
I i 
I- 

i I 

SLAC-PU.B-1503 
November 1974 
(Rev. April 1975) .~ 

A COVARIANT DYNAMICAL CALCULATION 
CI OF THE NUCLEON-NUCLEON S-WAVES* 

D. D. Brayshaw? r 

Department of Physics and Astronomy 
University of Maryland, College Park, Maryland 20742 

and 

H. Pierre Noyes 
Stanford Linear Accelerator Center 

+ .Stanford University, Stanford, California 94305 

_I 

ABSTRACT 

We compute the binding enerm of the 3Sl and ‘SO NN states 

/ 
i 
; - 

(known to be bound by 2.22 and -0.07 MeV) using a covariant singular 

core three-body model of the NN?T system with r 
C 

NN = 0.7 fm, 3fa = 

1.8 and ‘fm = 0.3 as observed at high energy. For the xN P1 1 input 
TN we use 1: 
C 

= 0.18 fm, fitted (or h/~Mc = 0.22 fm postulated) and find -.- 

3.26 (2.59) for 3S1 and 1.41 (6. 73) for ‘So. 

(Submitted to Phys. Rev. Letters. ) 
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If we assume that in first approximation nucleon-nucleon scattering can be 

treate$ as an NNn system below pion production threshold, and that the short 

distance (hi@ momentum) behavior of the NN and nN subsystems can be un- 

ambiguously dete.rmined from experiment, the bin,ding energy of the 3S 1 
(“deuteron,” Ed = 2.2 MeV) and ‘So (“singlet deuteron,” E o = 0.07 MeV) states 

near NN elastic scattering threshold can be predicted. abe requisite relativistic 

three-body formalism has recently been developed by one of us, and success- 

fully applied to the 37r system to show that the p gelierates the w as the only low 
<. 

energy I = 0, l- 37r resonance,l as well as to the relativistic ?rd problem. 2 In the 

NN system the fact that the N can make a transition to a PI1 N?T state-with the 

pion then absorbed by the other nucleon gives a type of one-pion-exchange ladder, 

while the fact that the pion can scatt.er rather than being absorbed includes two- 

pion-exchange ladders in the multiple scattering series summed by the integral 

equation. To the extent that the physical TN amplitude we use reflects “crossed” 

and “uncrossed” two-pion diagrams and pion-pion scattering (including the 

“sigma”) , we have included these effects without introducing any “renormaliza- 

tion” problems. 

The obvious first approximation is to use the nucleon as an s-wave spectator 

of the nN state which contains the nucleon pole (P,,), and the pion as a p-wave 

spectator of the appropriate NN s-wave (lSo to drive the 3S1 calculation and 3S1 
to drive the ‘So calculation). After antisymmetrization in the nucleon variables, 

our equation takes the form 

2 ‘j 
xi(qi) = am -I- C 

j=l I 
dqj 45 Kij Cs; 1 qj )xj (qj ~ 

0 
(1) 

I - 

-=*-+j== -----=----~--Here ~Xi-and X2- represent series of pairwiserescatterings initiated by a TN-pair -- .-.-~ 

at the nucleon pole; X1(X2) correspond; to a final NN (TN) scattering. The -... 
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variable q. is the three-momentum of the spectator particle in the c. m. frame 
I 

of thz pair (j=l corresponds to a spectator pion, j=2 to a nucleon). The nota- 

tion Ki2 represents the residue of Ki2 at the nucleon pole (q2 = q,); the NN 

amplitude is given by tNN = X2(qN). Because the two-body asymptbtic wave 

functions start right at the singular cores, there is no region in which an ex- 

tended “potential energy” forces the scatterings “off-shell”, and all particles 

are always on mass-shell. This explains the one-variable character of the 

equation, evgp. though the corresponding t-matrices are not separable. 

