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1. Introduction

It has been more than a decade since the emergence of the technology of singularity

resolution by D-branes, in the construction of supersymmetric gauge theories on their

worldvolume. This connection between gauge theory dynamics and Calabi-Yau geom-

etry has been a triumph of the AdS/CFT correspondence [1, 2, 3]. Much progress has

undoubtedly been made, especially for the largest class known to the correspondence,
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constituting almost all the known examples. This is the class of toric singularities

[4, 5, 6, 7].

For four-dimensional gauge theories arising from toric Calabi-Yau threefolds, the

geometry is controlled by a planar toric diagram consisting of a convex, lattice polygon

and its interior lattice points. On the other hand, it has by now become clear that the

best way to understand the physics is through dimer models or, equivalently, periodic

brane tilings on the plane [8, 9, 10, 11]. The complete encoding of the worldvolume

quiver gauge theory in terms of these bi-partite graphs drawn on a torus has led to

both the simplification of existing problems as well as development of new ideas in

a plethora of directions ranging from physics to mathematics. The computation of

moduli spaces has been trivialized, quantities such as R-charges or procedures such

as Higgsing or Seiberg duality [12] have found new graphical realizations. In parallel,

geometric resolution by combinatorics of perfect matchings or number-theoretic issues

such as the field extension of the defining torus have also provided a fruitful dialogue.

Last year, the path to a new direction was illuminated in the mathematics literature

by [13], where a correspondence between dimer models and certain integrable models

was found. The correspondence associates any dimer model on a torus to a (0 + 1)-

dimensional quantum integrable system – which they dub cluster integrable system –

whose phase space contains the moduli space of line bundles with connections on Γ and

whose Hamiltonian and Casimir operators are given by the partition function of the

dimer model.

This connection was readily exploited in our current context of toric gauge theories

in [14, 15, 16]. Explicit integrable systems can be thus established for the myriad of

theories in the catalogue (cf. [17, 18]) of brane tilings.

Fortified by the strengthening of this correspondence in various guises, we propose

to extend it in yet another direction, investigating whether a certain continuous limit

exists. Indeed, our dimer models are finite graphs, thereby giving a finite number of

faces in the fundamental domain of the torus. Loops around these faces, together with

loops around the two fundamental directions of the torus, provide a parametrization of

the Poisson manifold of the integrable system. Nevertheless, one could envision a toric

diagram with an infinite number of lattice points corresponding to some singularity of

infinite order – obtained for example by taking the limit of an Abelian orbifold with

the quotient group taken to infinite order. In this situation, we shall be dealing with

an integrable system with an infinite number of degrees of freedom. Can we construct

in this way continuous integrable field theories in (1+1) or even (2+1) dimensions? If

so, can dimer models provide new tools or useful perspectives?

In order to initiate this study we need to understand how to “glue” and “split”

two integrable systems in our present framework. The procedure of splitting or gluing
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toric diagrams, in relation to geometric resolutions, is well-known. An efficient method

for studying general resolutions exploiting dimer models was introduced [19]. In this

paper we will first systematically study how this splitting/gluing is mapped to the

integrable-system variables, and will demonstrate how this manifests in the spectral

curve (defined as the zero locus of the Newton polynomial) associated to the toric

diagram. We will also discuss the combinatorics of contributions to conserved charges

in the limit in which a large number of building blocks are pasted. Finally, we will

introduce a toy model that exhibits some of the desired features of a reformulation of

cluster integrable systems in the continuous limit.

The organization of the paper is as follows. In Section 2 we review the correspon-

dence between dimer models and integrable systems. Section 3 discusses the gluing

and splitting of spectral surfaces and its relation to the resolution of toric singulari-

ties. In 4 we identify a continuous parameter controlling the separation of individual

components. We relate this parameter to expectation values in the underlying quiver

gauge theory and introduce two methods for finding the dependence of the integrable

system on it. These ideas are illustrated with explicit examples in Section 5. In Section

6, we investigate the combination of a large number of building blocks and introduce

a simple toy model that exhibits some properties we expect in the continuous limit of

cluster integrable systems. We conclude in Section 7.

2. Dimer Models and Cluster Integrable Systems

A remarkable correspondence linking dimer models to an infinite class of integrable

systems, denoted cluster integrable systems, was recently introduced in [13]. We now

provide a brief review of the correspondence.

The Poisson manifold of the integrable system is parametrized by oriented loops

on the brane tiling. Cycles going clockwise around each face wi (i = 1, . . . , Ng, with

Ng the number of gauge groups in the quiver) and the cycles z1 and z2 wrapping the

two directions of the 2-torus provide one possible basis for loops. The w-variables

are subject to the constraint
∏Ng

i=1wi = 1, which sometimes can be used to simplify

expressions.

The Poisson brackets are given by

{wi, wj} = ǫwi,wj
wiwj

{z1, z2} = 1 + ǫz1,z2
{za, wi} = ǫza,wi

(2.1)
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where ǫx,y is the number of edges on which the x and y loops overlap, with orientation.

Then, ǫwi,wj
is simply the antisymmetric oriented adjacency matrix that counts the

number of arrows between gauge groups in the quiver dual to the brane tiling.

The integrable system can be quantized replacing the Poisson brackets by a q-

deformed algebra, which takes the form

XiXj = qnijXjXi , (2.2)

where Xi = exi , q = e−i2π~ and nij = {xi, xj}/(xixj).

Every perfect matching is associated with a point in a toric diagram [9]. When

more than one perfect matching corresponds to the same point, we must add all their

contributions. As we have just reviewed, the natural variables of cluster integrable

systems are loops. We can translate any perfect matching into a closed loop on the

tiling by subtracting a reference perfect matching.

In [13], it was shown that the commutators defined by (2.2) and (2.1) give rise to

(0 + 1)-dimensional quantum integrable system, whose conserved charges are:

• Casimirs: they commute with everything and are given by the ratio between

contributions associated to consecutive points on the boundary of the toric dia-

gram.

• Hamiltonians: they commute with each other and correspond to the internal

points in the toric diagram.

