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1.1.1 Introduction 

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic 
electron bunches, known since the last century, has become increasingly important with 
the development of high peak current free electron lasers and shorter bunch lengths in 
storage rings. Coherent radiation can be described as a low frequency part of the 
familiar synchrotron radiation in bending magnets. As this part is independent of the 
electron energy, the fields of different electrons of a short bunch can be in phase and the 
total power of the radiation will be quadratic with the number of electrons. Naturally the 
frequency spectrum of the longitudinal electron distribution in a bunch is of the same 
importance as the overall electron bunch length. The interest in the utilization of high 
power radiation from the terahertz and far infrared region in the field of chemical, 
physical and biological processes has led synchrotron radiation facilities to pay more 
attention to the production of coherent radiation. Several laboratories have proposed the 
construction of a facility wholly dedicated to terahertz production using the coherent 
radiation in bending magnets initiated by the longitudinal instabilities in the ring. 
Existing synchrotron radiation facilities also consider such a possibility among their 
future plans.  

There is a beautiful introduction to CSR in the “ICFA Beam Dynamics Newsletter” 
N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the 
theory [1-4] and what new effects, we can get from the precise simulations of the 
coherent radiation using numerical solutions of Maxwell’s equations [5]. In particular, 
transverse variation of the particle energy loss in a bunch, discovered in these 
simulations, explains the slice emittance growth in bending magnets of the bunch 
compressors and transverse de-coherence in undulators. CSR may play same the role as 
the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit 
the minimum achievable emittance in the synchrotron light sources for short bunches. 

1.1.2 Classical Synchrotron Radiation 

It is interesting to note that exactly 100 years ago G. A. Schott [1] published a 
formula for an intensity of radiation of a relativistic charged particle, which makes an 
instantaneously circular motion. The power radiated into the n th harmonic is described 
by  
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where sind d dο θ θ ϕ= , 0 02 fω π= is a revolution frequency, v  is a particle velocity, c
is speed of light, e is an electron charge, nJ is a Bessel function of n-th order. 
Integration by solid angle gives [2] 
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Finally for a continuous spectrum 
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is a critical harmonic frequency, E is the particle energy, 

m is the particle mass, ( )5 / 3K η is a modified Bessel function. Plot of the function ( )F ξ  
is shown in Fig. 1. The function reaches a maximum value at 0.29 (approximately one 
third of the critical frequency).  Approximate formulas [2] for small and large values of 
ξ are: 
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 These approximate functions are also shown in Fig. 1. 
 

 
Figure 1: Function F(x) and its approximations 

We can integrate the power loss spectrum over all frequencies to get the total power 
loss [3] 
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We had the opportunity to observe experimentally this strong dependence of the energy 
during the SLAC B-factory operations. During the 2008 energy scan to study 2S, 3S 
and above 4S resonance, we need to change the energy of HER (High Energy Ring) 
from 8 GeV to 10 GeV. Simultaneously we measured the energy loss due to 
synchrotron radiation (incoherent radiation, linear with the beam current) and coherent 
radiation (quadratic with the beam current) of wake fields [6]. A plot of an energy loss 
per turn for incoherent radiation is shown at Fig. 2. A fit of the experimental data points 
with a power function gave an exact fourth order dependence. 

 

Figure 2: Measured synchrotron energy loss as a function of a beam energy. 
 

1.1.2.1 Coherent Radiation 

The presented formula (6) describes an energy loss of a single particle. To calculate 
the total loss of a bunch of particles, we need to know [3] the Fourier spectrum ( )j ω of 
the bunch current ( )j t  
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A single particle current is a δ-function in the time domain, so it has a constant 
value in the frequency domain ( ) 1j ω = . If we have many particles we may assume that 
the total current is a sum of single particles 
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In accelerators the number of particles in a bunch is very high 8 1210 10N −∼ , so we can 
easily change a sum to an integral. If we have a function ( )ρ τ , which describes the 
particle distribution in a bunch, we can normalize this function to unity: 
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Now we change sums in the right side of (7) by integrals using this function 
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In this form (11) one can easily recognize a formula for the calculation of an eigenmode 
loss factor of a cavity, excited by a bunch passing through this cavity [7]. If we have a 
bunch with a Gaussian distribution and r.m.s. bunch length σ  
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then after integrating by parts in (8) we get 
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The coherent part of the radiation can become noticeable in some region of a spectrum 
if 
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Figure 3: Power spectrum of the synchrotron radiation emitted by a 0.2 mm bunch (red line) 
and by a 1.8 mm bunch (green line) including incoherent radiation of a single particle (blue 
line). 

