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Abstract

Electroweak radiative corrections to observable quantities of Møller scattering of polarized par-
ticles are calculated. We emphasize the contribution induced by infrared divergent parts of cross
section. The covariant method is used to remove infrared divergences, so that our results do not
involve any unphysical parameters. When applied to the kinematics of SLAC E158 experiment, these
corrections reduce the parity violating asymmetry by about -6.5% at E = 48 GeV and y=0.5, and
kinematically weighted ”hard” bremsstrahlung effect for SLAC E158 is ∼ 1%.

1 Introduction

The SLAC experiment E158 [1] is aimed to measure the parity violating left-right polarization asymmetry
APV in Møller scattering with a precision not reached before: error of measurements δAPV /APV ≈ ±8%.
E158 will determine sin2(θW ) at momentum transfer Q2 ≈ 0.02 GeV2 with uncertainty Δ sin2(θW ) =
±0.0008 making it the most accurate determination of sin2(θW ) at low energies. To this aim the 45-48
GeV polarized electron beam scattering off unpolarized electrons in a hydrogen target is used.

To extract the reliable data with high precision, it is necessary to consider higher order electroweak
radiative corrections (EWRC). The EWRC to E158 experiment were estimated by Czarnecki and Mar-
ciano [2], Denner, Pozzorini [3] and Petriello [4]. We see at least two reasons for new calculation of the
EWRC: 1) the problem of radiative corrections is of crucial importance and it is necessary to have various
independent calculations, 2) in papers cited above a scheme of infrared singularity removal is used, so
the result contains unphysical parameters.

In this paper a calculation of the lowest order EWRC is carried out using the on-shell renormalization
scheme, Feynman gauge and the covariant approach in order to cancel explicitly the infrared divergences.
We carry out the calculation at E158 energies (and for the situation when only one electron is detected),
emphasizing on a contribution induced by infrared divergent parts of cross section and discuss the nu-
merical estimation of corrections.

2 Born cross section of e−e− → e−e−

The Born cross section of Møller scattering can be written as:

dσ0

dy
=

2πα2

s

∑
i,j=γ,Z

[λij
−(u2DitDjt + t2DiuDju) + λij

+s2(Dit + Diu)(Djt + Dju)], (1)

where the four-momenta of the initial and final electrons k1, p1 and k2, p2 (see Fig.1) can be combined
to form the Mandelstam invariants

s = (k1 + p1)2, t = (k1 − k2)2, u = (k2 − p1)2. (2)

The kinematic variable y is defined as

y = − t

s
≈ 1 − cosΘ

2
E′

E
, (3)

where Θ is the center of mass scattering angle of the detected electron with momentum k2. E(E′) is the
energy of the initial (detected) electron, respectively. Whenever possible, we ignore the electron mass m
(this cannot be done in the collinear singularity regions discussed below).
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The matrix elements in the Born cross section (1) are expressed through the photon and Z0 propa-
gators

Dik =
1

k − m2
i

(i = γ, Z). (4)

When squaring matrix elements, we used the combinations of coupling constants and the polarizations
of the beam and target electrons:

λij
± = λ1

ij
Bλ1

ij
T ± λ2

ij
Bλ2

ij
T , (5)

λ1
ij
B(T ) = λij

V − pB(T )λ
ij
A , λ2

ij
B(T ) = λij

A − pB(T )λ
ij
V , (6)

λij
V = vivj + aiaj , λij

A = viaj + aivj , (7)

where
vγ = 1, aγ = 0, vZ = (I3

e + 2s2
W )/(2sW cW ), aZ = I3

e /(2sW cW ), (8)

I3
e = −1/2 and sW (cW ) are sine (cosine) of the Weinberg angle.

3 One-loop electroweak radiative corrections

We apply the on-shell renormalization scheme of electroweak standard model to our calculation of the
one-loop electroweak radiative corrections. The building blocks needed for explicit calculations according
to this scheme have been worked out in the paper of Böhm et al. [5]. We use the results for gauge boson
self-energies and vertex functions taken from [5].

3.1 Virtual corrections (V -contribution)

The virtual contributions to Møller scattering can be classified into three categories (see Fig.2): boson self-
energies, vertex functions and boxes. In renormalization ”on-mass shell” scheme there is no contribution
from the self-energy of electrons. The total virtual cross section is the following sum:

dσV

dy
=

dσS

dy
+

dσV er

dy
+

dσB

dy
. (9)

The self-energies of γ and Z-boson (including the photon vacuum polarization associated with light
quarks) have been studied extensively (see [2, 3, 4] and references therein). Calculating the lepton
vertices corrections we used the form factors δF je

V,A from [5] taken at k2 = t, u. Substituting the coupling
constants for the vertex form-factors (e.g. vγ → δF γe

V ) in the expressions for the functions λ±, we get
the vertex part of the cross section

dσV er

dy
=

4πα2

s
Re

∑
i,j=γ,Z

[(λF ijij
− + λijF ij

− )(u2DitDjt + t2DiuDju) +

+(λF ijij
+ + λijF ij

+ )s2(Dit + Diu)(Djt + Dju)]. (10)

