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Motivated by the possible extension into a supersymmetric Randall-Sundrum (RS) model, we
investigate the properties of the vacuum expectation value (VEV) of the stress-energy tensor for
a quantized bulk Dirac spinor field in the RS geometry and compare it with that for a real scalar
field. This is carried out via the Green function method based on first principles without invoking
the degeneracy factor, whose validity in a warp geometry is a priori unassured. In addition, we
investigate the local behavior of the Casimir energy near the two branes. One salient feature we
found is that the surface divergences near the two branes have opposite signs. We argue that this is
a generic feature of the fermionic Casimir energy density due to its parity transformation in the fifth
dimension. Furthermore, we investigate the self-consistency of the RS metric under the quantum
correction due to the stress-energy tensor. It is shown that the VEV of the stress-energy tensor and
the classical one become comparable near the visible brane if k 'M 'MPl (the requirement of no
hierarchy problem), where k is the curvature of the RS warped geometry and M the 5-dimensional
Planck mass. In that case the self-consistency of RS model that includes bulk fields is in doubt. If,
however, k .M , then an approximate self-consistency of the RS-type metric may still be satisfied.

PACS numbers: 04.50.-h, 04.62.+v, 11.10.Kk, 11.25.-w, 11.30.Pb

I. INTRODUCTION

The hierarchy between the Planck scale, MPl ∼ 1019

GeV, and the standard model (SM) scale, MSM ∼ 1
TeV, has been a long-standing problem in high energy
physics. In the past decade, there have been two popular
solutions to the hierarchy problems: the Arkani-Hamed-
Dimopoulos-Dvali (ADD) model [1] and the Randall-
Sundrum (RS) model [2]. Both models invoke extra di-
mensions and the brane-world scenario. The weakness
of gravity is associated with the largeness of the extra
dimension in the case of ADD, while in RS it is due to
the exponential warpage of the extra dimension. In this
paper we shall only focus our attention on the latter. In
the RS model, two flat, parallel 3-branes are located at
two fixed points on a S1/Z2 orbifold. The metric of RS
reads:

ds2 = e−2σ(y)ηµνdx
µdxν + dy2. (1)

where R is the radius of the orbifold and y is the extra di-
mension coordinate ranging from −πR to πR and σ(y) =
k|y|. We adopt the convention ηµν = diag(−1, 1, 1, 1).
The brane located at y = 0 is called the hidden brane
and that at y = πR is the visible brane, on which the
familiar SM fields reside. Under this construction, the
hierarchy problem is naturally solved via the warp factor
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e−kπR along the extra dimension, generating a large hier-
archy without requiring large extra dimensions. Specif-
ically, with the choice of kR ' 12, the TeV scale at the
visible brane can be descended from the Planck scale at
the hidden brane.

With the introduction of a finite separation between
the two branes in the extra dimension, any field in the
bulk should induce a Casimir energy. This provides a
possible resolution to the smallness problem of the cos-
mological constant when connected with the observed
dark energy [3–5]. The Casimir effect in RS model gener-
ated by scalar fields has been studied in details by many
authors [6–13]. In [6], in particular, a detailed analysis
of the local Casimir energy, or to be more specific, the
vacuum expectation value (VEV) of stress-energy ten-
sor, is given, in order to test the self-consistency of the
model. It should be noted, as was pointed out by the au-
thors of [6], however, that some conclusions made therein
might not hold in a supersymmetric RS model, where
the fermionic contribution is expected to exactly cancel
its superpartner counterpart yet its local behavior has
never been explicitly investigated. It is thus desirable to
investigate the effect of the Casimir energy induced by
the fermion field in the bulk.

