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Abstract
The main purpose of this talk is to describe how far one

might push the state of the art in storage ring design. The
talk will start with an overview of the latest developments
and advances in the design of synchrotron light sources
based on the concept of an “ultimate” storage ring. The
review will establish how bright a ring based light source
might be, where the frontier of technological challenges
are, and what the limits of accelerator physics are. Empha-
sis will be given to possible improvements in accelerator
design and developments in technology toward the goal of
achieving an ultimate storage ring.

INTRODUCTION
An ultimate storage ring (USR) [1], defined as an elec-

tron ring-based light source having an emittance in both
transverse planes at the diffraction limit for the range of
X-ray wavelengths of interest for a scientific community,
would provide very high brightness photons having high
transverse coherence that would extend the capabilities of
X-ray imaging and probe techniques beyond today’s per-
formance. It would be a cost-effective, high-coherence 4th
generation light source [2], competitive with one based on
energy recovery linac (ERL) technology, serving a large
number of users studying material, chemical, and biolog-
ical sciences. Furthermore, because of the experience ac-
cumulated over many decades of ring operation, it would
have the great advantage of stability and reliability.

Figure 1: Layout of PEP-X at SLAC as an ultimate storage
ring.
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In this paper we consider the design of an USR hav-
ing 10-pm-rad emittance. It is a tremendous challenge
to design a storage ring having such an extremely low
emittance, a factor of 100 smaller than those in existing
light sources, especially such that it has adequate dynamic
aperture and beam lifetime. In many ultra-low emittance
designs [3, 4, 5], the injection acceptances are not large
enough for accumulation of the electron beam, necessi-
tating on-axis injection where stored electron bunches are
completely replaced with newly injected ones. Recently,
starting with the MAX-IV 7-bend achromatic cell [6], we
have made significant progress [7, 8] with the design of
PEP-X, a USR that would inhabit the decommissioned
PEP-II tunnel at SLAC (Fig. 1). The enlargement of
the dynamic aperture is largely a result of the cancella-
tions [9] of the 4th-order resonances in the 3rd-order achro-
mats [10] and the effective use of lattice optimization pro-
grams [11, 12].

In this paper, we will show those cancellations of the 4th-
order resonances using an analytical approach based on the
exponential Lie operators and the Poisson brackets. Wher-
ever possible, our analytical results will be compared with
their numerical counterparts [9]. Using the derived formu-
lae, we will construct 4th-order geometric achromats and
use them as modules for the lattice of the PEP-X USR, not-
ing that only geometric terms are canceled to the 4th order.

DIFFRACTION LIMITED BRIGHTNESS
The wavelength of synchrotron radiation at the nth har-

monic from an electron beam in a planar undulator having
a period of λu and a peak magnetic field B0 is given by

λn =
λu

2nγ2
(1 +K2/2), (n = 1, 3, 5, ...) (1)

where γ is the Lorentz relativistic factor and K =
eB0λu/2πmc is the undulator strength parameter. The
bandwidth of the spectral line at the nth harmonic is in-
versely proportional to the product of the number of undu-
lator periods Nu and the harmonic number n,

∆ω

ωn
≈ 1

nNu
. (2)

The angle-integrated photon spectral flux in the forward
direction is proportional to the electron beam current I and
can be written as [13]

Fn =
π

2
αNu

∆ω

ω

I

e
Qn(

nK2

4 + 2K2
). (3)

Here α is the fine structure constant and the function
Qn(Y ) is defined by

Qn(Y ) = 4Y [J(n+1)/2(Y )− J(n−1)/2(Y )]2, (4)
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Table 1: Main parameters of PEP-X as an ultimate storage
ring. The effects of the intra-beam scattering and 90 m of
damping wigglers are included.

Parameter Description Value
E [GeV] beam energy 4.5
I [mA] beam current 200
ϵx,y [pm-rad] x,y emittances 11.5, 11.5
σδ energy spread 1.25× 10−3

βx,y [m] x,y beta functions at ID 4.92, 0.8
λu [cm] period of undulator 2.3
Lu [m] length of undulator 4.4
K undulator strength 2.26
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Figure 2: Function Qn( nK2

4+2K2 ).

where Jm are the Bessel functions. To achieve a higher
flux, one of the important performance parameters for a
light source, one needs a higher current, a longer undula-
tor, and a reasonable value of the undulator strength K, as
illustrated in Fig. 2. As an example, we calculate the pho-
ton spectral flux using the PEP-X parameters in Table 1 and
show the results in Fig. 3.

Another important aspect of a light source is its spectral
brightness Bn, defined as the ratio of the photon spectral
flux to the volume of the convoluted phase of the electron
beam and the photon beam in the two transverse dimen-
sions, namely [13],

Bn =
Fn

4π2ΣxΣ′
xΣyΣ

′
y

, (5)

where the convoluted sizes and divergences are

Σx,y =
√
σ2
x,y + σ2

λ, (6)

Σ′
x,y =

√
σ′2
x,y + σ′2

λ. (7)

Here σx,y, σ′
x,y are the RMS sizes and divergences of the

electron beam respectively. Given the undulator length
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Figure 3: Photon spectral flux in a 0.1% bandwidth cal-
culated using SPECTRA [14] within the forward cone of
3σ′

λ1
and the formula (Eq. (3)).

