Application of the Principle of Maximum Conformality to Top-Pair Production

Stanley J. Brodsky and Xing-Gang Wu

1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
2 Department of Physics, Chongqing University, Chongqing 401331, P.R. China

(Dated: May 10, 2013)

A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μ_r. For example, by using the conventional way of setting $\mu_r \in [m_t/2, 2m_t]$, one obtains the total $t\bar{t}$ production cross-section $\sigma_{t\bar{t}}$ with the uncertainty $\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}} \sim (^{+3}\%\,-^{4}\%)$ at the Tevatron and LHC even for the present NNLO level.

The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. By using the PMC, all non-conformal $\{\beta_i\}$-terms in the perturbative expansion series are summed into the running coupling constant, and the resulting scale-fixed predictions are independent of the renormalization scheme.

The PMC is consistent with the renormalization group property that a physical result is independent of the renormalization scale and the choice of the initial renormalization scale μ_0. Any residual dependence on μ_0 for a finite-order calculation will be highly suppressed since the unknown higher-order $\{\beta_i\}$-terms will be absorbed into the PMC scales’ higher-order perturbative terms. We find that such renormalization group invariance can be satisfied to high accuracy for $\sigma_{t\bar{t}}$ at the NNLO level.

In this paper we apply PMC scale setting to predict the $t\bar{t}$ cross-section $\sigma_{t\bar{t}}$ at the Tevatron and LHC colliders. It is found that $\sigma_{t\bar{t}}$ remains almost unchanged by varying μ_r within the region of $[m_t/4, 4m_t]$. The convergence of the expansion series is greatly improved. For the $(q\bar{q})$-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small x-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy \sqrt{s}, but it is still smaller than m_t for $\sqrt{s} \lesssim 1$ TeV, and the resulting NLO cross-section is increased by $\sim 20\%$. As a result, a larger $\sigma_{t\bar{t}}$ is obtained in comparison to the conventional scale setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting $m_t = 172.9 \pm 1.1$ GeV, we predict $\sigma_{\text{Tevatron}, 1.96 \text{ TeV}} = 7.626^{+0.265}_{-0.257}$ pb, $\sigma_{\text{LHC}, 7 \text{ TeV}} = 171.8^{+5.8}_{-5.6}$ pb and $\sigma_{\text{LHC}, 14 \text{ TeV}} = 941.3^{+26.5}_{-26.5}$ pb.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh

Keywords: PMC, Renormalization Scale, Top-quark pair production

I. INTRODUCTION

Physical predictions in Quantum Chromodynamics (QCD) are in principle invariant under any choice of renormalization scale and renormalization scheme. It is common practice to simply guess a renormalization scale $\mu_r = Q$ and keep it fixed during the calculation, Q being the typical momentum transfer of the process, and then vary it over the range $[Q/2, 2Q]$ to show the scale-uncertainty $^{[1]}$. However, this procedure leads to scheme-dependent predictions at any finite order in perturbation theory, and it gives the wrong result when applied to QED processes. In the case of the W plus three-jet production at the Tevatron and LHC, this procedure can even predict negative QCD cross sections at the next-to-leading-order $^{[1]}$ because of uncancelled large logarithms as well as the “renormalon” terms which diverge as $(n!\alpha_s^n)$ and can give sizable contributions.

As we shall discuss, the optimal procedure for obtaining precise QCD predictions is to choose the renormalization scale so that the result is scheme-independent at any fixed order in α_s. The Brodsky-Lepage-Mackenzie method (BLM) $^{[2]}$ and the Principle of Maximum Conformality (PMC) $^{[3,5]}$ provide the solution to this problem. The PMC is the principle underlying BLM scale setting, and they are equivalent to each other through the PMC - BLM correspondence principle $^{[4]}$, so if not specifically stated, we shall treat them on equal footing.