With regard to the fermionic Casimir effect in RS ge-
ometry, some authors obtained the result by multiplying
a degeneracy factor to that of the scalar field [14, 16].
In such an approach, calculations are performed via the
mode summation method. We note that while such a
transcription from the scalar field Casimir energy to that
of the spinor field in a flat spacetime geometry is clear,
that for the curved spacetime is not as transparent. This
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is mainly because the reduction from the Dirac equation
to the Klein-Gordon equation in flat spacetime is un-
ambiguous, whereas the similar procedure in the curved
spacetime would induce a curvature coupling term [15]:

(−∇2 +m2
ψ +

1

4
R̂)ψ = 0, (2)

where ψ is the fermion field, R̂ is the Ricci scalar and
mψ is the mass of the fermion. On the other hand, for
a scalar field φ in the curved spacetime, the equation of
motion reads:

(−∇2 +m2
φ + ξR̂)φ = 0. (3)

The ambiguity arises because the coupling parameter ξ
between the scalar field and the curvature is generally
not restricted to 1

4 , but as a free input to the theory.
This motivates us to calculate the Casimir energy via
the Green function method where the stress-energy ten-
sor can be derived explicitly without resorting to the de-
generacy factor.

We note that the vacuum energy arising from the
fermion field in RS model has been fully discussed by
Flachi et al. [17][18] by computing the lowest order quan-
tum corrections to the effective action. The finite tem-
perature effect of the Casimir energy arising from both
scalar field and spinor is discussed in [19]. These ap-
proaches can only provide the global properties of the
vacuum energy and important local behavior might be
overlooked. With the interest to fully understand the
nature of the Casimir energy in the RS brane world, we
find it desirable to directly compute the VEV for the
stress-energy tensor, so as to compare it with that in-
duced by the scalar field explicitly in the context of a
SUSY system.

II. BASIC SETUP

Let us first distinguish two sets of labels in our metric:

ds2 = gMNdx
MdxN = e−2σ(y)ηµνdx

µdxν + dy2, (4)

where the capital Latin labels denote the (4+1)-
dimensional quantities: M = 0, 1, 2, 3, 5, so that x5 = y,
whereas µ = 0, 1, .., 3. Then we write down the action
for a Dirac spinor in the bulk with mass mΨ = cσ′

[20][22][23]:

S =

∫
d4x

∫
dy
√
−g
(
iΨ̄γMDMΨ−mΨΨ̄Ψ

)
, (5)

where g = det(gMN ). The gamma matrices, γM are
defined in curved spacetime as γM = e Mα γα, where
e Mα = diag(eσ, eσ, eσ, eσ, 1) is the inverse vierbein and
γα = (γa, iγ5) are the gamma matrices in flat spacetime,
and DM = ∂M +ΓM is the covariant derivative in curved
spacetime. With the metric defined in (4), we have

Γµ = − i
2
σ′eβµγ

5γβ , Γ5 = 0. (6)

It should be noted that the equation of motion derived
from (5) with mΨ = 0 is automatically conformally
covariant under proper choice of boundary condition,
without the need for an additional conformal coupling
term[24].

Given the Z2 transformation for Dirac fermion:
Ψ(−y) = ±γ5Ψ(y), it can be seen that Ψ̄Ψ is odd un-
der Z2 transformation. This implies that mΨ must also
be odd under Z2 transformation in order to preserve the
Z2 symmetry of the Dirac equation. Therefore, mΨ can
be parametrized as [20]

mΨ = cσ′ = ckε(y). (7)

where ε(y) is defined as being 1(-1) for positive(negative)
y.

The stress-energy tensor related to the above action is
given by

TMN = iΨ̄γ(MDN)Ψ− gMNL, (8)

where the second term that involves the Lagrangian does
not contribute to VEV by virtue of the equation of mo-
tion, and will be neglected in the following calculation.

III. COMPUTATION OF THE GREEN
FUNCTION

In order to obtain the VEV of stress-energy tensor,
we first calculate the Green function G(xM , x′M ) for the
field, then express 〈TMN 〉 in terms of the Green func-
tion. The Green function by definition satisfies the field
equation

(iγMDM −mΨ)G(xM , x′M ) =
1√
−g

δ(xM − x′M ). (9)

To eliminate the dependence on the coordinates of xµ, we
perform a 4-dimensional Fourier transform on the Green
function

G(xM , x′M ) =∫
d3~p

(2π)3

∫
dω

2π
ei~p·(~x−~x

′)e−iω(t−t′)Gp(y, y
′).