Lu = Nuλu, the size and divergence of the photon beam
are given by

σλ =

√
λnLu
8π2

, (8)

σ′
λ =

√
λn
2Lu

. (9)

It is worth noting that the “emittance” of the photon beam

ϵλ = σλσ
′
λ = λn/4π, (10)

depends only on its wavelength. Accordingly, its “beta”
function is given by

βλ =
σλ
σ′
λ

=
Lu
2π
. (11)

One can easily show that the convoluted phase space area,
2πΣx,yΣ

′
x,y, is at a minimum if the beta functions of the

electron beam are matched to those of the photon beam,
namely, βx,y = βλ. The matching conditions not only
maximize the brightness but also simplify its formula to
be

B(m)
n =

Fn
4π2(ϵx + λn/4π)(ϵy + λn/4π)

, (12)

where ϵx,y are the emittances of the electron beam in the
horizontal and vertical planes respectively. Reducing elec-
tron emittance increases brightness towards an ultimate up-
per limit for spontaneous radiation from an undulator:

B(u)
n =

4Fn

λ2n
. (13)

While beam brightness can be increased by reducing
electron emittance in the denominator of Eq. (12), this
emittance reduction may also lead to a reduction in the



achievable flux in the numerator due to collective instabil-
ities in the electron beam. The maximum brightness for
angstrom-level spontaneous radiation, the wavelengths of
interest for studying the molecular structure and properties
of materials, from a particular insertion device in a storage
ring is thus due to the trade-off between low emittance and
achievable beam current.
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Figure 4: Spectral brightness of PEP-X at 200 mA, calcu-
lated using SPECTRA and the formula (Eq. (5)) multiply-
ing by the reduction factor (Eq. (16)).

So far, we have ignored the emittance of the electron
beam in the longitudinal dimension. Actually, the energy
spread of the beam adds to the width of the undulator’s
spectral lines, thereby reducing spectral brightness. As-
suming the electron beam has a Gaussian distribution in
the relative energy δ (= dE/E) given by

ρ(δ) =
1√
2πσδ

e
− δ2

2σ2
δ (14)

then the frequency dependence at the nth harmonic is also
a narrow Gaussian with a sigma of σωn = ωn/

√
2nNu,

which is consistent with Eq. (2). The reduction factor fδ
can then be estimated by

fδ =
1√
2πσδ

∫ ∞

−∞
e
−∆ωn

2

2σ2
ωn e

− δ2

2σ2
δ dδ, (15)

where ∆ωn = 2ωnδ, which can be derived from Eq. (1).
Carrying out the integral, we obtain

fδ =
1√

1 + 8(σδnNu)2
. (16)

For a large harmonic number n or a large number of undu-
lator periods Nu, the reduction becomes significant. In a
typical electron storage ring having relative energy spread
σδ = 0.001, the degradation of brightness at higher har-
monics constrains the useful number Nu of bandwidth-
reducing undulator periods to no more than a couple of
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Figure 5: Coherent fraction for the PEP-X ultimate storage
ring.

hundred. Moreover, the energy spread indirectly limits the
photon flux since it is proportional to Nu.

To give an example of a synchrotron light source reach-
ing the diffraction limit at 1-Å wavelength, we use the PEP-
X parameters tabulated in Table 1 and calculate the spectral
brightness as shown in Fig. 4. In the figure, one can see a
comparison of the results generated by SPECTRA and the
analytical formulas outlined in this section. At the peaks of
the odd harmonics, the agreement between the numerical
code and the analytical approach is excellent.

Finally, as the emittances approach the diffraction limit,
namely ϵx,y ≈ λn/4π, the synchrotron light has more co-
herence in the transverse dimensions. One can define the
fraction of coherence,

fcoh =
Bn
B(u)
n

=
λ2n

16π2ΣxΣ′
xΣyΣ

′
y

, (17)

to quantify the degree of coherence. Using the parameters
in Table 1, we calculate the coherent fraction and plot it
in Fig 5. One can see that the PEP-X design provides ex-
tremely high coherence multi-keV X-rays.

It is clear from the figures of photon flux, spectral bright-
ness, and coherent fraction that PEP-X would be a future
light source superior to existing facilities such as PETRA-
III [15] or projects under construction [6, 16]. It would also
be competitive with the other future light sources [2] based
on an ERL.