For example the coherent part of a spectrum “touches” 1 THz when a bunch has 4·108 
particles and its bunch length is of 0.2 mm. A critical frequency is usually much higher 
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than a bunch frequency, for example for a particle energy is 1.3 GeV and revolution 

frequency is 2.71 MHz then critical frequency 46.7 10  THz2
cω
π = ⋅ . A plot of the 

spectrum power of the synchrotron radiation for a bunch with presented parameters is 
shown in Fig. 3. The coherent spectrum power level is very high; however the total 

power can be small. Because the main spectrum is in the region of c
cω ω
σ

≈  we can 

use approximation (4)  
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to estimate the total coherent power 
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To apply this formula (16) or formula (3) to an accelerator bending magnet [8] we 
simply hide a revolution frequency by making a change 0

c
Rω = , and then the coherent 

power takes the form 
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This formula is very popular in the CSR study and was revised several times in modern 
literature [9-12]. The numerical coefficient is sometimes slightly different. 

In real life bunches of electrons circulate inside a vacuum chamber of an 
accelerator. Usually a vacuum chamber has metal walls. This metal chamber can 
strongly effect the low frequency part of the radiation spectrum of a bunch. To get the 
analytical formulas to estimate this effect J. Swinger used the model of two parallel 
metal infinite plates as an approximation of a beam chamber. According to [4] the 
power emitted into n th harmonic is completely different: 
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Where h is distance between the plates, and the argument of all the Hankel functions 

is 

( )
2 2

2 2
,

0
n j

c jn j n
h

πξ ϑω
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

                                         (18) 

Only modes for which, ,n jξ  is real, or 0 hj n
c
ωϑ ϑ

π
< =  can contribute to the power. 

Finally a function || ( , )f n ϑ  
4 2 2

2 2
|| 1 2

3 31,3,...

3( , )
4 3 3

j n

j

n j j j j jf n K K
n n n

ϑ

ϑ
ϑ ϑ ϑ ϑ ϑ ϑ

<

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

                    (19) 
describes the coherent synchrotron radiation of a bunch between two metal plates [4] 
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Figure 4: Comparison of the radiation power spectrum in free space and between two metal 
plates for the case of R=17.6 m, h=32 mm. 

We have changed the numerical coefficient from 4/3 to 3/4 in formula (19) to match the 
radiation between two plates (20) and radiation in free space (15) at the harmonic 
numbers above the bunch frequency. The comparison of (20) and (15) is shown in Fig. 
4. It can be seen that metal plates can not only cut the low frequency spectrum, but also 
increase the power at some frequencies. A fully electromagnetic simulation (which will 
be described in the next chapter) of the real chamber geometry shows a different result 
(Fig. 5). 

 

Figure 5: Comparison of the radiation of a 1.8 mm and 0.5 mm bunches between two metal 
plates (analytic solution, blue line) and the result of electromagnetic simulations of radiation in 
the taped beam chamber (red line). 

Under the assumption that a bunch length bl  is comparable with the distance between 
plates, J. Swinger [4] got the expression for the total coherent power emitted by a bunch 
with a uniform charge distribution 
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1.1.3 Electromagnetic CSR simulation  

