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It is conventional to choose a typical momentum transfer of the process as the renormalization
scale and take an arbitrary range to estimate the uncertainty in the QCD prediction. However,
predictions using this procedure depend on the renormalization scheme, leave a non-convergent
renormalon perturbative series, and moreover, one obtains incorrect results when applied to QED
processes. In contrast, if one fixes the renormalization scale using the Principle of Maximum
Conformality (PMC), all non-conformal {βi}-terms in the perturbative expansion series are summed
into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction
at any finite order. The PMC scale µPMC

R and the resulting finite-order PMC prediction are both
to high accuracy independent of the choice of initial renormalization scale µinit

R , consistent with
renormalization group invariance. As an application, we apply the PMC procedure to obtain NNLO
predictions for the tt̄-pair production at the Tevatron and LHC colliders. The PMC prediction for
the total cross-section σtt̄ agrees well with the present Tevatron and LHC data. We also verify that
the initial scale-independence of the PMC prediction is satisfied to high accuracy at the NNLO
level: the total cross-section remains almost unchanged even when taking very disparate initial
scales µinit

R equal to mt, 20mt,
√
s. Moreover, after PMC scale-setting, we obtain Att̄

FB " 12.5%,
App̄

FB " 8.28% and Att̄
FB(Mtt̄ > 450 GeV) " 35.0%. These predictions have a 1 σ-deviation from

the present CDF and D0 measurements; the large discrepancy of the top-quark forward-backward
asymmetry between the Standard Model estimate and the data are thus greatly reduced.
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Physical predictions in Quantum Chromodynamics
(QCD) are in principle invariant under any choice of
renormalization scale and renormalization scheme. It is
common practice to simply guess a renormalization scale
µR = Q, Q being a typical momentum transfer of the
process, and then vary it over the range [Q/2, 2Q]. How-
ever, this arbitrary procedure leads to scheme-dependent
predictions at any finite order in perturbation theory. In
fact, a principal ambiguity in perturbative QCD calcula-
tions lies in the choice of µR. It has been considered as
a main systematic error in QCD perturbative analyses.

The Brodsky-Lepage-Mackenzie method (BLM) [1]
and the Principle of Maximum Conformality (PMC) [2, 3]
provide a solution to this problem. The PMC provides
the principle underlying BLM scale-setting; the BLM is
equivalent to PMC through the PMC - BLM correspon-
dence principle [3], so we shall treat them on equal foot-
ing. When one applies the PMC, all non-conformal {βi}-
terms in the perturbative expansion are summed into the
running coupling so that the remaining terms in the per-
turbative series are identical to that of a conformal the-
ory, i.e., the corresponding theory with {βi} ≡ {0}.
The PMC coefficients and PMC scales may be dif-

ferent under different renormalization schemes, however
their combined result will be the same, since the scheme-
dependent PMC scales for different schemes are related
by commensurate scale relations [4]. Thus, QCD predic-
tions using PMC are independent of the renormalization
scheme. After PMC scale-setting, the divergent “renor-

malon” series with n!-growth disappear, so that a more
convergent perturbative series is obtained.

The PMC method satisfies all self-consistency con-
ditions, including the existence and uniqueness of the
scale, reflexivity, symmetry and transitivity [5]. In the
Abelian limit NC → 0 at fixed α = CFαs with CF =
(N2

c − 1)/2Nc, it agrees with the Gell Mann-Low pro-
cedure for setting the scale in QED [6, 7]. Thus as in
QED, the renormalization scale can be unambiguously
set at each finite order by the PMC. The PMC scales
and coefficients can be set order-by-order. A systematic,
scheme-independent procedure for setting PMC scales up
to next-to-next-to-leading order (NNLO) has been pre-
sented in Ref. [3].

The “flow chart” which illustrates the PMC proce-
dure is shown in Fig.(1). Formally, one needs to choose
an initial renormalization scale µinit

R for PMC. However,
the final result when summing all {βi}-terms to all or-
ders will be independent of µinit

R ; i.e. for any observ-
able O, ∂O

(
µPMC
R

)
/∂µinit

r ≡ 0, where µPMC
R stands for

the PMC scale. This is the invariance principle used to
derive renormalization group results such as the Callan-
Symanzik equations [8]. The PMC scales in higher or-
ders take the form of a perturbative series in αs so as
to properly absorb all {βi}− dependent terms associated
with renormalization into the αs-running coupling [3, 4].
At fixed-order, there is some residual initial-scale depen-
dence because of the unknown-higher-order {βi}-terms.
However, such residual renormalization scale-uncertainty
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Shift scale of αs to µPMC
R to eliminate {βR

i } − terms

Conformal Series
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Identify {βR
i } − terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

FIG. 1. A “flow chart” which illustrates the PMC procedure.