The main idea of PMC scale setting is that, after proper procedures, all non-conformal $\{\beta_i\}$-terms in the perturbative expansion are summed into the running coupling so that the remaining terms in the perturbative series are identical to that of a conformal theory; i.e., the corresponding theory with $\{\beta_i\} \equiv \{0\}$. After PMC scale setting, the divergent “renormalon” series with $n!$-growth does not appear in the conformal series. QCD predictions

1 email: sbb@slac.stanford.edu
2 email: wuxg@cqu.edu.cn

* It is often argued that by varying the renormalization scale, one can estimate contributions from higher-order terms. However, this procedure only exposes the $\{\beta_i\}$-dependent non-conformal terms, not the entire perturbative series.

Published in arXiv:1204.1405.

Work supported in part by US Department of Energy under contract DE-AC02-76SF00515.
using PMC are then independent of the choice of renormalization scheme. Since renormalon terms are absent, one obtains a more convergent perturbative expansion series, and thus the full next-to-leading-order (NLO), or even the leading-order (LO) calculation, is often enough to achieve the required accuracy.

The PMC method satisfies all self-consistent conditions, including the existence and uniqueness of the scale, reflexivity, symmetry and transitivity [6]. In particular, the transitivity property shows that the predictions in pQCD are independent of the choice of intermediate renormalization scheme. The transitivity is thus equivalent to the renormalization group invariance. The specific value of the choice of renormalization scheme, as required by the invariance principle used to derive the renormalization group equation theorem. This is the correct one \(\tilde{C}_{11} \) since it sums the contributions not associated with the region [13] since it sums the contributions not associated with the virtuality of the exchanged photon, i.e. \(\mu_r^2 = q^2 = t \). Thus, we have

\[
\alpha(t) = \frac{\alpha(t_0)}{1 - \Pi(t, t_0)}, \tag{1}
\]

where \(\Pi(t, t_0) = (\Pi(t, 0) - \Pi(0, 0))/(1 - \Pi(t_0, 0)) \) which sums all vacuum polarization contributions to the dressed photon propagator. Because final result when summed up to all orders is independent of \(t_0 \), one can choose any initial renormalization scale \(t_0 \). Of course in QCD, the question is much more complicated due to its non-Abelian nature. However its scales can also be unambiguously set at each finite order by the PMC procedure.

Formally, as a starting point, one needs to introduce an initial renormalization scale \(\mu_r^{\text{init}} \) for PMC scale setting, which in practice can be set as a typical physical scale \(Q \) of the process, i.e. \(\mu_r^{\text{init}} = Q \). However, the final result will be independent of \(\mu_r^{\text{init}} \) after we have summed the relevant \(\{ \beta_i \} \)-terms; i.e. for any physical observable \(\mathcal{O} \), we have

\[
\frac{\partial \mathcal{O}(\mu_r^{\text{PMC}})}{\partial \mu_r^{\text{init}}} = 0, \tag{2}
\]

where \(\mu_r^{\text{PMC}} \) stands for the PMC scale.

The essential steps for implementing the PMC are as follows: Consider the perturbative expansion for a physical quantity at an arbitrary initial scale \(\mu_r^{\text{init}} \),

\[
\rho_n = C_0 \alpha_s^0(\mu_r^{\text{init}}) + \sum_{i=1}^n C_i(\mu_r^{\text{init}}) \alpha_s^{i+1}(\mu_r^{\text{init}}) \tag{3}
\]

expanded to \(n \)-th order in \(\alpha_s \). Its NLO coefficient \(C_1 \) can be generally written as

\[
C_1(\mu_r^{\text{init}}) = C_{10}(\mu_r^{\text{init}}) + C_{11}(\mu_r^{\text{init}}) n_f
\]

\[
= \tilde{C}_{10}(\mu_r^{\text{init}}) + \tilde{C}_{11}(\mu_r^{\text{init}}) \beta_0,
\]

where \(\beta_0 = 11 - 2/3n_f \), the coefficients \(C_{10} \) and \(C_{11} \) are \(n_f \)-independent, \(\tilde{C}_{10} = C_{10} + \frac{33}{2}C_{11} \), and \(\tilde{C}_{11} = -\frac{3}{2}C_{11} \). The LO PMC scale \(\mu_r^{\text{PMC}} \) is then set by the condition

\[
\tilde{C}_{11}(\mu_r^{\text{PMC}}) = 0. \tag{4}
\]