We may suggest that a direct solution of Maxwell’s equations together with 
Newton’s equations can describe the detailed structure of the CSR fields, the fields 
generated by an ultra-relativistic bunch of charged particles moving in a metal vacuum 
chamber inside a bending magnet. Electromagnetic components E, B must satisfy the 
equations 
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A charge density and a charge current must satisfy a continuity equation  
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A Newton force includes electromagnetic components and a bending magnetic field 
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Modeling ultrafast phenomena requires a special algorithm for solving the 
electromagnetic equations. This algorithm must be free of frequency dispersion which 
means that all propagating waves must have their natural phase velocity, completely 
independent of the simulation parameters like a mesh size or a time step. There are a lot 
of finite-difference schemes, which numerically solve Maxwell’s equations since the 
first one was published in 1966 [13]. Most of them are so-called ‘‘explicit’’ schemes, 
which means that the value of the field at the new time step is calculated only by the 
field values from the previous time step. Stability conditions for these schemes do not 
allow a time step to be greater than or equal to a space (mesh) step. This limitation 
brings an additional troublesome effect for wavelengths that are comparable to a mesh 
step. We state that this effect works like a frequency dispersion media, which is 
‘‘hidden’’ in the finite-difference equation. The main strategy of our method is to use an 
implicit algorithm which does not have stability issues and employs a more efficient use 
of finite element mesh techniques. This method can produce self-consistent stable 
solutions for very short bunches. The scheme could have dispersion in the transverse 
direction. However, electromagnetic fields, which interact with a beam, propagate in the 
vacuum chamber at small angles, so the effect of dispersion in the transverse direction 
is less important than dispersion in the longitudinal direction. We also use a Fourier 
expansion in the vertical direction. To decrease the amount of needed memory we use a 
traveling mesh. This is very important for bunch compressor simulations at higher beam 
energies where the bunch length is a micron but the distance between bends is tens of 
meters. The mesh moves with the speed of light and we can definitely assume that the 
electromagnetic field in front of the bunch is zero. Because the time delay due to the 
bending magnet in the chicane is very small, we do not need more space for the bunch. 
A traveling mesh does not change the accuracy of the scheme or any conditions of 
stability. To simulate the real shape of a non-monochromatic bunch moving, for 
example, in a bending magnet we will use an ensemble of particles. We will track each 
particle and average the current (particle velocities) over the mesh. The charge density 
distribution will be integrated using the continuity equation for charge and current. This 
will help to smooth out errors of particle transitions from one cell to another. More 
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details can be found in [5]. Other approaches for CSR calculations can be found in [14-
16]. 

1.1.4 CSR field dynamics 

1.1.4.1  Radiation in a bend 

 
Let us first try to understand how a bunch field remakes itself when a bunch is 

rotated in a magnetic field.  We have calculated the electromagnetic field of a three 
dimensional Gaussian bunch that is initially moving along the vacuum chamber very 
close to the speed of light. At some point the bunch enters a vertical magnetic field of a 
bend. What happens after can be seen at Fig. 6, where snapshots of the electric field line 
distributions are shown at different time moments. In these plots the white boxes with 
the red arrows show a bunch contour and a bunch velocity direction.  Before entering a 
bend the bunch has only a transverse field, which can be seen as a set of vertical lines. 
A new field that is generated in a bend is a set of ovals, which increase in size with a 
time.   We can outline two time periods of the field formation. The first period is when a 
bunch is still inside the region of its initial transverse field. The first two plots in Fig. 6 
are related to this first period. The second period starts when the bunch is delayed so 
much that it is out of the region of the initial transverse field. The bunch is delayed 
because the velocity vector rotates and the longitudinal component becomes smaller and 
smaller than the speed of light, however field lines that are not very far away “don’t 
know” about this change and continue to propagate at the speed of light.  The last plot 
in Fig. 6 shows this situation. We may consider these fields to be the fields of the edge 
radiation in a bend. 

 
Figure 6: Snapshots of electric field lines of a bunch, which is moving in a magnetic field. 
White boxes show the bunch contour. Red arrows show the directions of the bunch velocity. 

A more detailed picture of the field lines is shown in Fig. 7, where we also show the 
directions of the electric field lines by green arrows. 
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Figure 7: Detailed structure of the field pattern. Red arrow shows the direction of the bunch 
velocity. Green arrows show the field line direction. Upper field lines take the position of the 
lower lines and a part of the lower field lines take the position of the upper lines.  

 If one examines this picture he can see that the upper field lines take the position of 
the lower lines and a part of the lower field lines take the position of the upper lines. 
However at the far ends the transverse field lines continue traveling in the same initial 
direction. We can easily to explain such behavior if we present this field as a sum of 
two fields dp inE E E= + . First field dpE is the field of a dipole, which consists of two 
oppositely charged bunches. One bunch, which has a positive charge is the "real" one. 
This bunch is rotated in the magnetic field while the other bunch is a "virtual" one, 
which has an opposite charge and travels straight in the initial bunch direction. Second 
field inE  is the field of another "virtual", but positively charged bunch, which travels 
straight along the initial bunch direction. Naturally the virtual bunches together sum to 
zero. When we decompose the charges we decompose the fields and the very 
complicated structure of the radiation field becomes very simple. The decomposition of 
the field is shown in Fig. 8.  