(10)

Then (9) becomes

[−γµpµ − γ5∂5 −mΨ]G̃p(y, y
′) = e2σδ(y − y′)I4×4.(11)

where G̃p(y, y
′) ≡ e−2σGp(y, y

′).
We further write the Green function as

G̃p(y, y
′) =

(
f1 f2

g1 g2

)
. (12)

where f1, f2, g1, g2 are 4× 4 matrices. Put this back into
(11), we arrive at the following 4 equations for the 4
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elements of the Green function:

−∂5f1 + ckf1 + eσσαpαg1 = −e2σδ(y − y′)I2×2, (13a)

eσσ̄αpαf1 + ∂5g1 + ckg1 = 0, (13b)

−∂5f2 + ckf2 + eσσαpαg2 = 0, (13c)

eσσ̄αpαf2 + ∂5g2 + ckg2 = −e2σδ(y − y′)I2×2. (13d)

If we neglect the Dirac delta functions on the right hand
sides of (13a)∼ (13d), the solutions are[20]

fi(y) =
eσ/2

Ni
[Jc− 1

2
(mz) + biH

1
c− 1

2
(mz)], (14)

gi(y) =
eσ/2

Ni
[Jc+ 1

2
(mz) + diH

1
c+ 1

2
(mz)]. (15)

where m ≡
√
−p2 is the Kaluza-Klein mass, z ≡ eσ/k,

i = 1, 2. Ni and bi are the coefficients to be determined
by normalization and by our choice of the boundary con-
dition (BC). Generally, there are two distinct classes of
BCs for Dirac fermion, the untwisted and the twisted
BC[20][21]. These BCs are derfined as follows.

Untwisted:

ΨL |0= 0, ΨL |πR= 0.

(∂5 + ck)ΨR |0= 0, (∂5 + ck)ΨR |πR= 0. (16a)

Twisted:

ΨL |0= 0, (∂5 − ck)ΨL |πR= 0.

(∂5 + ck)ΨR |0= 0, ΨR |πR= 0, (16b)

where ΨL,R = [(1∓ γ5)/2]Ψ. We’ll deal with both cases.

A. The Untwisted BC

For later convenience, we introduce the following four
functions to represent different combinations of the spe-
cial functions that appeared in (14) or (15)

η(y) ≡ eσ2 [Jc− 1
2
(mz) + bH1

c− 1
2
(mz)], (17)

ή(y) ≡ eσ2 [Jc− 1
2
(mz) + b́H1

c− 1
2
(mz)], (18)

λ(y) ≡ −eσ2 [Jc+ 1
2
(mz) + bH1

c+ 1
2
(mz)], (19)

λ́(y) ≡ −eσ2 [Jc+ 1
2
(mz) + b́H1

c+ 1
2
(mz)], (20)

where

b = −
Jc− 1

2
(mk )

H1
c− 1

2

(mk )
, (21)

b́ = −
Jc− 1

2
(me

πkR

k )

H1
c− 1

2

(me
πkR

k )
. (22)

In terms of these new functions, the untwisted BCs be-
come

η |0= 0, ή |πR= 0.

(∂5 + ck)λ |0= 0, (∂5 + ck)λ́ |πR= 0. (23)

We first deal with f1 and g1. Under the above definitions,
f1 and g1 can be expressed as

f1(y, y′) =


(
α γ
ᾱ γ̄

)
η(y), if y < y′(

ά γ́
´̄α ´̄γ

)
ή(y), if y > y′

(24)

g1(y, y′) =



(
β δ
β̄ δ̄

)
λ(y), if y < y′(

β́ δ́
´̄β ´̄δ

)
λ́(y), if y > y′

(25)

All the parameters in the above matrices are determined
by (13a) and (13b), from which we get

g1 |y=y′+ −g1 |y=y′−= 0, (26)

f1 |y=y′+ −f1 |y=y′−= e2σ(y′)I2×2, (27)

− ∂5f1 + ckf1 + eσσαpαg1 = 0. (28)

These together constitute 16 linear equations for
16 unknowns. Here we solved it by the help of
Mathematica 7.0:

f1(y, y′) =

{
−I2×2e

2σ(y′) λ́(y′)
S η(y), if y < y′

−I2×2e
2σ(y′) λ(y′)