The physical justification for using a singular core modelly2 to represent 

the high energy behavior of our two-body input is the well-known fact that all 

two-hadron channels can be well approximated by an absorbing disc of constant 

radius in the particle production region. Alternatively, we can interpret the 

boundary condition as approximating a rapid transition from a region where 

quark degrees of freedom are not much affected by the exterior dynamics to the 

region of free hadrons, or the stable point a quarter-wave outside an internal 

node in the wave function, which one of us suggested” as a way to connect this 

model to Neudatchin*s discussion of internal structure. Either interpretation 

allows’ any empirical result to be represented by an energy-dependent logarith- 

mic derivative of the wave function at that radius AQ(k2) 3 [ 1 + Q + fQ(k2)]/rc. 

The two-body amplitudes are then tQ(k) = NQ(k)/DQ(k) with 
-___~--___--____-.. -----~__ 

NQ(k) = trcAQtk) - Q)jQ(rck) + rck jQ+l(rck) 

DQOr) = ik 
C 

trcAQ&) - QPp(rck) -I- rck hp+l 

(2) 

The energy-dependent function AQ(k) is fitted to scattering data in the physical 
^ _ 

region k2 > 0; at large k it is taken to approach the constant value hcO 8’ Since 
.- --.--.---. -_ __ C-___.-.--.. .-_ .-~- -.-~~- .~ I~.. ._.. - ._- 

AQ(k) must be meromorphic in k2 in order for our formalism to produce unitary 

--_ 
- . 
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threk_body amplitudes, this fit permits ~analytic continuation of NQ, DQ to 

k2 c-0. Below we use the notation NQW, DT to denote NQ, DQ evaluated with 

AQ - A;. The dominant (singular) part of the kernel is 

$.(q;,qj). ‘Nj(kj) 
K~j(qf,qj) = ‘ij ~J Dj(kj) . Y 

Nj”(‘j’ i 
, 

5 
1 

NFj(qi,ql) = - r J dz Gij 
-1 __ 

(. 

(3) 

with Al1 = 0, h21 = Al2 = -2/n and A22 =-l/3. Although the region where all 

three iarticles are close together contributes additional finite terms, which 

have been given explicitly elsewhere ,l all the significant dynamics comes from 

this structure. 

In Eq. (3) kj is the c. m. momentum of the pair. Nj denotes N Q(j) where P 
. . 

is the appropriate angular momentum for that pair. The three-vectors K.. , 
-1J 

Q.j are the values of $, 2i in the (i) c. m. frame corresponding, to k., q. in the 
-J -J 

(j) frame (only two such momenta are independent). The function Gij is the 

geometrical recoupling coefficient which would be -unity if all the particles 

were in relative s-waves. As usual in such equations we have a Green’s func- 

tion denominator correspon&ng to free propagation ,4 and a factor related to 

the “off-shell” strut ture. In our case this is the product giNT, where gi arises 

from the sharp cutoff at the pair radii ri (here simplified by using the slightly 

larger radial paramiter bi ). Explicitly 

gi(a’b) = ib t b j,(a)hh+#) - a (4) 

Here A is the angular momentum of the spectator relative to the pair (h = 0 if 
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Although the coticept of the analytic continuation of two-body amplitudes to 

obtaia dynamical equations is a familiar one, our approach differs from field 

theory or dispersion theory in that we use the three-body equation to specify the 

requisite analytic continuation. The Lorentz frame we use for each pair is 

uniquely specified by requiring that the scattering pair remain in its own c. m. 

system when the spectator recedes to an infinite distance: This definition re- 

duces to the usual one in the nonrelativistic limit, but introduces important kine- 

matic effects in the covariant evaluation of the quantities $, I<. . , and Q.. , which 
<I -11 -11 

enter the above equations, For three particles of mass nlo, m p, my treated as 

free outside the region excluded by the cores, and using a real spectator 

momentum q 2 0, the c. m. energy for the p y pair is (with m = Zarncr) - 
_-.. _---- 

; + k2,+ + (mt + k2j$ = [S + m2q2/(mp + my?] ’ - [rnt + m2q2/ (mp + my?]‘-- 

___-___- -----__ e-.2..--------.--- 
(5 1 

with s = P2 the invariant four-momentum squared of the three particle system. 