 
Figure 8: Decomposition of the field of a bunch moving in a magnetic field (left plot) into two 
fields:  a field of a dipole (middle plot) and a field of a bunch moving straight in initial direction 
(right plot). Red arrows show directions of a bunch velocity 
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The interaction of the bunch with the dipole field dpE  continues for a longer time. Fig. 9 
shows the absolute value of the electric field on the horizontal plane in the vertical 
center of the vacuum chamber in consecutive time steps. The white oval shows the real 
bunch contour. When a dipole is created an electric field appears between a real bunch 
and a virtual bunch. This field increases in value and reaches a maximum value when 
the bunches are completely separated and then it goes down as the bunches move apart 
leaving the fields only around the bunches. The bunch acquires an energy loss while 
interacting with the dipole field. 

 

    Figure 9: Absolute value of the electric field dpE on the horizontal plane in the vertical 
center of the vacuum chamber in consecutive time steps. The red color corresponds to 
maximum value. The blue color corresponds to the minimum value of the field. The white oval 
shows the real bunch contour. 

Continuing the study the radiation process we investigate a dense set of field lines in 
Fig. 7, a fine structure of the field in front of a bunch. This region is common with 
classical synchrotron radiation. We show a comparison in Fig. 10.  

 

Figure 10: Fine structure of the field pattern in front of a bunch. The left plot shows field lines 
near a bunch. The right plot presents a picture from the reference [17].  

The characteristic wavelength of the synchrotron radiation or an equivalent value of the 
bunch length for this relativistic factor is  
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We chose reference [17], as it supplies a picture of the field lines of a particle with a 
relativistic factor γ=6. The equivalent value of the bunch length for this relativistic 
factor is very close to our bunch length. Fig. 10 shows this finite structure together with 
a plot from [17]. We can state that the region before a bunch is very close for both 
cases. 

1.1.4.2  Fields acting inside a bunch 

   In order to study the fields acting on the particles inside the bunch we calculate the 
distribution of a collinear force F  and a transverse force F⊥ as projections to the bunch 
velocity 

b b x
F J E F J E⊥ ⎡ ⎤= = ×⎣ ⎦i  

We have found some very exciting fine structure of this force acting on the particle in 
the bunch. Fig. 11 shows a distribution of forces on the horizontal plane in the vertical 
center of the vacuum chamber at three time moments. The left three vertical plots in 
Fig. 11 show a bunch charge distribution. The starting plots are at the bottom at the time 
when a bunch just enters the magnetic field. The red arrows show the direction of the 
bunch velocity. The middle three vertical plots show a transverse force. Again, the red 
arrow shows the direction of the force.  The transverse force is the well known space-
charge force, which probably is compensated by a magnetic force in the ultra-relativistic 
case.  The right three vertical plots show the collinear force, which is responsible for an 
energy gain or an energy loss. The red color corresponds to acceleration and energy 
gain and the blue color corresponds to deceleration or energy loss. The red arrows are 
collinear or anti collinear with a bunch velocity. We did not include these forces in the 
beam dynamics simulation in order to make the physical picture clear. 

 



12 

 

 

Figure 11: Bunch charge distribution, transverse forces and collinear forces on the horizontal 
plane in the vertical center of the vacuum chamber at three time moments. The starting plots are 
at the bottom at the time when a bunch just enters the magnetic field.  The left three vertical 
plots show a bunch charge distribution. The red arrows show the direction of the bunch 
velocity. The middle three vertical plots show a transverse force. Again, the red arrows show 
the direction of the force. The right three vertical plots show the collinear force, which is 
responsible for an energy gain or energy loss. 

We see here that the forces on the bunch are very complicated. The particles, which are 
in the center of the bunch, in front of the bunch and at the end are accelerated, whereas 
the particles at the boundaries are decelerating. This means that a bunch gets an 
additional energy spread in the transverse direction. The total effect is deceleration and 
the bunch loses energy. The asymmetry of the longitudinal fields can also be seen in 
Fig. 6-7, which shows the electric field line distributions. The bunch shape deformation 
due to the difference in the angular velocity along the radial position is usually small 
and can be seen only after some time; however the ultra-small beam emittance can be 
changed. 

The integrated energy loss along the transverse direction as a function of the 
longitudinal coordinate is shown in Fig. 12 together with a bunch longitudinal 
distribution.  One can see that the head of a bunch and tail are accelerated, when the rest 
of the bunch is decelerated.  The shape of the energy loss distribution is compared with 
the analytical 1-D model [10] (green dashed line). We obtain a better agreement with 
the shape of the energy loss distribution for a larger bending radius and smaller bunch 
length. This comparison is shown at the right plot of Fig. 12. The transverse energy 
spread is smaller for a larger bending radius.  