will be greatly suppressed since those higher-order {βi}-
terms will be absorbed into the PMC scales’ higher-order
αs-terms.
As an important application of the PMC, we shall

predict the tt̄-pair hadroproduction cross-section σtt̄ up
to NNLO. It has been measured at the Tevatron and
LHC with high precision [9–12]. Theoretically, σtt̄ has
been calculated up to NLO within the MS-scheme [13].
Large logarithmic corrections associated with the soft
gluon emission have been investigated and resummed up
to next-to-next-to-leading-logarithmic corrections [14].
Even though complete NNLO fixed-order results are not
available, parts of the fixed-order NNLO results have
been derived through resummation [15]. These results
provide the foundation for estimating the NNLO results.
The hadronic cross-section for top-quark pair produc-

tion can be written as:

σtt̄ =
∑

i,j

S∫

4m2
t

ds Lij(s, S, µf )σ̂ij(s, αs(µR), µR, µf ), (1)

where the parton luminosity

Lij =
1

S

S∫

s

dŝ

ŝ
fi/H1

(x1, µf ) fj/H2
(x2, µf )

with x1 = ŝ/S and x2 = s/ŝ. Here S denotes the
hadronic center-of-mass energy squared and s = x1x2S
is the subprocess center-of-mass energy squared. The
parameters µR and µf denote the renormalization and
factorization scales, and the functions fi/H1,2

(xα, µf )
(α = 1, 2) are the parton distribution functions (PDFs)
describing the probability to find a parton of type i with
a momentum fraction between xα and xα + dxα in the
hadron H1,2. The top-quark mass mt is the mass renor-
malized in the on-shell scheme.
The partonic subprocess cross-sections σ̂ij can be de-

composed in terms of the dimensionless scaling-functions

fm
ij , where (ij) = {(qq̄), (gg), (gq), (gq̄)} stands for the
four production channels and m = 0, 1, 2 stands for LO,
NLO and NNLO functions respectively. The analytical
expressions for f0,1,2

ij (ρ,Q) which contain the explicit fac-
torization and renormalization scale dependence can be
directly read from the HATHOR program [16]. Up to
NNLO, σ̂ij takes the following form

σ̂ij =
1

m2
t

2∑

m=0

fm
ij (ρ,Q)a2+m

s (Q) , (2)

where ρ = 4m2
t/s and as(Q) = αs(Q)/π. There is un-

certainty in setting the factorization scale µf which ap-
pears even in conformal theory, and its determination
is a completely separate issue from the renormalization
scale-setting. To keep our attention on the renormaliza-
tion scale, we implicitly set µf ≡ mt. For the initial
value of µR = µinit

R , we take µinit
R = Q, where Q stands

for the typical momentum transfer of the process. For
example, Q can be taken as mt, 2mt,

√
s, etc. As the

default choice, we take Q = mt.
According to the PMC, we need to identify the

n(1,2)
f -dependent terms associated with renormalization.

Coulomb-type corrections are enhanced by factors of π
and the PMC scales can be relatively soft for heavy-
quark velocity v =

√
1− 4m2

t/s → 0. Thus the terms
which are proportional to (π/v) or (π/v)2 have a sepa-
rate PMC scale and will thus be treated separately [17].
More explicitly, the NLO and NNLO scaling-functions
can be written as

f1
ij(ρ,Q) = [A1ij +B1ijnf ] +D1ij

(π

v

)
, (3)

f2
ij(ρ,Q) =

[
A2ij +B2ijnf + C2ijn

2
f

]
+

[D2ij + E2ijnf ]
(π

v

)
+ F2ij

(π

v

)2
. (4)

The PMC scales can be set order-by-order and the final
result is

m2
t σ̂ij = A0ija

2
s(Q

∗
1) +

[
Ã1ij

]
a3s(Q

∗∗
1 ) +

[
˜̃A2ij

]
a4s(Q

∗∗
1 )

+
(π

v

)
D1ij

[
2κ

1− exp(−2κ)

]
a3s(Q

∗
2), (5)

where κ = D̃2ij

D1ij
as(Q∗

2) +
F2ij

D1ij

(
π
v

)
as(Q∗

2). Here Q∗
1 and

Q∗∗
1 are the LO and NLO PMC scales for the non-

Coulomb part, and Q∗
2 is the LO PMC scale for the

Coulomb part. The PMC coefficients and PMC scales,
together with their detailed derivations, can be found in
Ref. [18].