S ή(y), if y > y′
(29)

g1(y, y′) =

{
−σ̄αpαe2σ(y′) λ́(y′)

mS λ(y), if y < y′

−σ̄αpαe2σ(y′) λ(y′)
mS λ́(y), if y > y′

(30)

where

S ≡ λ́η − λή |y′ . (31)

The remaining two elements, f2 and g2, can be obtained
in a similar way

f2(y, y′) =

{
−σαpαe2σ(y′) ή(y′)

mS η(y), if y < y′

−σαpαe2σ(y′) η(y′)
mS ή(y), if y > y′

(32)

g2(y, y′) =

{
−I2×2e

2σ(y′) ή(y′)
S λ(y), if y < y′

−I2×2e
2σ(y′) η(y′)

S λ́(y), if y > y′
(33)

With (29), (30), (32), (33), we finish our calculation for
the Green function subjected to the untwisted BC.

B. The Twisted BC

In order to fit the twisted BC (16b), we define addi-
tional two functions

η̃(y) ≡ −eσ2 [Jc+ 1
2
(mz) + b̃H1

c+ 1
2
(mz)], (34)

λ̃(y) ≡ eσ2 [Jc− 1
2
(mz) + b̃H1

c− 1
2
(mz)], (35)
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where

b̃ = −
Jc+ 1

2
(me

πkR

k )

H1
c+ 1

2

(me
πkR

k )
, (36)

so that

η̃ |πR= 0, (∂5 − ck)λ̃ |πR= 0. (37)

If we rewrite (24) and (25) with the replacements ή →
λ̃ and λ́ → η̃, the remaining calculations are completely
identical to that of the untwisted case. The results are
just the same as (29), (30), (32) and (33) with the above
substitution.

IV. STRESS-ENERGY TENSOR

Now well-equipped with the exact form of the Green
functions for both untwisted and twisted BCs, namely,
(29)∼ (33), together with the definition (12), we are fi-
nally at a position to calculate the VEV of the stress-
energy tensor. First, we make the identification

iG(xM , x′M )) = 〈Ψ(xM )Ψ̄(x′M )〉. (38)

With this identification, we can replace any VEV involv-
ing the quadratic terms of the field by the Green function.
We begin with the VEV of T00 in (8),

〈T00〉 = ie00〈Ψ̄γ0D0Ψ〉
= −ie−σ[i∂0Tr(γ0G)]xM=x′M . (39)

In the second equality we have neglected the spin connec-
tion term Γ0 in the covariant derivative D0, since it turns
out to be a term independent of the mode, and thus can
be omitted in the renormalization. Let us first deal with
the untwisted BC. We perform a 4-dimensional Fourier
transform on both sides of (39) and use (12) to obtain

〈t00〉 = −iωeσTr(g1 + f2)|y=y′

= −2ie3σ ω
2

m

λ́λ+ ήη

λ́η − λή
(Untwisted BC), (40)

where t00 is the 4-dimensional Fourier transformation of
T00. In a similar fashion, we obtain the other entries of
the stress-energy and also those for the twisted BC as
follows.

〈Tµν〉 = −2iδµνe
3σ
∫

d3~p
(2π)3

∫
dω
2π

(pµ)2

m
λ́λ+ήη

λ́η−λή
, untwisted

−2iδµνe
3σ
∫

d3~p
(2π)3

∫
dω
2π

(pµ)2

m
η̃λ+λ̃η

η̃η−λλ̃ , twisted

(41)

〈Tyy〉 = −ie4σ
∫

d3~p
(2π)3

∫
dω
2π ∂5( λ́λ+ήη

λ́η−λή
) |y=y′ ,untwisted

−ie4σ
∫

d3~p
(2π)3

∫
dω
2π ∂5( η̃λ+λ̃η

η̃η−λλ̃ ) |y=y′ , twisted
(42)

where δµν = diag(1, 1, 1, 1). This is our final expression
for the stress-energy tensor. The integral cannot be ex-
pressed analytically for a general c, and suitable regu-
larization must be implemented. For the massless case,
however, the results can be written in a concise way.