This prescription ensures that, as in QED, all vacuum polarization contributions due to the light-fermion pairs are absorbed into the coupling constant. The resulting series is conformal since the nonzero \(\{ \beta_i \} \)-terms are now absent. Moreover the PMC prediction is independent of the choice of renormalization scheme, as required by the renormalization group invariance. The specific value of the PMC scale will depend on the scheme, but the physical result is the same; i.e., the displacement between the arguments of different schemes is accounted for. Note that because \(C_{11} \propto \tilde{C}_{11} \), one can in practice obtain the PMC scale by using the equation \(\tilde{C}_{11}(\mu_r^{\text{PMC}}) = 0 \), which is usually adopted in the BLM-literature.

The PMC scale setting fixes the final renormalization scale at any finite order and it is consistent with this renormalization group equation theorem. This is also the invariance principle used to derive the renormalization group results such as the Callan-Symanzik equations [14] [15]. The physical observable \(\mathcal{O} \left(\mu_r^{\text{PMC}} \right) \) is independent of the choice of different renormalization scheme such as the \(\overline{MS} \)-scheme, the momentum-subtraction scheme and etc. Such scheme-independence can be adopted to derive commensurate scale relations among different observables and to find proper scale-displacements among the PMC scales which are derived under different schemes or conventions [10]. After PMC scale setting, the number of active flavors \(n_f \) in the \(\{ \beta_i \} \)-function is correctly determined.

As a fixed-order QCD calculation, there is some residual initial-scale dependence because of the unknown-higher-order \(\{ \beta_i \} \)-terms. Such residual renormalization

\[2\] This is different from the Principle of Minimum Sensitivity (PMS) [12] which chooses \(\mu_r \) at the stationary point of \(\mathcal{O} \), i.e. \(d\mathcal{O}(\mu_r^{\text{PMS}})/d\mu_r^{\text{PMS}} = 0 \). It is noted that PMS does not satisfy the transitivity property of the renormalization group [6]; i.e. it predicts different correlations between two physical observables when they are related through different intermediate schemes. Moreover, it gives unphysical results for 2-jet and 3-jet production in \(e^+e^- \) annihilation within the small jet-invariant-mass region [13] since it sums the contributions not associated with the renormalization into the running coupling.

\[3\] This should be used with care, since if \(\tilde{C}_{10} \) is a constant free of scale, then one will obtain the wrong NLO coefficient instead of the correct one \(\tilde{C}_{10} \).
scale-uncertainty can be greatly suppressed due to the fact that those higher-order \(\{ \beta_i \} \)-terms will be absorbed into the PMC scales’ higher-order \(\alpha_s \)-terms. Recently, we have demonstrated a systematic and scheme-independent treatment of PMC up to next-to-next-to-leading order (NNLO) \(^4\). A brief report on PMC is presented in Ref.\[3\,\]. As an important application, we shall in this paper predict the total top-quark pair production cross-section up to NNLO without renormalization scheme or scale ambiguity.

The top quark is the heaviest elementary particle within the Standard Model, and because of its large coupling to the Higgs, the top-quark production processes provide a sensitive probe of electroweak symmetry breaking. The precise measurement of the top-quark properties is an important task for the Tevatron and the LHC hadron colliders. The top-quark pair production cross-section can be used as a basic quantity to measure the top-quark pole mass \(m_t \), to constrain new physics and to extract useful information on the parton distribution function (PDF) of the proton. Thus the top-quark production cross-section is of central and fundamental interest, both theoretically and experimentally.

