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ABSTRACT 

In the colored-quark model, if the three vector gluons that 

correspond to an SU(2) subgroup of SU(3) are heavier than the 

other gluons , a quark-diquark structure for baryons results. 

Furthermore, the predicted baryon SU(6) representations are 

the 56 for even parity and the 70 for odd parity, in agreement 

with recent experimental indications. 

Recent analyses of the baryon spectrum suggest that the even- and odd- 

parity baryons correspond exclusively to the SU(6) representations 56 and 70, 

respectively . This contradicts the harmonic-oscillator quark model for all 

but the lowest two levels; for example, the model predicts even-parity reso- 

nances corresponding to the 56, 70 and 20 at the second excited level. 2 

Several years ago Lichtenberg, and later Ono, proposed that a baryon is a 

composite of a quark and a diquark. 334 The diquarks are assumed to correspond 

to the symmetric SU(6) representation 21, so that the unobserved 20-fold 

baryon representation is forbidden. There are three serious difficulties with 
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this model. First, if there are just three fundamental quarks that do not 

satis& Fermi statistics, it is hard to imagine a simple force that will bind two 

closely, and leave the third at larger distances. Second, quark-quark statistics 

are neglected, a proper procedure only if the diquark is pointlike. Third, 56 and 

‘70 representations are predicted at every energy level. Lichtenberg showed 

that this last difficulty may be overcome by the introduction of a quark-exchange 

force, but this force is clearly of a different nature from that which binds the di- 
3 quark. (, 

In this paper it is assumed that the quarks have color SU(3) indices as well 

as regular SU(3) and spin indices, and that the quark binding forces are trans- 

mitted by the exchange of an octet of vector gluons coupled to the color indices. 5 

It is shown that a natural form of color-symmetry breaking leads simultaneously 

to the quark-diquark baryonic structure and to the correspondence of the 56 and 

70 representations to even and odd parities. Harmonic oscillator wave functions 

are used in the calculations. 

The colors are labeled A, B, and C, and the interactions are assumed in- 

variant to the SU(2) subgroup of the A and B colors. The AB potential is taken 

to be very strong, but to have shorter range than the AC and BC potentials. A 

possible cause of this range difference is mass-splitting of the vector gluon oc- 

tet, if the three gluons coupled as the generators of the SU(2) of the A and B col- 

ors are heavier than the other gluons. This mechanism is similar to that used 

in some recent attemfits to unify strong, electromagnetic and weak interactions. 

This mechanism mixes color singlets and octets. The effects of the lighter 

five gluons are not considered negligible, however, so the baryon states 

must contain some color-singlet component. This requires that each baryon 

contain one A quark, one B quark, and one C quark. If the difference in the 
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ranges of the potentials is appreciable, the AB diquark will be relatively small. 

.A cogKenient set of internal variables is 

?4B = (l/4-6)(5 + FB - 2Fc) (la) 
-L 
PAB =’ (l/4-2)(;*- - TB) . ’ (lb) 

The gluon-exchange potential is a sum of two-body potentials V = V 
@P 

+ 

Vpy+Vyol, where wP, and y are the three quarks. We assume that V is the 
PV 

sum of a short-range part (Vs) and a long-range part (V,), i.e. , 
<. 

V TV = ; Jr J; Vs (I< -;;; I) + i; $ Jr V&1$-- I), (2) 
i=l 

where Jr is the i’th Hermitean generator of SU(3), operating in the color space 

of the quark Al., and J 1, J2 and J3 are the generators of the AB SU(2) subgroup of 

color SU(3). The configuration-space potentials Vs and VP are positive. Exact 

color symmetry corresponds to Vs = V Q . 3 
If the pv state is in the representation r of AB SU(2), then c Jr Jiv = 

i=l 
W,@) - c,w - C2(v )I 2 where C,(x) is the eigenvalue of the quadratic Casimir 

operator of AB SU(2) for the representation x. It follows from this expression 

that the short-range potential is attractive only between the A and B quarks, and 

only if they are in the singlet of AB SU(2), i.e. , the color wave function is anti- 

symmetric in AB exchange. We assume that the wave function is in the ground 

state of the strong short-range Vs potential, so that there are no excitations of 

the p variable. The quarks obey Fermi statistics, so the wave function may be 

written 
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where U. is the SU(6) wave function, R and L are orbital functions, and the sub- 
J 

scrip&g denotes the ground state. The sum is over the six permutations of CY, p, 

and y, and T is 1 and (-1) for even and odd permutations, respectively. Since 

the color wave function is antisymmetric in the transposition (AB), and since 
--L 

(AB)hAB = 7 AB, Uj must be symmetric in AB exchange. Therefore Uj is either 

the symmetric (56) representation Us or the h component Uh of the mixed (70) 

representation. 

The potential does not depend on the SU(6) representation. Since the diquark 

internal wave function is the same for all states, both in color and configuration 

space, the relative energies of states depend on the potential between the quark 
3 

and diquark. Since the diquark is in the singlet of AB SU(2), the Z: Jr Jiv term 
i=l 

does not contribute to the quark&quark potential. Thus, only the long-range 

part of V contributes to quark-&quark binding, but the 1, 2, and 3 gluons may be 

included in the sum. The color operator of a two-quark VP term then becomes 

ii Jc” J: = 3 [C, - 2C3(q)] , 
izll l 

(4) 

where C3 is the quadratic Casimir operator of SU(3) and C(q) is its eigenvalue 

for the quark representation. 

The states are mixtures of color octets and singlets. If two states are of the 

same oscillator level, that with the larger singlet component will be favored en- 

ergetically. This is because each pair of quarks in the singlet are in an anti- 

symmetric color state , thus minimizing the contribution of C3 in Eq. (4). 

