 

131) E2 , kp = F . 
P 

(IV.2) 

By construction K2 has only two-particle singularities while L2 

evidently is accompanied by three-particle singularities. For 

&- the contribution arising from L2 now vanishes relative to 

the (leading) K2 contribution, i.e., 

Gl(+P+k-Q) G&P+k) G2(;P-k) = K2 
s -+a3 

(IV.3) 

which makes the BLS approach a very useful tool for studying the 

asymptotic behavior of form factors of composite systems (note that 

Eq.(IV.3) makes implicit use of the interchangeability of the limit 

$+-a, and the integration over k (Eq.(IV.2)) which, however, is 

justified for the cases we are going to consider here). 

For large 3 the form factor then reads 

9 F(Q2) = - 
8s2 

d2z1 y, ,($-$[l+i$-l 
-p 12 

x (z + -$) 
$12 (IV.4) 
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- 

where only the BLS vertex function enters (remember (p 
3 

(k) = x 

-+ rt 
(c)). 

Physically this means that at large P the form factor becomes a 

wnvolution of two nonrelativistic clusters (i.e., having a definite 

number of constituents) which (later on) will allow an interpretation 

of our results in terms of the (nonrelativistic) quark model. 

Eq.(IV.4) also supports the suggestion of Licht and Pagnamenta 11 

that, given a nonrelativistic wave function, the form factor is most 

adequately represented in the Breit frame because at large $ the 

interaction can take place instantaneously. Geometrically the form 

factor (IV.4) can be interpreted as two flat (Lorentz-contracted) 

discs penetrating through each other. 

- 

Taking now the estimate (11.8) of the BLS vertex function the 

asymptotic behavior of the form factor for a bound state of two spin- 

zero constituents becomes 

F(Q2) = [Q2]-'-' (IV.5) 

just as in the BS calculation.1 

In the three-body case we can proceed in the same way. The BS form 

factor is written (Fig.5) 

F(Q2) = 1 d4q'1)i,r,(1)m-~(q(1)- &k(l)) (I-Ptq(l;~~)2-l 
3 3 

(IV.6) 
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where the photon is coupled to particle 1. Similar to the two-body 

case we define 1 Gl(TP+q (112 1 -7q)G1 (3P+q (1')G2(+$,-$1)+k(1)) x 

x G,+-$+-&(l)-k(l)) = K3 + L3 where 

K3 = 4~~ ds' -& 

x fi+((1,‘-~(‘)+,(‘))2-]) ,+((_1,,-~(1)-,(1))2-]) 
3 2 3 2 

. (IV.7) 

Here K3 has only three-particle singularities while L3 contains all 

the other time orderings. 

As in the two-body case we now have 

1 
G1 (+'+q (l)-$)G1 (+'+$) )G2(~P-~(')+k('))G3(~~~(')-k(')) = K3 

&+co 

(IV.8) 

so that the form factor (IV.6) becomes for large 

= x 
s 

(p,rf(*> 
>> . 

F(Q2) N 3Tr3 z 1 #;y) j d@ y,& - $&$“‘) 

(IV.9) 
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Here, again, the asymptotic behavior is completely described by the 

BLS vertex function. Geometrically Eq.(IV.9) allows the same inter- 

pret%tion as the two-body form factor but with particle 2 replaced 

by the center-of-mass of particles 2 and 3. 

If we now insert the asymptotic form (111.12) of the three-body vertex 

function in Eq.(IV,9) we obtain for the asymptotic behavior of the 

form factor for a bound state of three spin-zero constituents 

F(Q2) u [Q2]-2-2e (IV.10) 

in agreement with the BS calculation. 1 

So far we have only recovered what we knew already before. In the 

next section our prologue will, however, meet its expenses. 

V. Form Factor for Two- and Three-Body Bound States: 

Spin-112 Constituents 

Now we come to our main (new) results. Let us first consider the 

two-body case. Decomposing the loop propagators into K2' and L2 

where K2 now is the spin-l/2 analogue of Eq.(IV.2) (for the general 

procedure see Eq.(III.l3))we again can show that only K2 contributes 

to the asymptotic value of the form factor. Hence, we obtain for 

large 3 

(V. 1) 
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making use of the definition (11.12) and im(- w”(s) N 2/h16m as 

3 -s-m. 