The total top-pair production cross-section \(\sigma_{t\bar{t}} \) has been measured at the Tevatron with a precision \(\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}} \sim \pm 7\% \) \(^{20,\, 21}\) and the two LHC experiments have already reached similar sensitivity \(^{22,\, 23}\). With more statistics forthcoming, a more precise theoretical prediction is required.

The total cross-section for the top-pair production has been calculated up to NLO within the \(\overline{MS} \)-scheme in Refs.\(^ {24,\, 27}\); explicit analytical results are provided in Ref.\(^ {28}\). Large logarithmic corrections associated with the soft gluon emission have been investigated and resummed up to next-to-next-to-leading-logarithmic corrections \(^ {29,\, 33}\). Even though the complete NNLO fixed-order results are not available at present, parts of the full NNLO fixed order results have been derived through resummation \(^ {33,\, 38}\). This NNLO approximation is supported by the observation that the production of a top-quark pair with an additional jet is small \(^ {39,\, 40}\). These results provide the foundation for approximating the NNLO results.

The dependence on the renormalization and factorization scales at the NNLO accuracy has been discussed using conventional procedures in Refs.\(^ {34,\, 35}\). In this paper, we will provide a new perspective using PMC scale setting. We shall first set the PMC scales up to NLO with the help of the NNLO analytic expressions, and we will then give a detailed discussion on how this procedure improves the predictability of pQCD. For this purpose, we shall adopt the analytical expressions up to NNLO provided in the literature, e.g. Ref.\(^ {41}\).

\(^4\) Another way of treating the \(\{ \beta_i \} \)-series to set the PMC/BLM scale can be found in Refs.\(^ {13,\, 14}\).
renormalized in the on-shell (pole-mass) scheme. Setting \(s = 4m^2(S/4m^2)^{\mu_1} \) and \(\bar{s} = s(S/s)^{\mu_2} \), we can transform the two-dimensional integration over \(s \) and \(\bar{s} \) into the integration over two variables \(y_{1,2} \in [0, 1] \). These integrals can be performed numerically using the VEGAS program.\(^5\)

The partonic subprocess cross-sections \(\sigma_{ij} \) can be decomposed into terms of the dimensionless scaling functions \(f_{ij}^m \), where \((ij) = ([q\bar{q}], [qg], [gq], [g\bar{g}]) \) stands for the four production channels and \(m = 0, 1, 2 \) stands for the LO, NLO and NNLO functions respectively.\(^6\) Up to NNLO, they take the following form

\[
\sigma_{ij} = \frac{1}{m_t} \left\{ f_{ij}^1(\rho, Q) a_2^2(Q) + f_{ij}^2(\rho, Q) a_3^2(Q) \right\},
\]

(6)

where \(\rho = 4m^2/s \), and we have, for convenience, temporarily set \(\mu_f = \mu_r = Q, \alpha_s(Q)/\pi \). The analytic expressions of the scale functions \(f_{ij}^{1,2}(\rho, Q) \), which shows the full renormalization and factorization scale dependence, can be directly read from the HATHOR program.\(^7\)

We will apply the PMC scale setting procedure to each renormalizable hard subprocess which enters the pQCD leading-twist factorization procedure; the initial and final quark and gluon lines are taken to be on-shell so that the calculation of each hard subprocess amplitude is gauge invariant. Thus the application of PMC to hard subprocesses does not involve the factorization scale.