In order to make the mathematical procedure clear, we review some prop- 

erties of mixed representations. The permutation properties of a function of A, 

B, and C may be specified completely from the behavior of the function under 

general products of the two transpositions (AB) and (AC). The behavior of the 
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two mixed-symmetry components A and p is2 

4. (AB)A =h, (AC)A. = -4h -;J3 p, C-W 

(AB)p = -p, (AC)p =$p - +$3X . (5b) 

The two variables TAB and TAB of Eqs. (la) and (lb) are such mixed-symmetry 

components; the subscript AB will be suppressed in the rest of the paper. 

For each orbital wave function RL of Eq. (3), and for both Us and Uh, we 

will compute the magnitudes of the components of URL that are completely sym- 

metric, and of h mixed symmetry. These correspond to a color singlet and a ?. 
color octet, respectively. 

We consider first the orbital wave function qk = RLk. Since $ is symmetric 

under (AB), it is a linear combinationof a symmetric and a A mixed state, i.e. , 

c) = aGs + (1 - a2)‘% , (6) 

where Cp, $,, and Gx are normalized. We define the matrix element Mk for the 

k state by 

Mk = <#,, fAC) #& > * 

It follows from Eq. (5a) and the orthogonality of $,, @h, and Gp that 

M = a2 - $(l -a2) . 

(7) 

(8) 

Next we consider the products of SU(6) and orbital wave functions x = U@. 

If x = u$Q evaluation of <x , (AC)x> from Eq. (5a) leads to the value & . 

Using an equation analogous to Eq. (8), one can write U,$,=(l/<2)(x s + x ,), 

where Uh, $, , x s, and x h are normalized. Therefore, if $ is in the form of 

Eq. (6), the probabilities that Us+ and Uh$ are symmetric (and consequently in 

a color singlet) are a2 and &(l - a2), respectively. It follows from Eq. (8) that 

the symmetric SU(6) representation 56 is favored over the 70 if and only if M is 

positive. 
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We will evaluate M for harmonic oscillator wave functions, using the usual 

dimensionless variables, determined from the h (long-range) force constant, 4\ 
The orbital wave function is 

;A2 a -- 
‘+k = N&&% 

.-&p 
f (9) 

where Nk is a normalization constant, Hk is a three-dimensional Hermite poly- 

nomial, and D > 1, since the p wave function is of comparatively short range. 

For convenience we define Mi, by Mk = M; fk(D), where fk(l) = 1. We first 

evaluate M’ by”setting D = 1, in which case the exponent -*(A2 + p2) is invariant 

to the permutation (AC). The Hermite polynomial H may be written as a sum of 

polynomials h of the form 

h = N’ A: hy hZ “’ nZ + O(Q) , 

where N’ is a constant, n = nx + ny + nZ is the order of the energy level, and 

O(Q) is a lower-order polynomial in Ai. 

We consider the quantity (AC)h. Since (AC) leaves h2 + p2 invariant, this 

transposition leaves the quantum number n(A) + n(p) unchanged when D = 1. 

Therefore, when (AC) is applied to h, the lower-order term (AC) O(Q) is deter- 

mined from the leading term of the polynomial. From these facts and Eq. (5a), 

tAc )$k = [t-4,” $k + orthogonal states] , when D = 1. Hence, 

<$,, (AC)$Jk> = M = t-i,” f,(D, . (10) 

Since the sign of M determines the preferred SU(6) representation, we see that 

if f,(D) is positive, the representations 56 and 70 are favored for even and odd 

oscillator levels, respectively. 

The evaluation of f,(D) for a specific oscillator state is straightforward, but 

tedious. It is convenient to define a function Ak(D) by the formula 



- fk(D) = C (3D+;;+3) 

A calculation shows that for every energy level n, the function A(D) is zero 

when Q = n, where Q is the orbital- angular monie&tum. In the cases (n = 2, 

Q = 0) and (n = 3, Q = l), A may be written A = K (D2 - 1)2/D2, where the con- 

stant K is (g/128) and (99/640) in the (2,O) and (3,l) cases, respectively. 

Since f,(D) is positive, its inclusion does not change the predicted relative 

ordering of the 56 and 70 representations. Furthermore, if D is on the order 

of 2 or so, and n is not large, f(D) is appreciable, so the expected difference 

between the 56 and 70 energies may be large enough so that the unfavored state 

does not appear physically. On the other hand, IM I is small when n is large, 

primarily because of the (-*)n factor in Eq. (10). Consequently, we predict 

that for sufficiently high quark-model level, the 56 and 70 shquld both appear. 

Since the sign of M depends primarily on the parity of the wave function 

L(h), the use of oscillator wave functions is not crucial to the result. A more 

detailed treatment of this color-symmetry breaking effect, including the case 

when the symmetry breaking is relatively small, will be published elsewhere. 
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and the Stanford Linear Accelerator Center for its hospitality. 

REFERENCES 

1. P. J. Litchfield, Rapporteur’s Talk at XVII International Conference on 

High Energy Physics, London, England, July 2-10, 1974 (to be published). 

2. G. Karl and E. Obryk, Nucl. Phys. B8, 609 (1968). - 

3. D. B. Lichtenberg, Phys. Rev. 178, 2197 (1968). 

4. Seiji Ono, Prog. Theoret. Phys. (Kyoto) 48, 964 (1972). - 



I 

-8- 

5. U color symmetry is exact, this mechanism leads to color singlets as the 

Jightest states, as shown by Y. Nambu in Preludes in Theoretical Physics, 

edited by A. de-Shalit, H. Feshbach, and L. Van Hove (North Holland 

Publishing Company, Amsterdam, 1966),-p.* 133. 