LATTICE DESIGN
To reach the diffraction limit of angstrom X-rays, the

lattice of the PEP-X ultimate storage ring must yield a very
low electron emittance, on the order of 10 pm-rad at 4.5
GeV beam energy, while providing dispersion-free optics
for insertion devices (IDs) and sufficient dynamic aperture
for injection and beam lifetime. An additional constraint
is that PEP-X must fit into the existing 2.2-km PEP-II tun-
nel and therefore must adopt the PEP-II ring layout having



six 243-m long arcs and six 123-m long straight sections
as shown in Fig. 1. The PEP-X arcs have identical lat-
tices comprised of periodic cells, and the long straights are
made of nearly periodic FODO cells, except in the injec-
tion straight. The complete list of PEP-X lattice parameters
with 90 m of damping wigglers is shown in Table 2.

Table 2: PEP-X lattice parameters with damping wigglers
at zero beam current.

Parameter Value
Energy, E [GeV] 4.5
Circumference, C [m] 2199.32
Tune, νx, νy, νs 113.23, 65.14, 0.0069
Emittance, ϵ0w [pm·rad] 11.0
Bunch length, σz [mm] 3.0
Energy spread, σδ 1.20× 10−3

Momentum compaction 4.96× 10−5

Damping time, τx, τy, τs [ms] 19, 22, 12
Natural chromaticity, ξx0, ξy0 -162.3, -130.1
Energy loss per turn, U0 [MeV] 2.95
RF voltage, VRF [MV] 8.3
RF frequency, fRF [MHz] 476
Harmonic number 3492
Wiggler length, Lw [m] 89.66
Wiggler period, λw [cm] 5.0
Wiggler peak field, Bw [T] 1.5
Length of ID straight, LID [m] 5.0
Beta at ID center, βx, βy [m] 4.92, 0.80

Low Emittance Optics
As a result of the balance between quantum excitation

and radiation damping, an electron beam in storage rings
reaches an equilibrium distribution with horizontal emit-
tance given by [17],

ϵx = Cq
γ2

Ix

I5
I2

(18)

with

Cq =
55

32
√
3

h̄

mc
, I2 =

∮
ds

ρ2
, I5 =

∮
Hx

ρ3
ds, (19)

where
Hx = βxη

′
x
2
+ 2αxηxη

′
x + γxη

2
x, (20)

Ix is the horizontal damping partition number, ρ the bend-
ing radius, ηx, η ′

x are the horizontal dispersion and its
slope, and βx, αx, γx the horizontal Courant-Snyder pa-
rameters. For a simple ring that has no wigglers, the above
dependence can be simplified to a scaling relationship:

ϵ0 = CqFγ
2θ3/Ix, (21)

where the value of F depends on the type of cell optics, and
θ is the dipole bending angle per a cell unit. For a minimal

emittance, it is therefore desired to use a large number of
short cells with low θ and a type of cell lattice with low F .
Note that due to the strong dependence on θ, the rings with
longer total arc length have a significant advantage. For
comparison, the total length of PEP-X arcs is about 2/3 of
the ring circumference, namely 1460 m.

The optics of the so-called theoretical minimum emit-
tance (TME) [18] cell is designed to yield the lowest value
of the factor F

F
(TME)
min =

1

12
√
15
. (22)

and therefore can reach the lowest possible emittance.
However, the TME-type cells are not suitable for inser-
tion devices due to lack of dispersion-free straights. On the
other hand, double bend achromat [19] (DBA) cells, widely
used in light source rings, provide dispersion-free straights
for IDs, but their minimal natural emittance is a factor of
3 higher relative to a TME cell with the same bending an-
gle. A compromise solution to obtain both a low emittance
and dispersion-free straight is a hybrid cell – the so-called
multi-bend achromat (MBA) – comprised of several short
TME type units at the cell center and a dispersion matching
unit (similar to half DBA) at each cell end.

The compact cell design requires both optical and en-
gineering solutions. An example is the MAX-IV 7-bend
achromat cell [6], where the standard TME defocusing
quadrupoles are eliminated and replaced by a defocusing
gradient in the dipoles, and the sextupole magnets are in-
tegrated with dipoles or quadrupoles in compact blocks. A
defocusing gradient in the dipole has the added advantage
of higher Ix for even lower emittance.

Figure 6: Lattice functions in PEP-X MBA cell with 7
dipoles.

The PEP-X MBA cell with 7 dipoles, shown in Fig. 6, is
similar to the MAX-IV cell with a few modifications. It has
a natural emittance ϵ0 = 29.0 pm-rad at 4.5 GeV and zero
current. The chosen cell phase advance is µx = 4π + π/4
and µy = 2π + π/4 and the cell length is matched to 30.4
m. This provides an optimal linear cell optics and yields
8 cells per arc resulting in an identity linear transforma-
tion for each arc. The reason for such a choice will be
given in the next section. The TME units have periodic



lattice functions and are made of a focusing quadrupole
and a dipole with defocusing gradient per unit. A match-
ing dipole at each cell end is gradient-free and 20% shorter
than the TME dipole. The ID straight length is LID = 5 m,
and βx/βy = 4.9/0.8 m at the ID center. The βy at ID is
near its optimal value of Lu/2π for maximum brightness.
Compared to MAX-IV, this cell has 4 additional matching
quadrupoles for a larger tuning range of the ID β functions.
In particular, the ID βy can be varied up to a 5-m value
while the cell phase advance is fixed and the ID βx and cell
emittance are not significantly changed.