The box diagrams with at least one photon (e.g. forth and fifth diagrams in Fig.2) also contain infrared
divergences. The diagrams with two Z or two W bosons are infrared-convergent. The IR-finite part of
cross section looks like

dσB
fin

dy
= −2α3

s

4∑
(ij)=1

∑
k=γ,Z

Bk
(ij) +

(
t ↔ u

)
, (11)

where double subscript (ij) runs (ij) = {1, 2, 3, 4} = {γγ, γZ, ZZ, WW}.
The terms B have the form

Bk
(γγ) = Dktλγk

− δ1
(γγ) + (Dkt + Dku)λγk

+ δ2
(γγ), Bk

(γZ) = DktλZk
− δ1

(γZ) + (Dkt + Dku)λZk
+ δ2

(γZ),

Bk
(ZZ) = DktλBk

− δ1
(ZZ) + (Dkt + Dku)λBk

+ δ2
(ZZ),

Bk
(WW ) = DktλCk

− δ1
(WW ) + (Dkt + Dku)λCk

+ δ2
(WW ). (12)



The coupling constants for two heavy bosons look like

vB = (vZ)
2

+ (aZ)
2
, aB = 2vZaZ , vC = aC = 1/(4s2

W ). (13)

The expressions δ1,2
(ij) have the form (here we used the low energy approximation: s, |t|, |u| � m2

Z):

δ1
(γγ) = L2

s(s
2 + u2)/(2t) − Lsu − (L2

x + π2)u2/t,

δ2
(γγ) = L2

ss
2/t + Lxs − (L2

x + π2)(s2 + u2)/(2t),

δ1
(γZ) = 8u2(4IγZ − ÎγZ), δ2

(γZ) = 8s2(IγZ − 4ÎγZ),

δ1
(ZZ) = 3u2/(2m2

Z), δ2
(ZZ) = −3s2/(2m2

Z),

δ1
(WW ) = 2u2/m2

W , δ2
(WW ) = s2/(2m2

W ); (14)

logarithms from pure electromagnetic boxes are Ls = ln(s/|t|), Lx = ln(u/t). The scalar integrals in
γZ-part are

IγZ =
1

2
√−u

∫ 1

0

zdz

∫ 1

0

dx
1√
β

ln |xz
√−u −√

β

xz
√−u +

√
β
|, ÎγZ = IγZ |u→−s,

β = −ux2z2 + 4(1 − z)(tz(x − 1) + m2
Z).

3.2 Extraction of infrared singularity from the one-loop virtual cross section

Thus, let us present the total virtual one-loop cross section as the sum of infrared (IR) divergent and
IR-finite parts

dσV

dy
=

dσV
IR

dy
+

dσV

dy
(λ2 → s), (15)

where λ is infinitesimal photon mass.
For IR-part we find the expression which is proportional to Born cross section

dσV
IR

dy
= −2α

π
log

s

λ2
(log

tu

m2s
− 1)

dσ0

dy
. (16)

3.3 The photon bremsstrahlung e−e− → e−e−γ

To complete the lowest order radiative corrections (and to get an infrared finite result) one needs to
include the real bremsstrahlung diagrams (see Fig.3) (R-contribution).

The differential cross section for the process with the emission of one real photon reads

dσR

dy
= − α3

4sπ

vmax∫

0

dv

∫
d3k

k0
δ[(k1 + p1 − k2 − k)2 − m2]

4∑
j,i=1

MR
ij (−1)i+j . (17)

For the calculation of squared matrix elements MR
ij , where i, j = (1, 2, 3, 4) = (γt, γu, Zt, Zu), we used

the standard Feynman rules.
As the kinematic variables of the bremsstrahlung process we use in this case

z = 2kk2, z1 = 2kk1 = z − t1 + t, t1 = (p2 − p1)2,
v1 = 2kp1 = s + u + t1 − 4m2, v = 2kp2 = s + u + t − 4m2, (18)

where k is a 4-momentum of the radiated photon.



The integration region for variable v is given by the Chew–Low diagram [6] (see Fig.4). The upper
bound of v at s ≈ 0.05 GeV2 is denoted by solid line. We can observe the asymptotic behavior of the
function in the regions around v = s + t and t = 0. As the upper border v = vmax corresponds to point
u = 0 (collinear singularity), we must cut the region of integration up to the value, which corresponds to
experimental set-up of E158 – the energy of detected particle in the lab. system EL ≥ 13 GeV. In this
case umax = 2m(m − EL), and vmax = s + t + umax − 4m2 (dotted line).