The toric diagram of the Calabi-Yau 3-fold associated to the dimer model gives rise

to a Riemann surface of genus equaling to the number of internal points. The latter is

given by the zero locus of the Newton or characteristic polynomial

D = {(v1, v2)i} ❀ P (z1, z2) =
∑

i

ciz
v1
1 zv22 , (2.3)

where D is the planar toric diagram, specified by lattice points (v1, v2)i and z1, z2 ∈C

are complex coordinates. The coefficients ci are functions of the w-variables. This

Riemann surface is indeed the spectral curve of the integrable system.

The full Poisson manifold of the integrable system is obtained by gluing differ-

ent patches via cluster transformations, equivalently Seiberg duality in the associated

quiver gauge theories.
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3. Gluing and Splitting

In this section we discuss the decomposition of a spectral curve into pieces and the

reverse procedure of gluing spectral curves. We also consider another context in which

this process arises, the desingularization, or Higgsing, of a Calabi-Yau space. The

intimate connection between the decomposition of integrable systems and Higgsing

will be the topic of forthcoming sections.

3.1 Spectral Curves

Let us consider the splitting process

Σ −→ Σ1 + Σ2 , (3.1)

where Σ is the “parent” spectral curve and Σ1,2 are the two daughters. In this process we

elongate certain throats of the Σ until it breaks into two pieces. Since the spectral curve

is a thickening of the (p, q)-web [20, 21], which is the graph dual to the toric diagram,

the connecting throats are dual to segments joining points of the toric diagram along

the boundary between the daughters, as shown in Figure 1.

Figure 1: Splitting of a Riemann surface into two daughters.

The separation between components of the spectral curve is achieved by tuning

the coefficients ci in the characteristic polynomial (2.3). In the integrable system, these

coefficients are functions of the w-variables. In the limit of large distance between

components, the ci’s scale differently with respect to the separation and develop a

hierarchical structure.
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Given a decomposition of the spectral curve into two pieces, it is natural to expect

that in the limit of infinite separation the original integrable system reduces to the sum

of the integrable systems associated to the two components. In Sections 4 and 5, we

provide a detailed explanation of how this intuition is realized.

Taking the splitting process to an extreme we obtain a decomposition of any Rie-

mann surface into a collection of trinions, i.e. spheres with three punctures. Any such

decomposition is in one-to-one correspondence with triangulations of the toric diagram.

Each triangle gives rise to a trinion. Their number is thus equal to twice the area of

the toric diagram, which in turn is equal to the number of gauge groups in the asso-

ciated quiver gauge theory. These decompositions allow us to see the full integrable

system continuously emerge from the combination of trivial integrable systems asso-

ciated to trinions. Figure 2 shows a possible triangulation of a toric diagram and its

corresponding trinion decomposition.

Figure 2: A general triangulation of the toric diagram and the corresponding trinion de-

composition of the spectral curve.

A standard method in real (“tropical”) geometry to visualize Riemann surfaces,

which will prove useful in later sections, is the so-called amœba projection:

A : (z1, z2) 7→ (log |z1|, log |z2|) . (3.2)

The amœba can be thought of as a thickening of the graph-dual of the toric diagram; i.e.,

we can draw the (p, q)-web from D and this will constitute the “spine” of the amœba.

In the actual plot, the “tentacles” which tend to infinity will have their directions given

by the (p, q)-vectors which are normal to the toric diagram.

As explained in the introduction, what we ultimately wish to study is the integrable

system that emerges in the continuous limit where we glue a countably infinite number

6



of toric sub-diagrams, or equivalently, spectral curves. We conjecture that, depending

on how we assemble these building blocks, the integrable systems with an infinite

number of degrees of freedom that are generated by this procedure are (1 + 1) or

(2 + 1)-dimensional integrable field theories. Figure 3 shows a number of elementary

spectral curves glued to generate a (1 + 1)-dimensional theory.

Figure 3: Combining an infinite number of elementary spectral curves to generate a (1+1)-

dimensional theory. By performing a similar gluing along the vertical direction we expect to

generate a (2 + 1)-dimensional theory.

3.2 Partial Resolution of Calabi-Yau Singularities and Higgsing

The splitting and gluing of Riemann surfaces of the type discussed in Section 3.1 also

play an important role in the context of partial resolutions of toric singular Calabi-

Yau 3-folds. We now review this process from geometric, gauge theoretic and dimer

model perspectives. In Section 4 we elaborate on the intimate connections with the

(de)composition of integrable systems.

Geometrically, the partial resolution of a toric singularity corresponds to the process

illustrated in Figure 1: one takes the toric diagram and divides it into components
1. The resulting components must correspond to well-behaved toric diagrams, which

constrain them to be convex. For concreteness, we will focus on the case in which

we split the toric diagram into two parts, to which we shall affectionately refer as the

parent with two daughters. It is possible to deal with more components by iteration of

this procedure.2

Let us now describe the resolution from the perspective of the quiver theory on the

worldvolume of D3-brane probes. This is of course standard technology dating back

to the early days of studying quiver gauge theories from toric Calabi-Yau singularities

[4, 5, 6, 7]. The starting point is a set of N = n1 + n2 D3-branes on the parent

singularity. All chiral fields in the parent quiver are (n1+n2)× (n1+n2) matrices. The

1In the dual cone picture of the toric variety, this is the process of stellar division [22].
2Not all decompositions can be reduced to a sequence of binary splittings. A necessary condition

is that, at each step, the toric diagrams of the daughters are convex.
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parent singularity is then resolved into two daughter singularities containing n1 and n2

D3-branes, respectively. As a result, we obtain two decoupled quiver gauge theories,

whose gauge group ranks are given by n1 and n2. From a gauge theory viewpoint,

this resolution corresponds to turning on non-zero vacuum expectation values (vevs)

for some block sub-matrices in the scalar components of these fields. Fields charged

under gauge groups in both quivers have masses controlled by the expectation values

and decouple from the low energy theory.

A pictorial representation of this process is given in Figure 4. One could envisage,

of course, the reverse process of gluing to produce a more singular parent. This should

correspond to an un-Higgsing mechanism (q. v. [23]). We will illustrate these ideas

with explicit examples in Section 5.

Figure 4: The resolution of the parent singularity with parallel coincident N = n1 + n2 D3-

branes (on the left) results in two daughter theories with n1 and n2 D3-brane respectively.