An ultra-low emittance lattice such as that of PEP-X is
characterized by very small beta functions and dispersion,
achieved with many quadrupoles and resulting in very large
natural chromaticity. To correct the chromaticity, the chro-
matic sextupole magnets become extremely strong as the
dispersion gets smaller and smaller. The nonlinear effects
generated by such strong sextupoles result in a severe re-
duction of dynamic aperture. An efficient minimization of
these nonlinearities becomes essential for a successful de-
sign of an ultimate storage ring.

The cell sextupole scheme consists of 4 families of
chromatic sextupoles and 6 harmonic sextupoles. The
chromaticity-correcting sextupoles are placed at the cen-
ter of the TME focusing quadrupoles and at each end
of the dipole where dispersion is not zero. The har-
monic sextupoles are placed within the two dispersion-free
quadrupole triplets adjacent to the ID straight. This scheme
provides sufficient flexibility for optimization of nonlin-
ear chromaticity and amplitude dependence of the betatron
tunes from the sextupole perturbations.

The cell magnet parameters are within a reasonable
range. At 4.5 GeV, the dipole field is <1.5 kG, the
quadrupole field is <8.6 kG at 20 mm radius, and the sex-
tupole field is <7.8 kG at 15 mm radius and 0.2 m sex-
tupole length.

Perturbation of Sextupoles
We would like to provide a general treatment of sex-

tupole perturbation and then apply it to the design of PEP-
X. For simplicity, we start with the geometric abberations.
Let us consider a set of thin-lens sextupoles at position
i = 1, ..., n in a beamline. Between any two adjacent sex-
tupoles at positions i − 1 and i, we have a linear transfer
map Mi−1,i. Based on the Lie algebra method [20], the
transfer map M of the beamline can be written as [21]

M = M0,1e
−:V1(z⃗):...Mn−1,ne

−:Vn(z⃗):Mn,n+1, (23)

where z⃗ is a vector in the four-dimensional transverse phase
space and the vector potential Vi(z⃗) = Si(x

3 − 3xy2)/6.
Here we have denoted Si as an integrated strength,

Si =
Li

(Bρ)

∂2By
∂x2

, (24)

where Li is the length of the sextupole magnet and (Bρ)
the magnetic rigidity. By repeatedly applying a similarity

transformation,

L−1e−:F(z⃗):L = e−:F(L−1z⃗):, (25)

where L is a linear map and F is an arbitrary function, one
can show [21]

M = M0,n+1e
−:V1(M−1

1,n+1
z⃗):...e−:Vn(M−1

n,n+1
z⃗):, (26)

where Mi,n+1 = Mi,i+1...Mn,n+1 is the linear transfer
map from position i to n + 1 and the superscript “−1” is
used to denote its inverse map. One can see from Eq. (26)
that the total map M is factorized into the linear map
M0,n+1 and a nonlinear map,

e−:V1(M−1
1,n+1

z⃗):...e−:Vn(M−1
n,n+1

z⃗):; (27)

and more importantly all nonlinearities are effectively
transported to the end of the beamline.

It is well known that one can use a linear symplectic map
A−1 to make a coordinate transformation to the normalized
coordinates. As a consequence, the linear transfer map can
be decomposed into Mi,n+1 = A−1

i Ri,n+1An+1, where
Ri,n+1 is a rotational map with the betatron phase ad-
vances µx,i, µy,i as the angles. Using the normalized co-
ordinates and repeatedly applying the similarity transfor-
mation (Eq. (25)), we can rewrite the map of the beamline
as

M = A−1
0 R0,n+1e

−:V1(R−1
1,n+1

A1z⃗):...

e−:Vn(R−1
n,n+1

Anz⃗):An+1. (28)

Explicitly, we have

Vi(R−1
i,n+1Aiz⃗) =

Si
√
βx,i

6
(βx,ix

3
i − 3βy,ixiy

2
i ), (29)

where βx,i, βy,i are the optical beta functions at position
i, xi = x cosµx,i − px sinµx,i, and yi = y cosµy,i −
py sinµy,i. In fact, xi, yi are the normalized coordinates
respectively in the horizontal and vertical planes at position
i.