According to the PMC scale setting, we need to identify the explicit terms that are \(n_f \)- or \(n_{g_f} \)- dependent. One must be careful that only those \(n_f \)-terms associated with the \(\{\beta_i\} \)-terms will be absorbed into the running of \(\alpha_s \). Coulomb-type corrections will lead to sizable contributions in the threshold region \([45, 46] \) which are enhanced by factors of \(\pi \) and the PMC scale can be relatively soft for \(v \to 0 \) (\(v = \sqrt{\rho} \), the heavy quark velocity). Thus the terms which are proportional to \((\pi/v) \) or \((\pi/v)^2 \) will be treated separately.\(^8\)

The NLO and NNLO scaling functions can be written as

\[
f_{ij}^1(\rho, Q) = [A_{1ij} + B_{1ij} n_f] + D_{1ij} \left(\frac{\pi}{v} \right)
\]

(7)

The result is independent of \(\bar{m}_R \) and scheme at fixed order.

\(^5\) An improvement of the VEGAS program to derive precise numerical results can be found in the generators BCVEGPy\(^13\) and GENIXCC\(^14\).

\(^6\) There are also \([q\bar{q}]\)- and \([g\bar{g}]\)- channels at the NLO and NNLO orders. However, because of the large suppression coming from the parton luminosities and the phase-space (due to more jets in the final state), their cross-sections are much smaller than the \([qg] \)- or \([gq] \)-channel. We will not discuss these channels here.

\(^7\) Note that in the appendix of the HATHOR manual\(^14\), the scaling function \(f_{qq,gg}^{(0)} \) in the functions \(f_{qq,gg}^{(3)} \) and \(f_{qq,gg}^{(2)} \) (which are not proportional to \(n_f^2 \)) should be replaced by its limiting form at \(\rho \to 1 \), since all the coefficients of the scaling functions are fitted to per mil accuracy through such parameterization\(^13\).

FIG. 2. A “flow chart” which illustrates the PMC procedure.

\[
f_{ij}^2(\rho, Q) = [A_{2ij} + B_{2ij} n_f + C_{2ij} n_f^2] + [D_{2ij} + E_{2ij} n_f] \left(\frac{\pi}{v} \right) + F_{2ij} \left(\frac{\pi}{v} \right)^2.
\]

(8)

Substituting these scaling functions into Eq. (6), the partonic cross-section \(\sigma_{ij} \) becomes

\[
m_{ij}^2 \sigma_{ij} = A_{0ij} a_2^2(Q) + \left\{ \left[A_{1ij} + B_{1ij} n_f \right] + D_{1ij} \left(\frac{\pi}{v} \right) \right\} a_3^2(Q) + \left\{ \left[A_{2ij} + B_{2ij} n_f + C_{2ij} n_f^2 \right] + \left[D_{2ij} + E_{2ij} n_f \right] \left(\frac{\pi}{v} \right) + F_{2ij} \left(\frac{\pi}{v} \right)^2 \right\} a_4^2(Q).
\]

(9)

where \(A_{0ij} = f_{ij}^{(0)}(\rho, Q) \).

Following the same procedures as described in Ref.\(^3\), the PMC scales can be set order-by-order, treating the Coulomb and non-Coulomb contributions separately. A “flow chart” which illustrates the PMC procedure is shown in Fig. (2). More explicitly, the first step is to set the effective scale \(Q_1^* \) and \(Q_2^* \) at LO:

\[
m_{ij}^2 \sigma_{ij} = A_{0ij} a_2^2(Q_1^*) + \left[\tilde{A}_{1ij} \right] a_3^2(Q_1^*) + \left[\tilde{A}_{2ij} + \tilde{B}_{2ij} n_f \right] a_3^2(Q_1^*) + D_{1ij} \left(\frac{\pi}{v} \right) a_3^2(Q_2^*) + \left[\tilde{D}_{2ij} \left(\frac{\pi}{v} \right) \right] a_4^2(Q_2^*).
\]

(10)