The blue cone signifies the Calabi-Yau singularity at the tip of which the D3-branes sit.

For our purposes, it is sufficient to focus on the simple case in which n1 = n2 = 1.

We focus on diagonal vevs of the form

〈Xij〉 =

(

X
(1)
ij 0

0 X
(2)
ij

)

, (3.3)

for the field Xij in the parent theory. We will stick to this case throughout the paper.

Resolutions generically involve turning on several non-zero expectation values simulta-

neously. We restrict to the case in which all non-zero vevs have the same magnitude,

which will turn out to control the distance between the daughter singularities.3 The

acquisition of vevs in this fashion will split the parent theory into its two daughters.

3Theories with different vevs give rise to multiple energy scales. If these scales are hierarchically

separated, the Higgsing process can be studied sequentially.
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3.2.1 Resolution in the Dimer Model

One of the greatest computational challenges to the resolution of toric singularities by

D3-branes was the identification of which fields in the parent acquire non-zero vevs

[6, 7]. This issue was resolved by the dimer model representation of toric quiver gauge

theories [8, 9, 11]. Dimer models are extremely useful for identifying the non-zero vevs

that are necessary in order to achieve a given resolution. An elegant description of

general partial resolutions, exploiting the map between the dimer model and a tiling

of the spectral curve, was introduced in [19]. We now briefly review this procedure.

Like perfect matchings, zig-zag paths play a prominent role in connecting dimer

models to geometry. They are defined as paths that alternate between turning max-

imally right and maximally left at consecutive nodes in the bane tiling. Each edge,

then, has exactly two oppositely oriented zig-zag paths, criss-crossing before heading

to nodes of opposite color, weaving an intertwined pattern on the torus. For consistent

gauge theories, these zig-zag paths never intersect themselves and form closed loops

wrapping (p, q)-cycles on the torus.

The untwisting map is an operation on zig-zag paths that exchanges the criss-cross

and turns a brane tiling, which by construction lives on a 2-torus, into a tiling of

the spectral curve Σ (which we recall is the zero locus of the Newton polynomial for

the given toric diagram) and vice versa. We refer the reader to [11] for a detailed

explanation of the untwisting map whose effect on zig-zag paths of both T
2 and Σ is

summarized below.

T
2 Σ

zig-zag path ↔ face = puncture

face = gauge group ↔ zig-zag path

Starting from the parent spectral curve Σ, we elongate one or several internal

throats that connect the two daughters, Σ1 and Σ2. The daughters then decouple

in the limit in which these throats become infinitely long. From the viewpoint of the

daughters, these throats become new external legs, i.e., new punctures. The appearance

of new punctures can easily be implemented in terms of brane tilings. We consider one

copy of the original brane tiling on T
2 for each of the two daughters. On each copy,

we draw the zig-zag paths associated to the original punctures that will end up on the

corresponding component. Next, we introduce the paths which are the complement

to these zig-zag paths in the original set. These new paths correspond to the new

punctures that are generated in the splitting process.

In order for the new paths to become actual zig-zag paths, some edges must be

removed from the daughter tilings. The bifundamentals on the tiling that do not have
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any paths running over them are removed. These are precisely the ones that acquire

non-zero vevs in the Higgsing. Generically, different edges are removed from the two

tilings associated to the daughters. This is the manifestation, in dimer language, of

the matrix vevs in (3.3). In Section 5, we present explicit examples illustrating this

procedure. Bivalent nodes might be generated when removing edges. They correspond

to massive fields that can be integrated out [9]. From the perspective of the daughter

integrable systems, the generation of new punctures corresponds to the appearance of

new Casimir operators.

When Higgsing, the rule for removing perfect matchings is simple: every perfect

matching containing an edge corresponding to a field with a non-zero vev, must be

eliminated. The mapping of the dimer model into a tiling of the spectral curve pro-

vides an interesting alternative perspective on the disappearance of perfect matchings.

Differences of perfect matchings are translated into 1-cycles with appropriate homology

on Σ. The difference between two adjacent perfect matchings, say p and p′, in the toric

diagram simply corresponds to a 1-cycle wrapped around the associated elongation of

Σ. Once Σ has been split, certain 1-cycles will no longer be able to exist. If the differ-

ence between two perfect matchings is contained in any of the sub-dimers, both perfect

matchings will survive in the corresponding component of the daughter singularity. On

the other hand, if the difference is not contained in any sub-dimer, one or both of the

perfect matchings will not survive the Higgsing process.

In general, the set of non-zero expectation values resulting in a given decomposition,

or, equivalently, the set of removed edges from the daughter brane tilings, is not unique.

In Section 5, we will discuss the issue of multiple solutions for an explicit example in

detail.

4. A Continuous Control Parameter

As we have already mentioned, the splitting of the spectral curve follows from certain

hierarchies between the coefficients in the characteristic polynomial. These hierarchies

are controlled by a continuous parameter, which we will denote Λ; in quiver language

it is connected to the non-zero expectation values of bifundamental fields.

In this section, we introduce two complementary approaches for determining the

precise dependence of Λ on the coefficients of P (z1, z2) that achieves a given Σ → Σ1+Σ2

decomposition.
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4.1 Scalings from VEVs

Without loss of generality, we can identify Λ with the non-zero vevs, i.e. 〈X(a)
ij 〉 = Λ.

The coefficients in P (z1, z2) are polynomials in the wi variables, corresponding to closed

loops with vanishing homology on the brane tiling. Following [24] (see also [25] for

applications of this idea), we can write any loop in terms of edges in the brane tiling as

v(γ) =
k−1∏

i=1

X(wi, bi)

X(wi+1, bi)
, (4.1)

where the product runs over the contour γ and bi and wj denote black and white nodes.