4 

The asymptotic form of the BLS vertex funct :ion, Eqs. (11.17) and 

- 

(11.18), inserted in Eq. (V.l) then gives- 

3 A --- 
F(Q2> = [Q21 2 

for the scalar and y5 interaction and 

F(Q2) = [Q2]-'-' 

(V. 2) 

(V-3) 

for the y 
1-1 

coupling. For the moment we note that the large-momentum 

behavior of the bound-state form factor for spin-l/2 constituents 

depends apparently on the nature of the two-body forces. 

In the three-body case we consider the spin-averaged form factor. 

Employing the same technique as before we find 

d3j$1) Xrsm + _ 23 $1) 
-$,M(ql 3 ' ) 

.: 

x (&ig.L&+ J--p xrsm(;;(*)+ ~,t’*‘, , 
I 

i?,M 
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Inserting the asymptotic form of the BLS vertex function, Eqs.(III.l9) 

and (111.20), this gives the asymptotic behavior 

[Q21 -3-28 

for scalar and pseudoscalar exchange and 

F(Q2) ‘v [Q2]-2-2A 07.6) 

(V.5) 

for the y 
v 

coupling. 

Here we have the same result that the asymptotic behavior of the form 

factor depends on the dynamics of the two-body system. This is in 

contrast to what the dimensional counting rules 3 

are trying to make us believe. We agree with that analysis only in 

case of the vector coupling (A -f 0) while in case of the scalar and 

pseudoscalar coupling we are off by half a (one) power of Q2 in the 

two- (three-) body form factor. 

The two-body form factor has recently also been discussed.,by Ezawa 12 

for vector gluon exchange (A + 0). He obtains a monopole behavior in 

agreement with the dimensional counting rules and our result. 

VI. Conclusions i 

We have given a thorough discussion of the asymptotic behavior of two- 

and three-body bound state form factors for both spin-zero and 

spin-l/2 constituents. Our calculations avoid some of the crucial 

assumptions inherent in the dimensional analysis 
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and, as a matter of fact, lead to a different result for 

scalar and pseudoscalar couplings. 

In order to match the (experimental) asymptotic behavior of the pion 

and nucleon form factors 2 our results suggest that the pion and 

nucleon have an underlying (non-relativistic) quark-antiquark and 

three-quark structure respectively at infinite momentum where the 

quarks interact via a vector-gluon exchange (being accomplished by 

taking the limit A+0 at the end of the calculation). 

Our investigation was, of course, not exclusively guided by the aim of 

verifying a quark-like structure of the pion and nucleon. We have 

covered a large scale of possible two-body interactions which has a 

wide range of applications in few-body problems. Because of the 

intimate relation of the large momentum transfer behavior of the form 

factors and the two-body interaction this (e.g., the deuteron form 

factor) might give some information about the particle (e.g., the 

nucleon-nucleon) forces at small distances. 

The BLS approach has proven to be a powerful tool for studying infinite 

momentum dynamics. In a forthcoming paper 13 we shall complete our 

survey of constituent structures of the hadrons by systematically 

looking at the deep inelastic pion and nucleon structure functions, 

especially its threshold behavior, adopting the same technique. 
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Figure Captions 

Fig.1 The BS equation for the vertex function of a two-body bound 

- state. 

Fig.2 Ladder-type diagrams for a system o-f three particles interacting 

via a two-body interaction. 

Fig.3 The once-iterated Faddeev equation for the vertex, function of a 

three-body bound state. The wavy lines represent the two-body 

BS T-matrix in the ladder approximation. 

Fig.4 The electromagnetic form factor in the ladder approximation for 

a two-body bound state. 

Fig.5 The electromagnetic form factor in the ladder approximation for 

a three-body bound state. 



. 
Fig 1 . 

* I .‘i 

I I 

4 L r, 
I I 

I I I 

I 
I 
1 t 

I 

! f : 

. 
Fig 2 . 



E 1 = 

I 

hg 3 . 



4 

-ifi=2P 

- 

P 

. 
Fig 5 . 