The second step is to set the effective scale \(Q_{11}^* \) at NLO:

\[
m_{ij}^2 \sigma_{ij} = A_{0ij} a_2^2(Q_1^*) + \left[\tilde{A}_{1ij} \right] a_3^2(Q_1^{1*}) + \left[\tilde{A}_{2ij} \right] a_3^2(Q_1^{1*}) + D_{1ij} \left(\frac{\pi}{v} \right) a_3^2(Q_2^*) + \left[\tilde{D}_{2ij} \left(\frac{\pi}{v} \right) + F_{2ij} \left(\frac{\pi}{v} \right)^2 \right] a_4^2(Q_2^*)
\]

\[
= A_{0ij} a_2^2(Q_1^*) + \left[\tilde{A}_{1ij} \right] a_3^2(Q_1^{1*}) + \left[\tilde{A}_{2ij} \right] a_3^2(Q_1^{1*}) \left[\frac{2\kappa}{1 - \exp(-2\kappa)} \right] a_3^2(Q_2^*),
\]

(11)
where $\kappa = \frac{\beta_{2}}{\beta_{1}}$, $\alpha_{s}(Q_{1}^{2}) + \frac{\beta_{2}}{\beta_{1}} \left(\frac{\pi}{v} \right) \alpha_{s}(Q_{2}^{2})$. Q_{1}^{2} and Q_{1}^{**} are LO and NLO PMC scales for the usual non-Coulomb part and Q_{2}^{2} is the LO PMC scale for the Coulomb part. Note that the effective scales will be a perturbative series of α_{s} so as to absorb all n_f-dependent terms properly.\[16] \[10] When performing these scale shifts, we eliminate the n_f-terms completely. At the same time, the corresponding coefficients at the given α_s-order are modified, since the changes to the coefficients are proportional to $\{\beta_i\}$-functions.

For the usual non-Coulomb terms, the two PMC scales Q_{1}^{**} satisfy

$$
\ln \frac{Q_{1}^{**2}}{Q^{2}} = \ln \frac{Q_{10}^{2}}{Q^{2}} + \frac{\chi}{4} \beta_{0} \ln \frac{Q_{10}^{2}}{Q^{2}} \alpha_{s}(Q)
$$

and

$$
\ln \frac{Q_{1}^{**2}}{Q_{1}^{2}} = \frac{2 \tilde{B}_{2ij}}{A_{1ij}}.
$$

Here $\beta_{0} = \frac{4}{3} C_{A} - \frac{2}{3} T n_{f} = 11 - 2 n_{f}$, where $C_{A} = N_{c}$ and $T = 1/2$ for a general SU(N_{c}) color-group. The PMC procedure is independent of N_{c}, and here we have set $N_{c} = 3$. The order-by-order coefficients are

$$
\tilde{A}_{1ij} = \frac{2 A_{1ij} + 33 B_{1ij}}{2}
$$

$$
\tilde{A}_{2ij} = \frac{1}{8 A_{0ij}} \left[99 B_{1ij} (2 A_{1ij} + 33 B_{1ij}) + A_{0ij} (8 A_{2ij} + 306 B_{1ij} - 2178 C_{2ij}) \right]
$$

$$
\tilde{B}_{2ij} = \frac{1}{4 A_{0ij}} \left[4 A_{0ij} (B_{2ij} + 33 C_{2ij}) - B_{1ij} (19 A_{0ij} + 6 A_{1ij} + 99 B_{1ij}) \right]
$$

$$
\tilde{A}_{2ij} = \frac{2 A_{2ij} + 33 B_{2ij}}{2}
$$

In the case of the Coulomb terms, we adopt the Sommerfeld rescattering formula to sum up the higher-order (π/v)-terms. Notice that the overall factor (π/v) in the last line of Eq.\[11] will be canceled by a v^{l}-factor in D_{1ij} ensuring a finite result at $v = 0$. The LO PMC scale Q_{2}^{2} satisfies

$$
\ln \frac{Q_{2}^{2}}{Q^{2}} = \frac{E_{2ij}}{D_{1ij}}
$$

with the coefficient

$$
\tilde{D}_{2ij} = (2 D_{2ij} + 33 E_{2ij})/2.
$$

Since the channels $(ij) = \{(q\bar{q}), (gg), (qg), (g\bar{q})\}$ are distinct and non-interfering, their PMC scales should be set separately. The procedure is gauge invariant.