Here, X(wi, bi) and X(wi+1, bi) are bifundamental fields, in which we explicitly indicate

the tiling nodes connected by the corresponding edge when going around γ instead of

employing the usual notation with subindices for the gauge groups under which they

are charged. Going back and forth between the two notations is straightforward. Fur-

thermore, we remind the reader that the variables defined Section 2 for our integrable

system, in terms of the notation in (4.1), are

wj = v(γwj
) ; zi = v(γzi) j = 1, . . . , Ng, i = 1, 2 . (4.2)

We can thus obtain the Λ-scaling of any loop by plugging the expectation values

into (4.1). The conclusion is that we obtain the following factors 4

Scaling Λ for each 〈X(wi, bi)〉 = Λ

Scaling Λ−1 for each 〈X(wi+1, bi)〉 = Λ
(4.3)

Applying (4.3) directly to the wi cycles, we can rephrase it in terms of vevs for

fields transforming in the fundamental or antifundamental representation of the corre-

sponding gauge group. We obtain

within wi cycle : Λ for each 〈Xji〉 = Λ

Λ−1 for each 〈Xij〉 = Λ
(4.4)

where we have changed the notation and subindices indicate gauge groups connected

by bifundamentals. We show some examples in Figure 5.

Notice that we have not included color indices in (4.1). Similarly, we have not

specified on which of the two daughter components, which have different sets of non-

zero vevs, the scalings in (4.3) and (4.4) must be calculated. However, on physical

4Exchanging black and white nodes, an operation that has no effect on the physics, exchanges Λ

with Λ−1. This operation does not affect the scalings of individual contributions to conserved charges

though, since it also inverts the orientation of all paths.
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w

Λ Λ−1 Λ0

Figure 5: Examples of Λ scalings of a wi cycle, which we have drawn as the cyclic arrow in

blue. We indicate the edge associated with a field with a non-zero vev in red.

grounds, it is clear that determining the scaling in any of the two daughters leads to

the same result. We shall present explicit examples in Section 5.

We have explained how to determine the Λ of any loop in the tiling arising from a

general decomposition of the Riemann surface. It is important to emphasize that the

Λ-independent part of these loops can be completely arbitrary in size, but in a way

that is uncorrelated with the splitting of Σ.

4.2 Scalings from the Spectral Curve

Let us now introduce an alternative method for determining the Λ scalings directly

associated with a decomposition of the spectral curve in an algorithmic fashion, wherein

we obtain a set of explicit Diophantine inequalities which needs to be solved. Suppose

the parent spectral curve, corresponding to the toric diagram DP = {vi1, v
i
2} (with i

indexing the nodes) can be written as

P (z1, z2) =
∑

i

(
pi∑

k=1

NG∏

j=1

w
αi
k,j

j

)

z
vi1
1 z

vi2
2 ; (4.5)

here, we have explicitly written the coefficients as sums over monomials in the w-

variables. Indeed, the number of terms, which we index by k, of monomials for the i-th

node is the number of perfect matchings pi for that node. Finally, each monomial is a

product of w-variables, indexed by j, raised to integers αi
k,j.

5

Now, when we Higgs, the coefficients – as polynomials in w-variables – separate

into the sum of two types of terms: those which survive the Higgsing, which we shall

separate into the first si terms for the i-th node, and those which do not, which are the

remaining pi − si terms:

P (z1, z2) =
∑

i

(
si∑

k=1

NG∏

j=1

w
αi
k,j

j +

pi∑

k=si+1

NG∏

j=1

w
βi
k,j

j

)

z
vi1
1 z

vi2
2 ; (4.6)

5It is always possible if desired, although not necessary, to bring the monomials to a form in which

αi
k,j ≥ 0 by using

∏Ng

j=1
wj = 1.
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as an emphasis, we have relabeled the powers of the monomials which do not survive

as βi
k,j.

Now, let us introduce the scalings (we can take, without loss of generality, the

powers kj to be integers):

wj −→ Λκj , κj ∈ ZZ (4.7)

and substitute back into (4.6) to give

P (z1, z2) =
∑

i





si∑

k=1

Λ

NG∑

j=1

κjα
i
k,j

+

pi∑

k=si+1

Λ

NG∑

j=1

κjβ
i
k,j



 z
vi1
1 z

vi2
2 ; (4.8)

It is now clear what has to occur: for the terms which survive, they must have

the same order in Λ and those which do not, must have strictly less order. In other

words, for each i, we must have
∑NG

j=1 κjα
i
1,j =

∑NG

j=1 κjα
i
2,j = . . . =

∑NG

j=1 κjα
i
si,j

≡ C.

This C must be strictly greater than each of
∑NG

j=1 κjβ
i
k,j for k = si+1, . . . , pi. Finally,

we recall that
∏NG

j=1wj = 1, so that
∑NG

j=1 κj = 0. The terms that do not survive are

precisely those associated to perfect matchings that are removed by the Higgsing. We

can use this identification to determine a priori which terms must have a relative Λ

suppression.

In summary, we have the following set of Diophantine inequalities in κ: for each

i = 1, 2, . . . , n where n is the number of nodes in the toric diagram,

C =

NG∑

j=1

κjα
i
k,j for all k = 1, . . . , si

C >

NG∑

j=1

κjβ
i
k,j for each k = si + 1, . . . , pi

0 =

NG∑

j=1

κj . (4.9)

5. Explicit Examples

Having abstractly discussed how the splitting should work by obtaining the weights of

the variables either from the acquisition of vevs in the dimer or from the coefficients

in the spectral curve, we can now illustrate our proposal in detail with some explicit

examples. In this section, we will first study the cone over the double zeroth Hirzebruch

surface and then the space Y 4,0. These will give ample demonstration of our technique.
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5.1 Double F0

Let us consider a Z2 orbifold of F0, whose toric diagram is shown in Figure 7, to which

we refer as the double F0 theory. Figure 6 shows the corresponding brane tiling. We see

6 7 8 32

1 6

7 8 4321

14 5 6 87

2 3 54

1

Figure 6: Brane tiling for the double F0 theory.

that there are 8 the gauge groups, twice that of F0, and 16 bifundamental fields which

we shall denote as Xij in standard nomenclature, signifying the field corresponding

to the edge bounding face i and face j in Figure 6. The superpotential terms are all

quartic and can also be instantly read off from the figure. We wish to consider the

decomposition of this geometry into two copies of F0, as shown in Figure 7.

Figure 7: Toric diagram for the double F0. A red line indicated how we split it into two

components.