V. MASSLESS DIRAC FERMION

Now consider the simplest case: c = 0, in which all η
and λ functions reduce to basic trigonometric functions,
and (41) and (42) become

〈Tµν〉 ={
− 2iδµνe

3σ
∫
d3~p

(2π)3

∫
dω
2π

(pµ)2

m cot[mk (eπkR − 1)],untwisted

2iδµνe
3σ
∫
d3~p

(2π)3

∫
dω
2π

(pµ)2

m tan[mk (eπkR − 1)], twisted

(43)

〈Tyy〉 ={
− 2ie5σ

∫
d3~p

(2π)3

∫
dω
2π m cot[mk (eπkR − 1)], untwisted

2ie5σ
∫

d3~p
(2π)3

∫
dω
2π m tan[mk (eπkR − 1)], twisted

(44)

The integrations are best done by performing a Wick
rotation

ω → ip4, m =
√
ω2 − ~p2 → ip. (45)

Thus the stress-energy tensor is given by

〈Tµν〉 ={
−2ηµνe

3σ
∫

d4p
(2π)4

(pµ)2

p coth[ pk (eπkR − 1)], untwisted

−2ηµνe
3σ
∫

d4p
(2π)4

(pµ)2

p tanh[ pk (eπkR − 1)], twisted

(46)

〈Tyy〉 ={
2e5σ

∫
d4p

(2π)4 p coth[ pk (eπkR − 1)], untwisted

2e5σ
∫

d4p
(2π)4 p tanh[ pk (eπkR − 1)], twisted

(47)

The regularization procedure for the integral is conven-
tional, where one subtracts 1 from the coth or tanh func-
tion. The results read (for a more detailed calculation,
see, for example, [6] or [25])

〈Tµν〉ren ={
−e3σηµν2−3π−

5
2 a−5Γ( 5

2 )ζ(5) , untwisted
15
16e

3σηµν2−3π−
5
2 a−5Γ( 5

2 )ζ(5) , twisted
(48)

〈Tyy〉ren ={
1
2e

5σπ−
5
2 a−5Γ( 5

2 )ζ(5) , untwisted

− 15
32e

5σπ−
5
2 a−5Γ( 5

2 )ζ(5) , twisted
(49)

where a = (eπkR − 1)/k. Compare with the VEV of
the stress-energy tensor for scalar fields given in [6], we
conclude that

〈TMN 〉Dirac,untwisted = −4〈TMN 〉real scalar (50)

〈TMN 〉Dirac,twisted =
15

4
〈TMN 〉real scalar (51)
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The factor 4, as indicated in [14], accounts for the differ-
ence of the degrees of freedom between the Dirac spinor
and the real scalar fields. The sign difference originates
from the distinct natures of fermions and bosons. As for
the factor 15/16 between the untwisted and the twisted
results, it results from the difference in regularization be-
tween the coth and the sinh functions.

VI. MASSIVE DIRAC FERMION

To extract useful information from the VEV of stress-
energy tensor for a general mass c, we need to appeal
to the numerical method. In this section, we will only
focus on the numerical integration of the 00 component
of 〈TMN 〉 for the untwisted BC (the general features,
including the power and the signs of surface divergences,
are the same for the twisted BC), namely, (40). For later
convenience, we denote

F (p, y;R) ≡ λ́λ+ ήη

λ́η − λή
. (52)

Recall that R is the radius of the RS geometry. So our
goal is to regularize the integral

〈T00〉 = iC

∫ ∞
0

dp p4F (ip, y;R), (53)

with

C ≡ π−
5
2

4

Γ( 3
2 )

Γ(3)
e3σ(y). (54)

Note that the Wick rotation has been performed in the
above expression.

To regularize the integral, we subtract the same quan-
tity, namely, 1, as the massless case from the integrand
iF (ip, y;R). In other word, since iF (ip, y;R) approches
unity as p→∞, we are in fact subtracting its ultraviolet
limit[27].