So far, we have not yet made any approximations. To
carry out the perturbation theory of the sextupoles, we need
to combine the Lie factors e−V1 ...e−Vn in Eq. (28) into a
single Lie operator. This can be achieved by repeatedly
applying the Cambell-Baker-Hausdorf theorem e:A:e:B: =
e:C:, where C = A+B+{A,B}PB/2+.... Here the bracket
with the subscript “PB” denotes the well-known Poisson
Bracket. for the perturbation of the sextupole strength S,
we obtain

M = A−1
0 R0,n+1e

:f3+f4+...:An+1, (30)

where

f3 = −
n∑
i=1

Vi (31)

and

f4 =
1

2

n∑
i=1

n∑
j>i

{Vi,Vj}PB . (32)



Clearly, f3 is of the first order of S and f4 of the
second order. Similar to the Hamiltonian perturbation
theory, f3 gives the driving term of the third-order res-
onances provided that the action-angle variables, x =√
2Jx cosϕx, px = −

√
2Jx sinϕx, y =

√
2Jy cosϕy , and

py = −
√
2Jy sinϕy are used.

The Poisson bracket of any pair of Vi,j can be computed
easily and the result is given by

{Vi,Vj}PB = SiSj
√
βx,iβx,j

×[sin(µy,i − µy,j)βy,iβy,jxixjyiyj

+sin(µx,i − µx,j)(βx,ix
2
i − βy,iy

2
i )

×(βx,jx
2
j − βy,jy

2
j )/4]. (33)

Clearly, all terms in the brackets are octupole like, namely
a fourth-order monomial in x, px, y and py . It is worth not-
ing that this bracket vanishes when the phase differences in
both planes are integers of π.

Essentially, we have worked out the first and, more im-
portantly, the second order sextupole perturbation using the
Lie method. Our assumption of a thin lens could be re-
moved since one can always divide a thick sextupole into
many thin slices and then apply the thin-lens formulas. In
practice, it is sometimes easier to compute [9] f3 and f4
numerically using the differential algebra [22] and Dragt-
Finn factorization [23].

A Family of Sextupoles in Arc
Now we can apply the general results of the perturbation

theory to the arcs of PEP-X. As we mentioned in a pre-
vious section, we designed a periodical cell with betatron
phase advances, µx = 4π + π/4 and µy = 2π + π/4,
in the horizontal and vertical planes respectively. For the
linear optics, every eight of such cells makes an identity
transformation and form an achromat. In the design lattice,
every arc consists of one such achromat. We would like to
explain why this choice was made.

Let us study an achromat that consists of eight PEP-X
cells and each cell has a thin sextupole at the same location.
It is well known that f3 = 0 in the achromat [10]. This
can also be shown directly using Eqs. (29) and (31). As a
result, this beamline preserves the property of an achromat,
even at a nonlinear level, up to the first order of sextupole
strength.

To proceed to the next order, we need to compute f4 us-
ing Eqs. (32) and (33) and add up the contributions from
all 28 brackets. Expressing the result in terms of the com-
plex coordinates, x = (ax + ia+x )/

√
2, px = (iax +

a+x )/
√
2, y = (ay + ia+y )/

√
2, py = (iay + a+y )/

√
2, we

have

f4 = −1

4
S2βx{(1 + 2

√
2)[β2

x(axa
+
x )

2 + β2
y(aya

+
y )

2]

−4βy[(1 +
√
2)βx −

√
2βy](axa

+
x )(aya

+
y )

+βy[βx + 2(1 +
√
2)βy]

×[e−2i(ψx−ψy)(ax)
2(a+y )

2

+e2i(ψx−ψy)(a+x )
2(ay)

2]}, (34)

where ψx and ψy are the phase advances from the last sex-
tupole to the end of the achromat. One can easily see,
by using action-angle variables ax =

√
Jxe

iϕx , a+x =
−i

√
Jxe

−iϕx , ay =
√
Jye

iϕy , and a+y = −i
√
Jye

−iϕy ,
that there are three tune shift terms and a single reso-
nance driving term: 2νx − 2νy . The other resonances,
4νx, 4νy, 2νx, 2νy , and 2νx+2νy , are canceled out among
the eight sextupoles.

A Fourth-Order Geometric Achromat
Recently, we used the lattice design code OPA [11] to

optimize the settings of 10 sextupole families. Due to
the cancellations of most resonances, we only needed to
control the nonlinear chromaticities up to the second or-
der, the three remaining amplitude-dependent tune shifts,
and the residual 2νx − 2νy resonance. A good solution
with small nonlinearities was found [8]. The derivatives
of the betatron tunes are calculated using the normal form
method [24] and tabulated in Table 3 along with a new so-
lution based on 4th-order achromats (f3 = f4 = 0). As
one can see from the table, the tune shift terms are signif-
icantly reduced using the 4th-order achromats without any
degradation in the chromatic parts. The small residuals are
due to the nonlinear kinematic terms in the Hamiltonian.

Table 3: The nonlinear chromaticities and tune shifts due
to betatron amplitudes in the PEP-X ultimate storage ring.