 
Figure12: Integrated energy loss along the transverse direction as a function of the longitudinal 
coordinate for two values of bending radius. The right plot shows the result for a bending radius 
40 times larger and a bunch length that is two times smaller. The green dashed line is from the 
analytical 1-D model. 

  This complicated structure of the collinear field is very important. A bunch will get an 
additional transverse energy spread, which cannot be compensated. This energy spread 
in the magnetic field immediately generates emittance growth. This effect can limit the 
efficiency of the magnetic bunch compressors and as a result the efficiency of FELs.  

    

1.1.4.3  Coherent edge radiation 

As we mention above an ultra-relativistic bunch and CSR fields are moving together 
and interact for a long time. However one can see a field, which propagates straight 
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ahead from the initial beam horizontal position. This field can be seen very well when 
the bunch gets a large horizontal displacement. Fig. 13 shows the distribution of the 
magnetic field on the horizontal plane in the vertical middle of the vacuum chamber. 
The large peak corresponds to the bunch field.  The right picture is a magnified image 
of the left picture. Note the scales in the X and Z directions are different A red arrow 
shows the initial bunch X-position and the direction of the bunch velocity. A blue arrow 
shows the direction of the bunch velocity at this time.  

 
Figure13 : Coherent edge radiation.  Distribution of the magnetic field on the horizontal plane 
in the vertical middle of the vacuum chamber. The large peak corresponds to the bunch field.  
The right picture is a magnified image of the left picture. Note the scales in the X and Z 
directions are different A red arrow shows the initial bunch X-position and the direction of the 
bunch velocity. A blue arrow shows the direction of the bunch velocity at this time. 

Other Fig. 14 shows images of the coherent radiation in the form of transverse magnetic 
field distributions on the vertical planes of the vacuum chamber. The left and right sets 
of vertical plots correspond to different longitudinal positions. Each plot in a set shows 
a distribution at a different time.  At first we see an image of edge radiation, then the 
image of synchrotron radiation and finally a bunch field image.  

 
 Figure 14: Images of radiation in the form of transverse magnetic field distributions. 
The left and right set of vertical plots corresponds to different longitudinal positions. 
Each plot in a set shows a distribution at a different time. The upper plot is an image of 
edge radiation, which appears first, the middle plot shows an image of the synchrotron 
radiation, which comes after and the last plot is a bunch field image. 
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The calculated images of the coherent edge radiation look very similar to the images, 
which we have seen on the YAG screen after the dump magnets, which bend the beam 
down at LCLS.   

   

1.1.4.4    Fields in the beam chamber of an accelerator 

As we mentioned before, the metal walls of a vacuum chamber of an accelerator 
change the distribution of the radiation fields, but the self electromagnetic field of a 
bunch is also modified by the chamber geometry.  This field is much stronger than the 
radiation fields. Fig. 15 shows the vertical electric field component inside the chamber 
when a bunch has left a magnet. The shape of a chamber follows a bunch trajectory. To 
see the radiation fields we need to magnify the amplitude by 1000 times. 

 

Figure 15: Magnified vertical component of the electric field of a bunch moving in the vacuum 
chamber after been bend by a magnet. 

When a bunch changes position in a chamber, its electromagnetic field also changes 
and the bunch must react back: loosing and then gaining the kinetic energy. In some 
cases this effect can be a much stronger radiation loss. Let’s return back to Fig. 5, which 
shows the difference in spectrum of radiation for real vacuum chamber, which is usually 
used in the synchrotron light sources. The horizontal size of such a chamber allows a 
beam to move in a circle and the edge radiation to go straight to an optical window. 
This tapered chamber has a lot of RF eigenmodes, which may be responsible for the 
complicated behaviour of the spectrums. 

1.1.5 Conclusions  

  
  We recall well-known formulas for synchrotron radiation and analyze the fine 

structure of the coherent synchrotron fields, excited by a short bunch in a bending 
magnet. We have found that there is much more interesting and detailed structure of the 
CSR fields, which have not been described by any previous study. A very important 
result is discovering the structure of the complicated collinear force. A bunch will get 
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an additional energy spread in the transverse direction from the collinear force. This 
immediately leads to an emittance growth and decoherence that could limit FEL lasing 
for very short bunches. We will continue study this effect. 
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