When we do numerical calculations, the input param-
eters are chosen with the following values: for the top-
quark mass, we adopt the PDG value [19]; i.e. mt =
172.9 ± 1.1 GeV. For the PDFs, we adopt the CTEQ
CT10 set with αs(mZ) = 0.118 [20]. Our results for
the tt̄ production cross-sections are presented in Table I
where the total cross-sections which are derived by using
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PMC scale-setting Conventional scale-setting

Q = mt/4 Q = mt Q = 10mt Q = 20mt Q =
√
s µR ≡ mt/2 µR ≡ mt µR ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.625(5) 7.624(6) 7.628(5) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.3(5) 942.0(8) 941.4(8) 942.2(8) 923.8(7) 907.4(4) 870.9(6)

TABLE I. Dependence of the tt̄ production cross-sections (in unit: pb) at the Tevatron and LHC on the initial renormalization
scale µinit

R = Q. Here mt = 172.9 GeV. The number in parenthesis shows the Monte Carlo uncertainty in the last digit.

the PMC scale-setting and the conventional scale-setting are presented.

σ σ

FIG. 2. Total cross-section σtt̄ for the top-quark pair produc-
tion versus top-quark mass.

It is found that after PMC scale-setting, the result-
ing total cross-sections for five disparate initial scales are
equal to each other within part per mill accuracy 1. For
comparison, we also present the results with conventional
scale-setting in Table I. For µR ∈ [mt/2, 2mt], we ob-

tain the usual renormalization scale-uncertainty
(
+3%
−4%

)
.

This shows that the renormalization scale uncertainty is
greatly suppressed and essentially eliminated using PMC
even at the NNLO level. This is consistent with renor-
malization group invariance: there should be no depen-
dence of the prediction for a physical observable on the
choice of the initial renormalization scale.

The PMC predictions for total cross-section σtt̄ are
sensitive to the top-quark mass. We present σtt̄ as a
function of mt in Fig.(2). After PMC scale-setting, the
value of σtt̄ becomes very close to the central values of the
experimental data [9–12]. By varying mt = 172.9 ± 1.1
GeV [19], we predict

σTevatron,1.96TeV = 7.626+0.265
−0.257 pb (6)

σLHC,7TeV = 171.8+5.8
−5.6 pb (7)

σLHC,14TeV = 941.3+28.4
−26.5 pb (8)

We have recently shown that the large discrepancy be-
tween the Standard Model estimates using conventional
scale-setting and the CDF and D0 data [21, 22] for the
tt̄-pair forward-backward asymmetry is mainly caused
by improper setting of renormalization scale [23]. Af-
ter PMC scale-setting, it is found that the NLO PMC
scale has a dip behavior for the dominant asymmet-
ric (qq̄)-channel; the importance of this channel to the
asymmetry is thus increased. Then, after PMC scale-
setting, the tt̄-pair forward-backward asymmetries Att̄

FB

1 There is some small residual initial-scale dependence in the PMC
scales because of unknown-higher-order {βi}-terms.

and App̄
FB at the Tevatron are increased by 42% in com-

parison with the previous estimates obtained by using
conventional scale-setting. We obtain Att̄

FB & 12.5%,
App̄

FB & 8.28% and Att̄
FB(Mtt̄ > 450 GeV) & 35.0% [23].

These predictions have a 1σ-deviation from the present
CDF and D0 measurements; the large discrepancy of
the top-quark forward-backward asymmetry between the
Standard Model estimate and the data are thus greatly
reduced. This large improvement is explicitly shown in
Fig.(3), where Hollik and Pagani’s results, which are de-
rived under conventional scale-setting [24], are presented
for comparison.

Summary: By using PMC scale-setting, one obtains
a unique, scale-fixed, scheme-independent prediction at
any finite order in a systematic way. Since the renormal-
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FIG. 3. Comparison of the PMC prediction with the CDF data [21] for the tt̄-pair forward-backward asymmetry for the whole
phase-space. The left diagram is for Att̄

FB in the tt̄-rest frame, the middle diagram is for App̄
FB in the laboratory frame, and

the right diagram is for Att̄
FB(Mtt̄ > 450 GeV). The Hollik and Pagani’s results (HP) [24] using conventional scale-setting are

presented for a comparison. The result for D0 data [22] shows a similar behavior.

ization scale and scheme ambiguities are removed, this
procedure improves the precision of tests of the Stan-
dard Model and enhances the sensitivity to new phe-
nomena. The PMC can be applied to a wide-variety of
perturbatively-calculable collider and other processes.
We have applied PMC to study the tt̄ hadroproduc-

tion cross-section σtt̄ up to NNLO. The resulting LO-
and NLO- terms are conformally invariant and scheme-
independent, and the non-conformal contributions in the
NNLO-terms are greatly suppressed. The PMC predic-
tion for σtt̄ agrees well with the present Tevatron and
LHC data. We also verify that the initial renormalization
scale-independence of the PMC prediction is satisfied to
high accuracy at the NNLO: the total cross-section re-
mains almost unchanged even when taking very disparate
initial scales µinit

R equal to mt, 10mt, 20mt,
√
s. The

optimized PMC scales substantially eliminates the large
discrepancy between the Standard Model estimation and
the Tevatron data for the tt̄-pair forward-backward asym-
metry.
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