Derivatives of tunes 4th-order achromats
∂νx,y/∂δ 0, 0
∂2νx,y/∂δ

2 −57,−89
∂3νx,y/∂δ

3 +1332,−150
∂νx/∂Jx [m

−1] +253
∂νx,y/∂Jy,x [m

−1] +1158
∂νy/∂Jy [m

−1] −228

As outlined in the previous section, one can compute all
contributions to f4 from all families of sextupoles by using
Eq. (34) and a similar expression for the crossing term [25]
between two sextupole families. To find a 4th-order geo-
metric achromat, we simply adjusted the strengths of six
families of the harmonic sextupoles to eliminate the five
non-vanishing terms in f4. In fact, we have an infinite set
of solutions which can be found by searching numerically
using the Nelder-Mead method. We use the extra degree of
freedom to minimize the peak value of the harmonic sex-
tupoles. As a result, the peak strength is reduced by 25%
from the OPA solution. All terms in f3 and f4 are plot-
ted as a function of the position along one of the arcs in
PEP-X in Fig. 7. One can see from the figures that the nu-
merical calculations using the actual beamline confirm the
analytical results. Although we have not analyzed the chro-
matic effects in this paper, in fact both the first- and second-
order dispersions are also canceled within this achromat as
shown in reference [10].
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Figure 7: All 3rd-order resonance terms in f3 (top) and all
4th-order resonance as well as three tune shift terms in f4
(bottom) generated by the 10 families of sextupoles as they
accumulated in the PEP-X achromat.

Damping Wiggler
Because the emittance of PEP-X will increase by a fac-

tor of 2 from the zero-current natural value of 29 pm-rad
achieved with the 7BA lattice due to intra-beam scattering
with 200-mA stored beam current (Section 5), a further re-
duction in emittance by about a factor of three is needed to
reach the diffraction limit for 1-Å X-rays (assuming 100%
horizontal-vertical emittance coupling). This emittance re-
duction can be achieved using one or more strong damping
wigglers in one or more dispersion-free regions.

The relative reduction in natural emittance from ϵ0 to ϵw0

caused by a damping wiggler in PEP-X can be estimated
using an approximate analytical expression [26]:

ϵ0w
ϵ0

= (
Ix0
Ixw

)
1 +

4Cq

15πIx0
Npγ

2<βxw>ρo
ϵx0ρ2w

θ3w

1 + 1
2Np

ρo
ρw
θw

, (35)

where Ixw, Ix0 are damping partition numbers with and
without wigglers, Np is the number of wiggler periods,
< βxw > the average horizontal β-function in the wig-
gler, ρw the bending radius at peak wiggler field, θw =
λw/2πρw and λw the wiggler period length. Here ρo =
ρcρm/(rρc + (1− r)ρm) is the effective bending radius in
the MBA cell, with ρc and ρm being the bending radii in the
main cell dipole and the matching dipole, respectively, and
r being the relative contribution from the matching dipoles
to the total bending angle.

It follows that the emittance reduction depends on the
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Figure 8: Relative emittance reduction versus wiggler field
(top) and versus wiggler length (bottom) for various values
of wiggler period.

wiggler period length, the wiggler peak field, and the to-
tal wiggler length. Using Eq. (35), Fig. 8 shows the ra-
tio of ϵ0w/ϵ0 versus the wiggler peak field and the total
wiggler length for various values of wiggler period length,
where the wiggler is inserted in a long straight section with
< βx >= 12.4 m. One can see that most of the damping
occurs within 100 m of the wiggler length, and that a wig-
gler period below 5 cm does not significantly improve the
damping. Selecting a 90-m long wiggler with a 5-cm pe-
riod, it follows that the optimal peak field is 1.5 T. It should
be noted that a short 5-cm wiggler period implies a small
wiggler gap of 7.7 mm when using a hybrid magnet de-
sign [27]. A wiggler with the above parameters has been
modeled in the lattice using an array of alternating field
short dipoles. The wiggler is placed in one 123-m long
FODO straight section, where it is split into 18 sections to
fit between the quadrupoles. The resultant emittance with
wigglers at zero current is ϵ0w = 11 pm-rad.

The damping wiggler creates various negative effects on
the PEP-X beam. It increases the beam rms energy spread
from 0.072% to 0.12%, and the radiation loss per turn from
0.36 MeV to 2.95 MeV. The latter amounts to a 0.59 MW at
200 mA current. Finally, the wiggler field has intrinsic non-
linear components on the beam trajectory affecting large
amplitude particles.

DYNAMIC APERTURE
Ultimately, the goal of minimizing sextupole non-linear

aberrations is to maximize the PEP-X dynamic aperture for
efficient horizontal injection and long beam lifetime. The



dynamic aperture was obtained in particle tracking simu-
lations using LEGO [28]. The calculations included on-
momentum and off-momentum particles and magnet er-
rors. To include the effects of the intrinsic non-linear wig-
gler field, the 1st order dipole wiggler model was replaced
by an exact non-linear field wiggler model in the simula-
tions.

Error-Free Aperture
To verify the effect of residual sextupole aberrations, dy-

namic apertures for the 4th-order geometric achromat solu-
tion was evaluated without magnet errors and with momen-
tum error δ up to 2%, as shown in Fig. 9.