B. $(q\bar{q})$-channel

For the $(ij) = (q\bar{q})$ channel, all the coefficients $A_{0q\bar{q}}$, $A_{1q\bar{q}}$ and etc. are non-zero. The corresponding contributions to the cross-section are conveniently expressed by the absorptive contributions (cuts) of the Feynman diagrams. We present the typical cut diagrams for the n_f-terms and the Coulomb-terms in Fig.\[4].

Following PMC scale setting, all n_f-terms which are associated with the $\{\beta_i\}$-terms are absorbed into the α_s-coupling step-by-step:

- When performing the scale shifts, the terms A_{1ij}, A_{2ij}, D_{2ij}, etc. are modified so that the final expression is conformal.
FIG. 5. Comparison with of the PMC coefficients for the \((gg)\)-
and \((q\bar{q})\)- channels versus the subprocess collision energy \(\sqrt{s}\).
\(Q = m_t = 172.9\) GeV.

- When performing the scale shift \(Q \to Q_1^{*}\), the
 first type of \(\{\beta_i\}\)-terms \(B_{1q\bar{q}}\) (Fig. (3b)) and \(C_{2q\bar{q}}\)
 (Fig. (5c)) are eliminated exactly. The part of \(B_{2q\bar{q}}\), i.e. Fig. (3h)
 which contains the same type of \(\{\beta_i\}\)-term is also absorbed into \(\alpha_s\)-running. The
 remaining part of \(B_{2q\bar{q}}\) (Fig. (5b)) is compensated by \(A_{1q\bar{q}}\) and \(B_{1q\bar{q}}\) to ensure that the first type
 of \(\{\beta_i\}\)-terms are absorbed exactly, which results in a new variable \(\tilde{B}_{2q\bar{q}}\). Because \(\langle B_{1q\bar{q}}/A_{0q\bar{q}} \rangle\)
 increases monotonically with \(\sqrt{s}\), the scale \(Q_1^{*}\) shows the same trend versus \(\sqrt{s}\).

- When performing the scale shift \(Q_1^{*} \to Q_2^{*}\), the
 second type of \(\{\beta_i\}\)-terms, i.e. \(\tilde{B}_{2q\bar{q}}\) (Fig. (5a)) are eliminated. As shown in Fig. (4),
 the value of \(\tilde{B}_{2q\bar{q}}\) is always negative and \(\tilde{A}_{1q\bar{q}}\) has a minimum
 value at small \(\sqrt{s}\). With the help of Eq. (13), one finds that the NLO scale \(Q_2^{*}\)
 is smaller than \(Q_1^{*}\). Note especially that there is a concave dependence for \(Q_2^{*}\) versus \(\sqrt{s}\) as shown in Fig. (6).

- Similarly, when performing the scale shift \(Q \to Q_2^*\) for the Coulomb type contribution, the term \(E_{2q\bar{q}}\)
 (Fig. (5b)) is eliminated.

C. \((gg)\)-channel

For the \((ij) = (gg)\) channel, we have \(C_{2gg} = 0\), and the
other coefficients \(A_{0gg}, A_{1gg}\), etc. are non-zero. Thus the
\((gg)\)-channel can be treated in a similar way as the \((q\bar{q})\)-
channel. As can be seen from Fig. (5), in contrast to the
\((q\bar{q})\)-channel, both \(2\tilde{B}_{2gg}/\tilde{A}_{1gg}\) and \(3\tilde{B}_{1gg}/A_{0gg}\) are close
to zero, thus its LO and NLO PMC scales \((Q_1^* \text{ and } Q_2^*)\)
are close to \(Q\) and are changed more smoothly with \(\sqrt{s}\).