According to the covariant method of Bardin and Shumeiko [7] we can present the cross section of
bremsstrahlung by splitting it into a soft infrared-divergent part and IR–finite contribution

dσR

dy
=

dσR
IR

dy
+

dσR
F

dy
. (19)

The infrared divergent part (the first term) of the expression (19) after integrations over k and v and
λ-parametrization reads

dσR
IR

dy
=

2α

π
(ln

(vmax)2

4m2λ2
(ln

tu

m2s
− 1) + δS + δH

1 )
dσ0

dy
. (20)

The corrections δS and δH
1 can be found in [7]:

δS
1 = ln

s(s + t)
m4

− 1
2
lm ln

s2(s + t)2

−tm6
− 1

2
l2r − 2lrlm + lm − l2m − π3

3
+ 1, (21)

δH
1 =

vmax∫

0

dv
(2

v

[
ln(1 − v

t
) − ln(1 − v

s
) + ln(1 − v

s + t
) − 1

2
ln(1 +

v

m2
)
]

+

+
2

s + t − v
ln

s + t − v

m2
− 1

s − v
ln

(s − v)2

m2τ
− 1

v − t
ln

(v − t)2

m2τ
− 1

τ

)
,

lm = ln
−t

m2
, lr = ln

s + t

s
, τ = v + m2. (22)

The second term of (19) is the IR-finite part of bremsstrahlung. To calculate this part it is necessary
to integrate analytically over k-4-momenta of photon and then numerically over v. The integral over
whole phase space of the radiated photon can be presented in the form

I[A] =
1
π

∫
d3k

k0
δ[(k1 + p1 − k2 − k)2 − m2][A] =

1
π

tmax
1∫

tmin
1

dt1

zmax∫

zmin

dz√
Rz

[A], (23)

where Rz is proportional to the Gram determinant. The limits of the double integration zmin/max and
t
min/max
1 are the roots of equations Rz = 0 and zmin = zmax, respectively.

During the calculation of ”hard” part of squared matrix elements MR
ij we calculated more then 100

scalar integrals. Exact results for this part are rather cumbersome and we do not present them here. The
total list of expression MR

ij as a set of output REDUCE files and scalar integrals as subroutine-functions
can be found in text of FORTRAN code RCORR2A1 (”Radiative CORRections TO asymmetry A1”).

3.4 The result of infrared singularity cancellation

Adding the IR-parts of V - and R- contributions (formulas (16) and (20))

dσC

dy
=

dσV
IR

dy
+

dσR
IR

dy
=

α

π
(4 ln

vmax

m
√

s
(ln

tu

m2s
− 1) + δS

1 + δH
1 )

dσ0

dy
, (24)

we obtain the final finite expression which is free of infrared divergences and unphysical parameters.



4 Numerical estimates

Numerical calculations of the electroweak radiative corrections to the asymmetry APV in Møller scattering
at the energy of longitudinally polarized electron beam of SLAC experiment E158 were performed using
the FORTRAN code RCORR2A1 [8]. The structure of code allows us to estimate the corrections for
arbitrary experimental conditions and successfully apply them to the E158 Monte Carlo simulation [9].

The asymmetry corresponds to the usual expression

APV =
σLL + σLR − σRL − σRR

σLL + σLR + σRL + σRR
, σ ≡ dσ/dy. (25)

So we are interested in the following basic contributions: 1) infrared-finite parts: self-energy of gauge
bosons (for this part authors of [2, 3, 4] have found the correction to the asymmetry of ∼ −50%),
heavy vertices (give rather small contribution to asymmetry), heavy boxes (ZZ and WW) (give +3%
to asymmetry); 2) infrared-divergent parts (IR parts): the rest part of virtual 1-loop contributions,
which consist of electron vertices with photon , γ-γ– and γ-Z–boxes, infrared singularity cancellation
(this log-term is proportional to Born cross section and does not change the asymmetry), and ”hard”
bremsstrahlung.

The correction to the asymmetry is defined as follows

δAPV =
ARC

PV − A0
PV

A0
PV

, (26)

where A0
PV is the Born asymmetry, and ARC

PV is the asymmetry taking into consideration the electroweak
radiative corrections.

The influence of the electroweak radiative corrections to the asymmetry is shown in Fig.5. One can
observe that for E = 48 GeV at y = 0.5 the correction δAPV amounts to ∼ −6.5%, it is minimal at
moderate y, and this minimum shifts to small y with the increasing energy. At last

−6.5% = +1% (”hard” brems.) + (−7.5%) (the rest part).

Kinematically weighted ”hard” initial and final state radiation effect for observable APV under condition
of E158 is

Fb = 1.01 ± 0.01

(notation of [9]), it is our contribution to radiative correction procedure for SLAC E158.
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Figure 1: Neutral current t-channel (1) and u-channel (2) amplitudes leading to the asymmetry APV at
tree level.

Figure 2: The virtual t-channel one-loop diagrams for e−e− → e−e− process. The contributions to the
self-energies and vertex corrections are symbolized by the empty loops.

Figure 3: Bremsstrahlung t-channel diagrams for e−e− → e−e−γ process.
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Figure 4: Chew-Low diagram at s ≈ 0.05 GeV 2. Mass of electron is real (solid line) and had been raised
in 20 times for illustration (dashed line). Dotted line corresponds to vmax for experimental conditions of
E158.
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Figure 5: Corrections to polarization asymmetry APV as a functions of y at different energies which are
denoted by numbers on curves.