Figure 9: Dynamic aperture of the bare lattice.

Error Tolerances
Magnet field and alignment errors create linear and non-

linear optics perturbations. These include distortion of the
closed orbit and betatron functions, transverse coupling,
chromaticity, variation of betatron tune with amplitude and
excitation of betatron resonances leading to reduced dy-
namic aperture. To maintain a sufficient aperture, the ring
must include efficient correction schemes; also, the magni-
tude of such errors must be limited to an acceptable level.
To estimate the error sensitivities for the PEP-X lattice with
the 4th-order achromat sextupole solution, LEGO tracking
simulations were performed.

LEGO simulations included realistic correction of orbit,
beta beat, linear chromaticity and vertical dispersion. A
suitable coupling correction procedure has not yet been im-
plemented in the code; therefore the studied errors were
limited to magnet field errors, horizontal misalignment and
higher order multipole field errors. The latter were based
on the measured field in the PEP-II magnets but applied
to the smaller bore radius of the PEP-X magnets. No er-
rors were applied to beam position monitors, and the linear
chromaticity was adjusted to +1.

It was found that rms horizontal misalignment of 20 µm
and relative rms field error of 10−3 in dipoles, quadrupoles
and sextupoles are acceptable. Dynamic apertures with the
above errors, including the high-order multipole field er-
rors for 10 random settings after correction, are shown in

Figure 10: Dynamic aperture with machine errors.

Fig. 10. Here, the average on-momentum horizontal dy-
namic aperture is 9 mm which is sufficient for off-axis in-
jection assuming a high quality injected beam with a 1µm-
rad normalized emittance and an effective septum width of
3 mm. It should be noted that a smaller dynamic aperture
could still be accommodated using on-axis injection.

IBS AND TOUSCHEK LIFETIME
Intra-beam scattering (IBS) describes multiple Coulomb

scattering that leads to growth in emittance and energy
spread in electron machines, whereas the Touschek effect
concerns large single Coulomb scattering events where en-
ergy transfer from transverse to longitudinal planes leads
to particle loss. In low emittance machines such as PEP-X,
both effects are important.

Intra-beam scattering
For our IBS calculations we assume that the lattice is

coupling-dominated, by which we imply that the vertical
dispersion can be kept sufficiently small. Then the vertical
emittance is proportional to the horizontal emittance, and
we write

ϵx =
ϵ

1 + κ
and ϵy =

κϵ

1 + κ
, (36)

with κ being the coupling constant between 0 and 1 and ϵ =
ϵx + ϵy being the sum emittance at finite current with IBS.
The nominal (no IBS) horizontal and vertical emittances
are given by ϵx0 = ϵ0w/(1 + κ) and ϵy0 = κϵ0w/(1 +
κ), where ϵ0w is the natural emittance with the damping
wigglers at zero current and its value is given in Table 2.

For the steady-state, the sum emittance ϵ and the energy
spread σδ are given by

ϵ =
ϵ0w

1− τ∗x/Tx
and σ2

δ =
σ2
δw

1− τs/Tp
, (37)

where τ∗x = τx/(1 + κτx/τy). The quantities σδw, τs, and
1/Tp signify, respectively, the nominal beam size, the radi-
ation damping time, and the IBS growth rate in momentum.



A simplified model of the B-M equations [29] that can
be used (with slight modification) to approximate the re-
sults for PEP-X is the so-called “high energy approxima-
tion” [30]. We present it here since it relatively clearly
shows the parameter dependence of IBS, though to obtain
the numerical results for PEP-X (given below) we will use
the more accurate B-M equations. According to this sim-
plified model the IBS growth rate in energy spread is given
by

1

Tp
≈ r2ecNb(log)

16γ3ϵ
3/4
x ϵ

3/4
y σzσ3

δ

⟨
σH g(α) (βxβy)

−1/4
⟩
.

(38)
Here re is the classical radius of the electron, Nb the num-
ber of electrons per bunch, (log) the Coulomb log factor,
σz the bunch length, and βx and βy the optical beta func-
tions. Other factors in Eq. (38) are defined by

1

σ2
H

=
1

σ2
δ

+
Hx

ϵx
, α =

√
βxϵy
βyϵx

, (39)

g(α) = α(0.021−0.044 lnα) , (40)

with Hx the dispersion invariant defined in Eq. (20).
In the high energy approximation, the horizontal IBS

growth rate is given in terms of the momentum growth rate
simply as

1

Tx
=
σ2
δ

ϵx
⟨Hxδ(1/Tp)⟩ . (41)

We see that only the arcs contribute significantly to IBS-
induced emittance growth, since only in the arcs is Hx

non-zero. Note that ⟨δ(1/Tp)⟩ = 1/Tp, where ⟨⟩ means
to average around the ring. Given the growth rates, the
steady-state ϵ qnd σδ are obtained by solving Eqs. (37) si-
multaneously. Since the growth rates depend on the beam
emittances, energy spread, and bunch length, Eqs. (37) are
solved by iteration using a Newton’s method.