We see that the upper limit on this energy, and hence on the energy where we 

need the two-body input for our equation is achieved at q2 = 0, while the lower 

limit implied by the fact that Eq. (5) can be satisfied only for k2 > - 

- min (mp2, y m2) fixes an upper limit q.= Q, (infinite if rn. 
P 

= mr). Since the c. m. 

energy of the Pr pair is bounded by fi- m(yI we see that any three-body treat- 

ment of the NN system requires two body input always a pion mass below the 

two-body output to be tiomputed. In order to calculate NN scattering near elastic 

threshold (.js- 2M), we require only NN input for -M2 5 kiN 5 -WJ (1+/4M), 

and TN input in the narrow range, whose upper end is the position of the nucleon 

Pole, -P2 ( ktN 2 q2(1-p2/4M2). These amplitudes are obtained from NN and 
--.. __ _ ~. .._. ~; ._.= _i ~~--_____l.__l~-~----- .-. ------- 

nN scattering data analytically continued to the required region %a’hp(k’), or 
i. .._. i__.._~ .._ 
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more conveniently f# = hprc + e + 1. As is common in three-body equations, the 

left-hznd cut structure enteis only indirectly through the f’off-shell” behavior, so 

our requirement that h e be a meromorphic function of k2 makes the extrapolation 

essentially unique. 

For the 3Sl input parameters we use the 3S1 - 3 D1 coupled channel fit of 

Feshhach and Lomon5 with r ,“” = 0.70 fm, 3 fco = 1.8. WL find that using the 

same core radius we can fit ISo amplitudes up to 1 GeV with the simple pa- 
~- 

rametrization ‘f(k) = 0. 30 <. - 0.271 (1 + 1.16 k2 + k4)-l provided we take care to 

use a coupled channel formalism above pion product& threshold and identify the 

eigenphase with the real part of the elastic scattering phase. Clearly only the 

core radius and fo3 are significant in the kinematic region needed for our calcu- 

lation as specified above. By one iteration of the coupled system we can elim- 

inate explicit reference to the Xl amplitude and isolate the usual OPE amplitude 

as the leading term in t NN. Since the same term would occur if we were calcu- 
n 

lating higher partial waves, we can identify the coefficient as the constant G” 
npr 

measured in nucleon-nucleon scattering. This implies, for our simple model, 

that the residue at the nucleon pole in the Pll. state is G2 npn( 1 + 1.5 p/M)-! It 
_ _ 

is important to note that the integral in our iterated equation for tNN ends at 

Q2 rrnn ratha- ‘7. than infinity; Therefore we cannot define an equivalent 

Lippmann-Schwinger equation or NN “potential” in any meaningful way. Of 

course we still have a meaningful nucleon-nucleon wave function in coordinate 

space, and via the cohpled equation a wave function for the pion coordinate in 

this system as well. Since the form of the equation is the same for the ‘So and 
NN the 3S1 amplitudes, and rc is (empirically) the same for both, the splitting we 

find between these two states comes solely from the difference between ‘fm and _...~.. l*.-.i i. -.- .- -.-.m,-:l;j.-_i _..- --u 
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fm in. the input. We mirror the “tensor force” only through the difference be- 

tweeg these two parameters empirically observed at high (i. e. , Tlab N NN > 280 MeV) -- 

energy. 