〈T00〉ren = C

∫ ∞
0

dp p4[iF (ip, y;R)− 1] (55)

To facilitate the computation, we expand iF (ip, y;R)
to the first order in c. Since c represents the fermion mass
in units of Planck mass, it is expected to be very small
for a physical particle, thus ensuring the validity of our
approximation. In addition, to make the computer run
more effectively, we set k = R = 1 as in [6], although the
more “realistic” value would be kR ' 12 with k 'MPl.

The results are given in Fig. 1 and Fig. 2. It can be
seen that the energy density diverges to infinity near both
branes, but with opposite signs. We’ll discuss this feature
in the following subsections.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5. ´ 10-6

0.00001

0.000015

0.00002

y

<
T

_0
0>

FIG. 1: The massless (c=0), untwisted BC case for 〈T00〉ren
in units of k5. The branes are located at y = 0 and y = π
and kR = 1. Note that the numerical value (points) agrees
perfectly with the exact solution.

0.5 1.0 1.5 2.0 2.5 3.0
-0.0001

-0.00005

0.0000

0.00005

0.0001

y

<
T

_0
0>

FIG. 2: The massive (c = 10−3), untwisted BC case for
〈T00〉ren in units of k5. The energy density diverges at both
branes, but with opposite signs.

A. Surface Divergence

In Ref.[28], the authors pointed out that the surface
divergence is mainly contributed by the high wave num-
ber (momentum) modes in the Fourier transformation of
〈TMN 〉. Based on the same philosophy, we expand the
integrand of (55) asymptotically in powers of p−n and
retain only the p−1 term, which dominates the integrand
for large p, i.e.,

〈T00〉ren ' C
∫ ∞

0

dp p4
[
coth(

α− 1

k
)p− 1

]
+ C

∫ ∞
0

dp p4 c

2zαp

[
csch(

α− 1

k
)p
]2

×
{
z(α− 1) + αcosh[2p(

α

k
− z)]− αcosh[2p(z − 1

k
)]
}
,

(56)

where α ≡ eπkR, and recall that z = eσ/k. The first term
is just the result for massless fermion while the second
term corresponds to the correction due to the fermion
mass. Note that the mass correction term is proportional
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to c by virtue of the small mass expansion to the first
order.

The expression remains complicated. However, since
only the high wave number behavior concerns us, we iso-
late the dominating term by taking the large p limit again
and find

〈T00〉SD ∼ C
∫ ∞

dp
2cp3

z

[
e−2p(z− 1

k )−e−2p(αk−z)
]
. (57)

(The subscipt SD stands for the surface divergent term).

Since z ≡ eky

k ranges from 1
k to α = eπkR

k , we find the
near-brane behaviors to be

〈T00〉ren|y→0 ∝
ce3ky

y4
, (58)

〈T00〉ren|y→πR ∝
−ce3ky

(y − πR)4
. (59)

We observe that while the energy density diverges to mi-
nus infinity at the visible brane, that near the hidden
brane approaches to plus infinity. This surface divergence
agrees qualitatively with our numerical result shown in
Fig. 2. It should be noted that the divergence only disap-
pears in the limit of c = 0, the massless and conformally
symmetric case, which is consistent with our previous
result.

At the first glance, the asymmetry aspect of the surface
divergence seems curious. One might blame the asymme-
try to the nature of the RS geometry. However, this is
not the case; the fermionic Casimir energy density in the
flat case k = 0 also possesses such asymmetric surfact
divergence.

B. The k = 0 Case

In the k = 0 flat case with untwisted BC, where we set
the two branes to be located at y = a0 and y = a1, the
(17)∼(20) should be replaced by

η(y) = sinK(y − a0), (60)

ή(y) = sinK(y − a1), (61)

λ(y) = cosK(y − a0)− mΨ

K
sinK(y − a0), (62)

λ́(y) = cosK(y − a1)− mΨ

K
sinK(y − a1), (63)

where K ≡
√
m2 −m2

Ψ and m is the KK mass defined as
before. Putting the above functions into (52) and (53),
performing a Wick rotation upon m, we find a neat ex-
pression for the k = 0 case.