In scattering calculations like IBS, a Coulomb log term,
(log) in Eq. (38), is often used to take into account the
contribution of very large and very small impact parame-
ter events. Due to the small impact parameter events, the
tails of the steady-state bunch distributions are not Gaus-
sian and the standard way of computing (log) overempha-
sizes their importance. To better represent the size of the
bunch core, we adjust (log) to cut away events with growth
rate greater than the synchrotron damping rate, as was pro-
posed by Raubenheimer [31]. For PEP-X, (log) becomes
≈ 11.

For our IBS calculations for PEP-X using lattice param-
eters found in Table 2, we assume the vertical emittance is
given by coupling with κ = 1. The results of our IBS cal-
culations for the PEP-X lattice at the nominal I = 200 mA
with the number of bunchesM = 3300, which corresponds
to 0.5 nC bunch charge. The steady-state emittances, en-
ergy spread, and bunch length in the normal design have
been shown in Table 1. We note that for PEP-X, IBS has
little effect on σδ and σz; however, at the nominal current
ϵx is double the zero-current value.

Figure 11: Emittance ϵx = ϵy vs. energy for a round beam
at nominal bunch current (black) and at zero current (red).

Finally, to demonstrate that 4.5 GeV is near the opti-
mal energy for our lattice, we have performed IBS calcula-
tions for different energies. Note that the lattice is scalable
with energy except in the wiggler and undulator regions
which are assumed to have nominally fixed-field magnets.
In Fig. 11 we plot emittance ϵx = ϵy vs. electron energy
E; we see that the emittance minimum is broad, and that
the minimum is near our nominal energy.

Touschek lifetime
Touschek lifetime calculations normally follow the flat-

beam equation of Brück [32], with modifications by Pi-
winski [26]. For round beam calculations we will begin
here with the more general formula (i.e. not limited to flat
beams) due to Piwinski [26, 33]. With the Touschek effect
the number of particles in a bunch decays with time t as

Nb =
Nb0

1 + t/T
, (42)

with Nb0 the initial bunch population, and T the Touschek
lifetime. Note that the decay is not exponential. The life-
time is given by [26]

1

T
=

r2ecNb
8
√
πβ2γ4σzσδϵxϵy

⟨σHF(δm)⟩ , (43)

with

F(δm) =

∫ ∞

δ2m

dτ

τ3/2
e−τB+I0(τB−)

×
[
τ

δ2m
− 1− 1

2
ln

(
τ

δ2m

)]
, (44)

B± =
1

2β2γ2

∣∣∣∣βxσ2
x

ϵxσ̃2
x

± βy
ϵy

∣∣∣∣ , (45)

where σH is defined in Eq. (39), and again ⟨⟩ indicates av-
eraging around the ring. In this formula the only assump-
tions are that there is no vertical dispersion and that the en-
ergies are non-relativistic in the beam rest frame (γ2σ2

x/β
2
x,

γ2σ2
y/β

2
y ≪ 1); there is no requirement that the beam be

flat. Parameters are average velocity over the speed of light



β, modified Bessel function of the first kind I0, relative
momentum acceptance δm (half aperture), and beam sizes
σx =

√
βxϵx + η2xσ

2
δ and σ̃x =

√
βxϵx + βxHxσ2

δ .
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Figure 12: The momentum acceptance, δm, for PEP-X.
This function is used in finding the Touschek lifetime.

We have calculated the momentum aperture as a function
of location in PEP-X in the following manner. In tracking,
at a given position s, a beam particle is given a relative
(positive) momentum kick δm, and it undergoes betatron
oscillation. The largest value of δm for which the particle
survives defines the positive momentum aperture at posi-
tion s. Then the same is done for a negative momentum
kick. The results are given in Fig. 12. Using the calcu-
lated δm(s) (Fig. 12) and Eq. (43), we obtain the lifetime
T = 11 hrs.

CONCLUSION
In this paper, we have most significantly developed a sys-

tematic method based on 4th-order geometric achromats to
design an USR where the sextupole magnets are the dom-
inant sources of the nonlinearity. One may choose a dif-
ferent achromat for the design of the lattice; however, our
methodology is still applicable. In fact, we know that there
are many similar solutions of 4th-order achromats. Since
they are not quite relevant to the design of PEP-X, we chose
not to present them in this paper.

To make a 4th-order geometric achromat, we chose to
eliminate all three tune shift terms in the Lie generator f4.
In general, this choice may not be suitable for other lattices.
Our method can be easily modified to have any values of
those three terms. This will allow us to have full control
of the size and orientation of the beam footprint in the tune
space of the transverse dimensions.

Our design of the PEP-X USR utilizes the existing PEP-
II tunnel, its high power and low emittance injector, and
much of the PEP-II RF system. Perhaps most importantly,
the design does not rely on new technology developments
and is therefore essentially ready to be built.
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