The input for the P 
.ll 

amplitude presents more of a problem, since the nu- 

cleon pole is only a pion mass below TN threshold and, in contrast to the NN 

situation, we are most sensitive to data up to about a pion mass above threshold, 

where they are poorly known. We know the position of the pole and (as noted 

above) the residue at that pole in terms of G2, TN 
<r 

so the simplest fit has only rc 
. 

as a parameter. Using the recent analysis of Carter, Bugg, and Carter’ we 

obtain a good fit in the x 2 sense using all data up to 316 MeV, but for G2 = 

either 14.6 or 15.3 over half the x2 comes from the 310 MeV point where the 

phase is starting to head toward the Roper resonance. For those who are 

bothered by our G2 not being the same in TN and NN scattering, we note that 

our approach will yield this only when we include antinucleons explicitly; em- 

pirically we note that Ball, Shaw , and Wong7 in fitting Pll alone required a 

smaller value for G2 than is usually observed either in NN scattering or forward 

aN dispersion relations. So we present results for two values of G2, with 

and without the highest energy point. We also use a model with rc 7rN fixed at the 

value li/Mc = 0.22 fm and the value which gives about the right binding energy 

for the deuteron (0.234 fm). More reliable results will have to await a better 

theoretical understanding of the energy dependence of the PI1 state, or an ac- 

curate value of the scattering length all, or preferably both. 

The results of the calculation are given in Table I. We see that in spite of 

the uncertainties engendered by the uncertainty in the PII amplitude, the most 

significant features of the nucleon-nucleon S-waves - namely, two bound states _... -. -. _. : ~- ~~.. ..~ --..--_- ~_ ---=- ----.-- ~._ =-L -.-.----. -- 
close to zero in units of the pion mass and split by approximately 2 MeV - are 
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stably reproduced. Considering the simplicity of the model ‘employed and it% 

close connection to empirical results found in quite different experiments and 

had&c phenomena, we find this close agreement with experiment truly re- 

markable. 

In order to improve on our calculation we must include additional three- 

particle states , The two states we think of next most importance to the 3S1 cal- 

culation are P 13 coupled to an s-wave nucleon spectator and PI1 coupled to a d- 

wave spectator; since they are of approximately equal magnitude and of opposite 

sign, we expect the prediction for ed to change very little. The one state we 

would add to the ISo calculation is 3Po with an s-wave pion spectator; this will 

make a repulsive contribution, and could push the eO prediction up to being just 

virtual. Eq. (5) shows that we need only include elastic two-body amplitudes as 

input for output below the two-pion production threshold. If we go to higher en- 

ergy or more particles the most important four-body channels will be those in 

which the system could separate into Tao “interacting” subsystems. This con- 

figuration is dominated by momenta such that at least’one nN pair is near the 

nucleon pole. If it is precisely at the pole, that pair looks like a nucleon, and 

we are back to the problem already considered. Therefore we expect four-body 

corrections to be small. 

Although we have not “derived” our input parameters from an elementary 

particle theory, it is suggestive that the NN radius has to be li/2mrc, the usual 

estimate of where the NN channel gets lost among other hadronic degrees of 

freedom; the Nw radius is 6lose to li/M# , where the problem also.becomes 

ultrarelativistic. In any case, our consistent covariant treatment of the NNr 

system using the singular core approach to the three-body problem allows us to 
~~.. - . -~~- pi . ..__ in ~~~_ __ 

understand why the nucleon-nucleon S-waves have bound states close to NN 

threshold, and to obtain a reasonable first approximation to them without any ad- 

justment of the input parameters. 
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TABLE I 
. . . 

XN Dependence of the Results on rc 

for Various Assumptions about the Pll nN State 

rtN(fm) G2 X2 Q(MeV) EOtMeV) 
- ^ . 

0.180 14.6 8.8a 3.26 1.41 

0.186 14.6 4.2b 3.14 1.34 

0.196 15.3 9.0a 2.96 l!. io 

0.198 15.3 3.0b 3.02 1.17 

0.220 15.3 - 2.59 0. 73 

0.234 15.3 - 2.24 0.48 
..i.-z __.. - __~_ a_--i--lA---.l.--- _--~ 

a 10 points from Ref. 6. 
. . . 

b 9 points from Ref. 6 (see text). 