〈T00〉k=0 = C(k = 0)

∫ ∞
0

dp p4
(
T (0)+T (1)+T (2)

)
, (64)

where

T (0) ≡ coth[κ(a1 − a0)y], (65)

T (1) ≡ −mΨ

κ

sinh[κ(2y − a1 − a0)]

sinh[κ(a1 − a0)]
, (66)

T (2) ≡
(mΨ

κ

)2 sinh[κ(y − a0)]sinh[κ(y − a1)]

sinh[κ(a1 − a0)]
, (67)

with κ ≡
√
p2 +m2

Ψ, the Wick rotated variable of K.
The superscript (i) stands for the ith order term (if not
counting the κ dependence) of the fermion mass mΨ.
Taking the ultraviolet limit, we find that the latter two
terms contribute to the surface divergence feature:

〈T00〉k=0,SD ∼
∫ ∞

dp p4mΨ

κ

[
e−2κ(y−a0) − e−2κ(a1−y)

]
+

∫ ∞
dp

p4

2

(mΨ

κ

)2[
e−2κ(y−a0) + e−2κ(a1−y) − 1

]
.

(68)

The first line comes from T (1), the first order mass term,
and the second line comes from T (2). The minus one in
last parenthesis is independent of a1 and a0, thus could
be eliminated in the regularization. Compare the lead-
ing order term in (68) with (57), we note that the surface
divergence features are basically the same, so the asym-
metry aspect doesn’t seem to originate from the nature
of RS geometry, but a generic feature for a 5D fermionic
Casimir energy density. In addition, we note an inter-
esting fact in (68): the surface divergent term is anti-
symmetric with respect to the two branes for the first
order mass term, and symmetric for the second order
mass term.

In fact, the asymmetry aspect of the energy density
originates from the parity transformation y → −y. Un-
der the parity, the fermion field mass changes sign,

mΨ → −mΨ. (69)

As a result, all the terms proportional to the odd power
of mass will change sign, while those proportional to the
even power remain the same under the parity transfor-
mation. Thus the terms in the energy density will be
antisymmetric for odd power of mΨ, and symmetric for
even power ones. This is in accordance with our result
(68) and (57). In other words, the sign of the mass will
determine a specific direction in the fifth dimension and
thus break the exchange symmetry of the two branes. It
is also worth noting that such asymmetry aspect doesn’t
arise in the scalar field [6, 27], since the mass of the scalar
field maintains its sign under parity transformation.

With regard to the non-integrable divergence of the
stress-energy tensor, the problem was solved by Kennedy,
Critchley, and Dowker [29] for a scalar field in a static
spacetime, and further elaborated by Romeo and Sahar-
ian [30, 31], and put in a broader context by Fulling [32].
The resolution lies in the renormalization of the bare sur-
face gravitational action, which induces a delta function
and that cancels exactly with the surface divergence.
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Since the surface divergence should be renormalized
into the surface action terms, we do not expect the pow-
ers of surface divergence for scalar field and Dirac spinor
field to be the same, so that they could cancel each other
in a supersymmetric theory. In fact, while the stress-
energy tensor for a massive scalar field diverges cubically
near the surface (see (2.39a) in [27]), that for a massive
Dirac spinor field diverges quartically as in (58) and (59),
and that for a minimally-coupled massless scalar field
diverges as inverse fifth power of the distance (see [6]).
The differences could be understood by simple power-
counting analysis.

Generally speaking, a surface divergence term in flat
(4+1)-dimension takes the form

〈T00〉 ∼
∫
dp p4 Ω

pγ
u(py), (70)

with Ω the quantity, the mass for example, that brings
about the surface divergence, and γ the mass dimension
of it. Since the Casimir energy density has mass dimen-
sion 5 in (4+1)-dimension, u(py) is dimensionless. Con-
sider a minimally-coupled massless scalar field, the quan-
tity signaling the surface divergence is the dimensionless
coupling constant, which means that Ω is dimensionless
and γ = 0, so the integration yields a y−5 surface diver-
gence. On the other hand, Ω = ck = mΨ for a massive
Dirac spinor field, so γ = 1 and the surface divergence
is of inverse fourth power of the distance from the sur-
face. As for the massive scalar case, since the mass of a
scalar field generally appears in power of m2

φ, Ω = m2
φ

and γ = 2 for a massive scalar field, hence the surface
divergent term behaves as y−3.