Using the ideas of [19], which were summarized in Section 3.2.1, we conclude there

are four possible sets of expectation values leading to the same desired decomposition

of the geometry. They are:

Higgsing 1: X
(1)
41 , X

(1)
12 , X

(1)
85 , X

(1)
56 Higgsing 2: X

(1)
34 , X

(1)
41 , X

(1)
78 , X

(1)
85

X
(2)
83 , X

(2)
32 , X

(2)
47 , X

(2)
76 X

(2)
32 , X

(2)
25 , X

(2)
76 , X

(2)
61

Higgsing 3: X
(1)
27 , X

(1)
78 , X

(1)
63 , X

(1)
34 Higgsing 4: X

(1)
12 , X

(1)
27 , X

(1)
56 , X

(1)
63

X
(2)
25 , X

(2)
54 , X

(2)
61 , X

(2)
18 X

(2)
18 , X

(2)
83 , X

(2)
54 , X

(2)
47

(5.1)
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We have separated, in the above, the 8 fields of the parent theory that get a non-zero vev

into its two daughters, which following the notation in (3.3) we denote by superscripts

(1) and (2) respectively. We see that each daughter contains four fields with non-zero

vevs. From these non-zero vevs and the rule prescribed in (4.4), we determine the

weights of our wi variables for the four Higgsings:

Higgsing w1 w2 w3 w4 w5 w6 w7 w8

1 1 Λ 1 Λ−1 1 Λ 1 Λ−1

2 Λ 1 Λ−1 1 Λ 1 Λ−1 1

3 1 Λ−1 1 Λ 1 Λ−1 1 Λ

4 Λ−1 1 Λ 1 Λ−1 1 Λ 1

(5.2)

What is happening in the field theory, as graphically depicted by the dimer, is

shown in Figure 8. In each of the four Higgsings, we separate the parent dimer model

into the complementary dimers of the two daughters, (1) on the left and (2) on the

right. In order to facilitate comparison with the original parent tiling, we have not

integrated out massive fields. If we do so, we obtain the square lattice characteristic of

F0.

Higgsing 1 Higgsing 2

Higgsing 3 Higgsing 4

Figure 8: Dimer models for the four Higgsings of the double F0 theory into two daughter

F0 theories.

The weights associated to different Higgsings are simply related by an overall shift,

which follows from the fact that the Higgsed tilings are also connected by shifts and

rotations as shown in Figure 8.
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The Integrable System

We now investigate the effect of continuously splitting the spectral curve, equivalently

Higgsing, on the integrable system. In this process some contributions to conserved

charges, those associated perfect matchings removed by the Higgsing, are continuously

suppressed until the theory reduces to two decoupled integrable systems.

We can also determine the Λ-scaling of w-variables by analyzing the behavior of

coefficients of the spectral curve. Indeed, we can find the weights in (5.2) independently

by the procedure outlined in Section 4.2. Reassuringly, the results of using this method

agrees in all examples with the ones obtained from (4.4).

The tables below present the information in the integrable system for the double

F0 theory. The (n1, n2) row refers to the coefficient for the zn1

1 zn2

2 term in the Newton

polynomial. For each of the Higgsings, we underline the contributions that survive in

the Λ → ∞ limit. The third column shows the surviving leading Λ dependence of the

coefficients in the characteristic polynomial.

Higgsing 1: Let us begin with Higgsing 1 and discuss it in a little more detail. For

each node in the toric diagram, here given as an integer 2-vector, we can specify the

coefficient in terms of the w-variables within the spectral curve using the technique of

[15], as reviewed in Section 2. The number of monomials will correspond to the number

of perfect matching for the node. Let us take the (1, 1) point of the toric diagram as an

example, which is an internal node with 8 perfect matchings; the term in the spectral

curve will be

(

w1w3w4 + w3w4 + w3 + 1 + w−1
6 + w−1

5 w−1
6 w−1

8 + w1w2w3w4 + w−1
5 w−1

6

)

z1z2 ,

where we have underlined the terms which survive the Higgsing. The ones that do not

survive can be immediately determined, they are the ones containing edges correspond-

ing to fields with non-zero vevs.

In terms of (4.9), this means the weights wj → Λkj must be such that k3 = 0 =

−k5−k6−k8 = k1+k2+k3+k4 coming from the underlined terms and that they must

all be strictly greater than any of {k1 + k2 + k3 , k3 + k4 ,−k6 ,−k5 − k6} coming from

the non-underlined terms. This thus constitutes one of the inequalities. We do this for

each of the 8 points in the toric diagram and combine all these relations, supplementing

by the inequality that
8∑

j=1

kj = 0, and solve the resulting system over the integers. We

will find precisely the first row of the solution table in (5.2). In the table below, we will
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also include, for reference, the final leading order weight for the surviving terms. For

the (1, 1) term above, this is just 0, whence the entry Λ0 = 1 in the third column. These

results are in full agreement with those derived using (5.2) and (4.4). In the examples

that follow, we have independently determined the Λ-scalings using both methods and

confirmed their agreement.

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 Λ2

(2, 0) w1w2w5w6 Λ2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 1

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 Λ

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ−2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 1

(3, 2) w1w3w
−1
6 w−1

8 1

(5.3)

Higgsing 2: We can now perform a similar analysis for the second Higgsing and obtain:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 Λ2

(2, 0) w1w2w5w6 Λ2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 1

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 Λ

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ−2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 1

(3, 2) w1w3w
−1
6 w−1

8 1

(5.4)
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Higgsing 3: So too we can now study the third Higgsing, confirming our results:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 1

(2, 0) w1w2w5w6 Λ−2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 Λ

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 1

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 Λ2

(3, 2) w1w3w
−1
6 w−1

8 1

(5.5)

Higgsing 4: Finally, we complete the story with the last Higgsing:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 1

(2, 0) w1w2w5w6 Λ−2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 Λ

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 1

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 Λ2

(3, 2) w1w3w
−1
6 w−1

8 1

(5.6)

Amœba Projections

As reviewed in Section 3.1, amœba plots provide a simple way of visualizing the spectral

curves. Thus, we can draw such projections of the spectral curve of the parent for some

large value of Λ, as an additional check that the scalings we obtained indeed give rise

to elongations leading to the desired splitting of the spectral curve.