VII. DISCUSSIONS AND CONCLUSIONS

In flat spacetime, the one-loop correction to the ef-
fective action, and therefore the Casimir energy, of the
massless Dirac spinor field can be obtained simply by
multiplying a suitable degeneracy factor to that of the
scalar field. In the case of curved spacetime, however,
the above statement is not valid in general. In this pa-
per, we provide a complete and straightforward deriva-
tion, using the Green function approach, of these degen-
eracy factors, which are −4 and 15/4 for the untwisted
and twisted BC, respectively, as expected. For a massive
fermion, the Casimir energy density is plotted as a func-
tion of the position y in Fig.2. The asymmetry aspect
of the surface divergence comes from the nature of the
parity transformation in the fifth dimension, which can
also be found in the flat case.

To cure the surface divergence, an approach similar to
that of [29] must be implemented where the surface terms
are included. Under proper renormalization of the sur-
face action term, the SUSY cancellation is not threatened
by the power difference of the surface divergence between
the scalar and the spinor fields. On the other hand, this
infinity might be originated from the unphysical nature

of the boundary condition. This may suggest the neces-
sity of including the finite thickness (of string length) of
the 3-brane in the treatment. In fact, the finite thickness
effect of a de Sitter brane has been discussed in [33–
35]. Similar situation happens in the perfect conductor
boundary condition for electromagnetic field [28, 36, 37],
in which a strictly zero thickness boundary gives rise to
a non-integrable divergence. For an imperfect conductor,
such as a dielectric material, or a conductor with finite
thickness, waves of sufficiently high frequency would pen-
etrate into the material so that the precise location of the
boundary would lose its meaning. Therefore, in reality,
the divergence does not appear since the expression of the
integrand is not universally applicable for all wave num-
bers. The finite thickness of the 3-brane might provide a
similar remedy to this divergence problem.

Last, but not the least, there is the issue of self-
consistency for the RS metric to retain its solution under
the quantum corrected Einstein equations. As Knapman
and Toms [6] commented in the case of the massless,
conformally-coupled scalar field, different components of
the stress energy-momentum tensor would in general in-
duce different corrections to k, if indeed an RS-type so-
lution can be found. It was argued [6] that such correc-
tion is exponentially small and therefore the RS solution
remains approximately self-consistent. We found, how-
ever, that in both cases of the massless Dirac spinor field
and the conformally-coupled scalar field, the VEV of the
stress-energy tensor takes the form (see (48) and (49)):

〈Tµν〉 = O(1)× e3k|y|−5kπRk5, (71)

〈Tyy〉 = O(1)× e5k|y|−5kπRk5, (72)

where O(1) is some quantities of the order unity. On the
other hand, the cosmological constant term in the Ein-
stein equation is ΛgMN ∼ −M3k2gMN [2], where gMN

is given by (4), so the ratio of stress-energy tensor to the
classical one is about

(k/M)3e5k(|y|−πR). (73)

If k 'M 'MPl, due to the requirement of no hierarchy
problem, then the stress-energy tensor is comparable to
the cosmological constant term in the region where y →
πR, even though it is small with respect to k5 in most
regions. As a result, while the quantum correction of
the metric is exponentially small at the UV-brane, that
at the visible brane is of the same order as that of the
classical Einstein equation with RS geometry. Thus we
cannot treat the VEV of the stress-energy tensor as a
perturbation to the semi-classical Einstein equation, and
the metric of the form (4) will not be a solution to the
quantum corrected Einstein equation, not even in the
approximate sense as argued in [6]. The self-consistency
of the RS model that includes bulk fields is therefore in
doubt.

However [38], if k is slightly smaller than M as com-
mented in [2], then the suppression (k/M)3 would be
rather significant even near the visible brane. Therefore,
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an approximate self-consistency of the RS-type metric
may still be satisfied.
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