Let the Λ-weights for each node in the toric diagram be given by the third column

in the tables above. The leading behavior in Λ coincides for Higgsings 1 and 2 and
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for Higgsings 3 and 4. Furthermore, the two pairs are related to each other by a 180◦

rotation, as shown in Figure 9.

Λ −2

Λ 2 2Λ

2ΛΛ 2

−2Λ

3 and 41 and 2

11

1 Λ

1

1

Λ 1

11

Figure 9: The corresponding weights of the coefficients in the Newton polynomial for Higgs-

ings 1 and 2 are connected to those of Higgsings 3 and 4 by a 180◦ rotation of the corresponding

toric diagram.

We see that, in perfect agreement, the amœba projections exhibit the correspond-

ing behavior. Figure 10 shows the amœbas for the four Higgsings for large Λ. Indeed,

Higgsings 1 and 2 Higgsings 3 and 4

Figure 10: Amœba plots for the 4 possible Higgsings with Λ set to the numerical value of

e5. The patchy appearance of these and subsequent amoeba plots, with some missing points

in their interior, is due to the fact that we determine them numerically.

the amœbas for the four models coincide, up to a trivial shift on the (x, y) plane. This

results from the simple relation between their scalings as given by Figure 9. Further-

more, we see that the thin spine in the center controls precisely the spliting of the
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double F0 into her two daughter F0 theories. The holes in the spectral curve associated

to internal points in the toric diagram have zero size in Figure 10. This is due to the

particular choice of coefficients in the characteristic polynomial. These coefficients can

be varied at will without modifying their Λ-scaling and hence preserving the splitting.

5.2 Y 4,0

Fortified by the consistency our story for double F0, let us move onto another non-

trivial example. We now consider Y 4,0, whose corresponding integrable system has

been worked out in [15]. We remind the reader of the dimer model in Figure 11. This

is a theory with 8 gauge group factors, quartic superpotential terms and 16 fields, which

we suggestively label as Vij, Ṽij and Hij in accordance with their vertical and horizontal

orientation. The toric diagram is shown in Figure 12, with 7 nodes.

8

ij ijV
~

ijH

1

2

3

5

6

7

4

V

Figure 11: Brane tiling for Y 4,0.

We now study the two splittings depicted in Figure 12. We will refer to them as

Higgsings 1 and 2. Specifically, the acquisition of vevs is as follows:

Higgsing 1: H
(1)
32 , H

(1)
65 , H

(1)
14 , H

(1)
87 Higgsing 2: V

(1)
51 , V

(1)
73 , Ṽ

(1)
26 , Ṽ

(1)
48

H
(2)
34 , H

(2)
67 , H

(2)
12 , H

(2)
85 Ṽ

(2)
51 , Ṽ

(2)
73 , V

(2)
26 , V

(2)
48

(5.7)

We remark that the black and white nodes are exchanged with respect to [15].

This is of course only a matter of convention. As in the previous example, the choice of

vevs leading to each splitting is not unique. Having already illustrated this possibility
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Higgsing 1 Higgsing 2

Figure 12: Toric diagram for Y 4,0, showing the two splittings that we will investigate. The

splitting is indicated by the red line.

with the splitting of double F0 to two F0’s, we focus on the vevs given in (5.7) for

convenience.

Once again, we determine the Λ-scalings associated to both decompositions using

the methods of Section 4, i.e. both the rule in (4.4) and the algorithm in Section 4.2,

which yield identical results. We obtain:

Higgsing w1 w2 w3 w4 w5 w6 w7 w8

b Λ−1 Λ Λ−1 Λ Λ Λ−1 Λ Λ−1

c Λ Λ−1 Λ Λ−1 Λ−1 Λ Λ−1 Λ

(5.8)

Higgsing 1: We follow the notation in the previous examples, write the coefficients

in terms of the w-monomials and underline the terms which survive. We tabulate this

for each node, and in the third column write the overall leading behavior in Λ for the

terms which survive.

(n1, n2) Loops

(0, 0) 1 1

(−1, 0) w4 + w4w8 + w4w7w8 + w3w4w7w8 Λ

+w−1
1 w−1

5 w−1
6 + w−1

1 w−1
5 + w−1

1 + 1

(−2, 0) w−1
1 w−1

5 w4 + w4w8 + w−1
1 w4w8 + w−1

1 w−1
5 w4w8 Λ2

+w−1
1 w−1

5 w−1
6 w4w8 + w4w7w8 + w−1

1 w4w7w8 + w−1
1 w−1

5 w4w7w8

+w3w4w7w8 + w−1
1 w3w4w7w8 + w−1

1 w−1
5 w3w4w7w8 + w−1

1 w−1
5 w−1

6

+w−1
1 w−1

5 + w3w
2
4w7w8 + w4w

−1
1 w−1

5 w−1
6 + w3w

2
4w7w

2
8

(−3, 0) w−1
1 w−1

5 w4w8 + w−1
1 w−1

5 w−1
6 w4w8 + w−1

1 w−1
5 w4w7w8 Λ

+w−1
1 w−1

5 w3w4w7w8 + w−1
1 w−1

5 w3w
2
4w7w8 + w3w

2
4w7w

2
8

+w−1
1 w3w

2
4w7w

2
8 + w−1

1 w−1
5 w3w

2
4w7w

2
8

(−4, 0) w−1
1 w−1

5 w3w
2
4w7w

2
8 1

(−2, 1) w−1
1 w4w7w8 Λ2

(−2,−1) w2w3w
2
4w7w8 Λ2

(5.9)
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Higgsing 2: Likewise, we tabulate the result for Higgsing 2 and obtain:

(n1, n2) Loops

(0, 0) 1 1

(−1, 0) w4 + w4w8 + w4w7w8 + w3w4w7w8 1

+w−1
1 w−1

5 w−1
6 + w−1

1 w−1
5 + w−1

1 + 1

(−2, 0) w−1
1 w−1

5 w4 + w4w8 + w−1
1 w4w8 + w−1

1 w−1
5 w4w8 1

+w−1
1 w−1

5 w−1
6 w4w8 + w4w7w8 + w−1

1 w4w7w8 + w−1
1 w−1

5 w4w7w8

+w3w4w7w8 + w−1
1 w3w4w7w8 + w−1

1 w−1
5 w3w4w7w8 + w−1

1 w−1
5 w−1

6

+w−1
1 w−1

5 + w3w
2
4w7w8 + w4w

−1
1 w−1

5 w−1
6 + w3w

2
4w7w

2
8

(−3, 0) w−1
1 w−1

5 w4w8 + w−1
1 w−1

5 w−1
6 w4w8 + w−1

1 w−1
5 w4w7w8 1

+w−1
1 w−1

5 w3w4w7w8 + w−1
1 w−1

5 w3w
2
4w7w8 + w3w

2
4w7w

2
8

+w−1
1 w3w

2
4w7w

2
8 + w−1

1 w−1
5 w3w

2
4w7w

2
8

(−4, 0) w−1
1 w−1

5 w3w
2
4w7w

2
8 1

(−2, 1) w−1
1 w4w7w8 Λ−2

(−2,−1) w2w3w
2
4w7w8 Λ−2

(5.10)

Figure 13 shows the amœbas corresponding to the scalings in (5.9) and (5.10),

confirming they produced the desired splitting.

Higgsing 1 Higgsing 2

Figure 13: Amœba plots for Higgsings 1 and 2 of Y 4,0 at Λ = e3.
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6. Combining Multiple Components

In the previous sections, we have explained how to split integrable systems. Reversing

the logic, we also understand how to glue them. We have identified a continuous

parameter Λ that controls the distance between components of the spectral curve. This

parameter manifests itself in the associated quivers as non-zero vevs and suppresses

certain contributions in the integrable system. We can now proceed towards our goal

of understanding the continuous limit of these systems.

6.1 Combinatorics of a Large Number of Components

Let us focus on the case in which we combine an infinite number of identical components

Σ0 along a single direction, effectively generating a new continuous dimension. The

amœba projection suggests a natural way to approach the continuum: we consider all

components equally separated in the amœba and then send the number of components

N contained in a finite interval of length L to infinity. More concretely, defining Λ ≡ eα,

we consider the limit

N → ∞, α → 0, L = Nα fixed. (6.1)

This will give us a (1 + 1)-dimensional integrable system from the continuous limit of

an infinite number of (0+1)-dimensional ones. In principle, it seems possible to do the

same in both the x and y directions, generating a (2 + 1)-dimensional integrable field

theory in the process.

Before studying this limit, let us investigate how the number of contributions to

Hamiltonians behaves for large N . Following the dictionary in Section 2, this number

corresponds to the multiplicity of perfect matchings associated to internal points in the

toric diagram.6

Gluing N copies of an integrable system corresponds to considering a certain ZN

orbifold of the basic theory. In dimer model language, this corresponds to enlarging

the unit cell by a factor N . While the number of points in the toric diagram grows

linearly with N , their multiplicity grows much faster. Let us illustrate this growth in

some explicit examples.

6.1.1 Y N,0

The cone over Y N,0 is the ZN orbifold of the conifold with toric diagram given by

Figure 14.

6Casimirs are given by ratios of external points in the toric diagram. Hence, the same ideas apply

independently to their numerator and denominator.
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N−1H1H H2

N/2+1

... ...

Figure 14: Toric diagram for Y N,0 for even N . The red circle indicates the reference

perfect matching and the green dots correspond to cycles with windings (−N/2 − 1, 1) and

(−N/2 − 1,−1), which are fixed by the Casimirs.

The integrable system for this geometry was determined in [15] using the prescrip-

tion in [13], where it was identified with the N -site relativistic periodic Toda chain.

Our goal in this section is to investigate its behavior for large N .

i=1,...,N

even ieven i
ci

id

i−1c

i

i

i

Figure 15: A convenient set of cycles for Y N,0 with even N . The cycles of type c only exist

for even i.

For simplifity, let us focus on the case of even N . A similar analysis is possile

for odd N . It turns out that the resulting integrable system is considerably simplified

when considering the basis of cycles given in Figure 15, instead of using the standard

w and z-variables.7 In terms of this basis, the Hamiltonians become

7Figure 15 shows 2N cycles. The two additional cycles that are necessary to form a basis, are fixed

by the Casimirs and hence not important in our discussion. They correspond to the green dots in

Figure 14.
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Hn =
∑∏

di cj
︸︷︷︸

n factors

. (6.2)

The problem of finding the Hamiltonians is thus reduced to the combinatorics of non-

intersecting paths, which can be used to immediately determine the multiplicity of

internal points in the toric diagram. A closed expression for this multiplicity was

derived in [26] by using a Potts model like description for the dimers, and via a recursion

relation that was obtained from a map to a 1-dimensional monomer-dimer system. The

final result for the multiplicity of the nth internal point is

n∑

i=0

N

N − i

(
n

i

)(
N − i

n

)

, (6.3)

which applies for both even and odd N .

It is interesting to visualize how these multiplicities are distributed over the toric

diagram and how the distribution approaches some limit shape after appropriate nor-

malization. This is shown in Figure 16.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n�N

Mult.

Figure 16: Normalized multiplicity of perfect matchings for the internal points of the Y N,0

theory. We have also normalized the length of the toric diagram to 1. We show results for

N = 2a, a = 1, . . . , 20 (black to red).

6.1.2 Multiple F0

Similarly, we can investigate the generalization of the model considered in Section 5.1

to N copies of F0. Figure 17 shows its toric diagram.

In this case, it is also possible to find closed formulas for the multiplicities of all

points in the toric diagram. They are
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N

Figure 17: Toric diagram for the N F0 model.

Boundary points:

(
N

m

)

Internal points: 2

(
2N

2n− 1

)

(6.4)

where N is the number of F0’s that have been glued together and m ∈ {0, N} and

n ∈ {1, N} index points on the boundary and in the interior of the toric diagram,

respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n�N

Mult.

Figure 18: Normalized multiplicity of perfect matchings for the internal points of the multi-

ple F0 theory. We have also normalized the length of the toric diagram to 1. We show results

for N = 2a+ 1, a = 0, . . . , 20 (black to red).

These two examples illustrate a general behavior of large-N models, an explosive

growth in the number of perfect matchings associated to a given point in the toric

diagram, which translated into a huge number of contributions for each conserved

charge. It thus becomes clear that a continuous reformulation of cluster integrable

systems is desirable in order to deal with their large-N limit. In the next section we

take the first steps towards such a reformulation.
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6.2 A Toy Model for the Continuous Limit

The two examples considered in the previous subsection share some common charac-

teristics. In both of them, the nth Hamiltonian corresponds to the sum over all possible

positions on the brane tiling of n paths, subject to the constraint of not overlapping

over edges. Furthermore, these paths are of a very specific type: they cross the tiling

along the short direction of the unit cell and are almost straight. By this we mean

that these paths are almost localized along the long direction of the unit cell. Fig-

ure 15 shows the explicit form of these paths for Y N,0 and (6.2) gives the corresponding

Hamiltonians. It is natural to assume that this structure is generic when gluing N

copies of a cluster integrable system with a genus-1 spectral curve.8 In this section,

we introduce a toy model with these properties, which we expect captures the main

features of a continuous reformulation of cluster integrable systems.

Let us consider a system in the x ∈ [0, L] interval and introduce a path z winding

vertically at x = 0.

... k2WW1 ... W

z’

x = Lx = 0

z

Figure 19: A toy model for the continuous limit of cluster integrable systems. The path z

can be shifted by multiplying by all the Wi’s contained in the strip between its initial and

final positions.

We can shift z horizontally by multiplying it by all the wi variables contained in

the strip between x = 0 and its final position.

z →
∏

i∈strip

Wi z . (6.5)

Here Wi stands in general for a product of wi’s contained in a slice of the tiling.

The explicit form of Wi is controlled by the details of the specific brane tiling under

consideration. Combining n paths and summing over their positions ki, i = 1, . . . , n,

we obtain

8Attaching N copies of a genus-N spectral curve results in g N Hamiltonians. We expect the

resulting theories to obey a similar structure.

27



Hn =





n∏

i=1

∑

ki<ki+1

ki∏

j=0

Wj



 zn , (6.6)

which we have suggestively called Hn, since it has the expected structure for Hamil-

tonian operators.9 We can readily generalize this expression in the continuous limit,

obtaining

Hn =

(
n∏

i=1

∫ L

xi−1

dxi e
∫ xi
0 dy lnW(y)

)

zn , (6.7)

where x0 ≡ 0. While we have derived (6.7) under rather basic assumptions that try

to capture the most basic features observed in explicit examples, we expect it displays

the main aspects of the actual continuous limit of cluster integrable systems. We leave

a detailed investigation of this limit in explicit models for future work.

7. Conclusions

We have taken the initial steps in extending the correspondence between dimer mod-

els and (0+1)-dimensional cluster integrable systems to continuous (1+1) and (2+1)-

dimensional integrable theories. In order to understand the transition between discrete

and continuous theories, it is necessary to have certain notion of distance between el-

ementary constituents, or “lattice spacing”, such that the continuous theory emerges

when it is sent to zero. We identified such a continuous parameter controlling the

distance between daughters from the perspectives of both spectral curves and the res-

olution of Calabi-Yau singularities, equivalently the Higgsing of quivers. Furthermore,

we introduced two procedures for determining the integrable system dependence on

this parameter, whose effect is to suppress certain contributions to conserved charges,

making them vanish in the infinite separation limit.

We then explored the integrable systems that are constructed by combining a large

number of components, equivalently by gluing a large number of toric diagrams. More

concretely, we studied, in explicit examples, the behavior of the number of contributions

to individual Hamiltonians as the number of components grows. These contributions

are in one-to-one correspondence with perfect matchings of the underlying dimer model.

9Strictly speaking, Hamiltonians might also contain an n-independent power of the cycle orthogonal

to z, as dictated by the position of the corresponding internal point in the toric diagram. This fact

can be trivially incorporated in our expressions so, for simplicity, we omit it from our discussion.
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For this reason, their number diverges much more rapidly than the number of compo-

nents, begging for an alternative continuous formulation of cluster integrable systems.

We also observed that each Hamiltonian is given by the contributions of a number of

simple paths summed over all their possible positions on the brane tiling. We used

these insights to develop a toy model that we expect reproduces the basic features of

the continuous limit of cluster integrable systems.

Interestingly, our investigation of the continuous merging of integrable system has

also resulted in a novel understanding of (un)Higgsing in quiver theories and the asso-

ciated desingularization of the corresponding Calabi-Yau spaces. Thus, we have added

a new angle of attack to the classical subject of D-brane resolution of singularities. We

have realized that when one refines the coefficients of the spectral curve into polyno-

mials in loop variables, the Higgsing/resolution simply corresponds to establishing a

consistent scale Λ dictating which monomials should survive or suppressed. Therefore,

we have effectively generated a new algorithm, outlined in Section 4.2, for systemati-

cally studying all partial resolutions for a given toric diagram. It would be worthwhile

to exploit this procedure for classifying all consistent daughter theories for a given

parent.

What we have touched upon is, of course, only the beginning of a program. The

natural question that arises now is how to extend our continuous toy model to theories

that are actually constructible from dimers. For example, attempting to recover simple

integrable field theories such as Toda theories would be an obvious next step. Given the

simplifications afforded by dimer models, we expect it should be possible to construct

increasingly more elaborate integrable field theories.

We envision many applications of dimer models to continuous theories, such as

the study of integrablity preserving lower dimensional impurities or interfaces between

different integrable field theories. Indeed, in light of the correspondence with dimer

models, the often difficult condition of integrability simply amounts to checking whether

the field theory results from the infinite limit of consistent toric diagrams, i.e. that they

are given by convex lattice polygons.

In addition to the continuous limit, there are several exciting directions worth

studying for the dimer model/integrable system correspondence. For example, the cor-

respondence naturally associates (0+1)-dimensional relativistic integrable systems to

the (3+1)-dimensional superconformal field theories dual to the dimer models. Re-

cently, similar integrable systems have emerged in the study of (3+1)-dimensional

N = 2 superconformal theories in the contexts of superconformal indices [27] and

the enumeration of vacua in the Omega background [28, 29]. It would be interesting to

investigate whether the different ways in which integrable systems emerge are indeed

related.
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