In Refs. [53, 140], the authors have suggested another
way to set the effective coupling for the three-gluon vertex
which depends on its input three momenta and gives
rise to an effective scale \(Q_{eff}^2\) which governs the behavior
of the three-gluon vertex up to one-loop level. Such
effective scale is consistent with the PMC scale setting
in principle, however its momenta must be space-like or
time-like, and it cannot be adopted for the present case
when the two initial gluon momenta are set to be on mass shell.

D. \((qq)\)- or \((q\bar{q})\)- channel

For the \((ij) = (q, q)\) or \((q, \bar{q})\) channel, we have \(A_{0ij} = 0, D_{1qg} = 0, E_{2qg} = F_{2qg} = 0\), which shows that the
Coulomb type corrections start only at the NNLO order.
Thus its scale setting is greatly simplified, and we only
need one LO PMC scale for these two channels, i.e.
\[
m_t^2 \hat{\alpha}_{ij} = |A_{1ij}| a_s^s(Q) + |A_{2ij} + B_{2ij} n_f| a_s^s(Q) \\
+ [D_{2ij} \left(\frac{\pi}{v} \right) a_s^s(Q) \\
= A_{1ij} a_s^s(Q^*) + [\tilde{A}_{2ij}] a_s^s(Q^*) + D_{2ij} \left(\frac{\pi}{v} \right) a_s^s(Q),
\]
where \((i, j) = (q, q)\) or \((q, \bar{q})\),
\[
\ln \frac{Q_{eff}^2}{Q^2} = \frac{2B_{2ij}}{A_{1ij}} \\
\tilde{A}_{2ij} = A_{2ij} + \frac{3}{2} B_{2ij}.
\]

III. NUMERICAL RESULTS AND DISCUSSIONS

The basic input parameters are chosen with the following
values: for the top-quark mass, we adopt the
present PDG value [50], which includes the most recent
Tevatron Run II result 173.1 ± 0.6 ± 1.1 GeV [20], i.e.
\(m_t = 172.9 ± 1.1\) GeV.

It should be emphasized that the factorization scale \(\mu_f\)
which enters into the predictions for QCD inclusive reactions
is introduced to match nonperturbative and
perturbative aspects of the parton distributions in hadrons.
The factorization scale should be chosen to match the
nonperturbative bound state dynamics with perturbative
DGLAP evolution. This could be done by using the
nonperturbative models such as AdS/QCD and light-front
holography, a recent report can be found in Ref.[51]. At
present, to keep attention on the renormalization scale,
we set \(\mu_f \equiv m_t\). With such a choice, the dependence on
the large logarithms \(\ln \mu_f^2/m_t^2\) is eliminated.

To apply PMC scale setting, one has to introduce an
initial value for the renormalization scale, i.e. \(\mu_{init}\). As
a reasonable choice for \(\mu_{init}\), we take \(\mu_{init} = Q\), where
\(Q\) stands for the typical momentum transfer of the process.
For example, \(Q\) can be taken as \(m_t, 2m_t, \sqrt{s}, \text{ etc.}\)
As the default choice, we take \(Q = m_t\). In principle,
the prediction will not depend on the choice of the initial renormalization scale \(\mu_{\text{init}}^{\text{ren}} \) after we have summed the \(\{ \beta_i \} \)-terms up to all orders. There is some residual initial-scale dependence at fixed order because of the unknown-higher-order \(\{ \beta_i \} \)-terms; however we will show that such residual scale dependence can be greatly suppressed by using the PMC.

As is conventional, we have set \(\mu_f \equiv \mu_r \equiv Q \) in Sec.II. When \(\mu_f \) is not equal to \(Q \), the formulas listed in the above section should be used with care, i.e. all the \(Q \)-terms in the scaling functions that exactly correspond to \(\mu_f \) should be picked out and fixed during the PMC scale setting. Especially, the terms at NNLO which involve the factor \(\ln \frac{Q^2}{\mu_f^2} \) must be separated into two parts, one is proportional to \(\ln \frac{\mu_f^2}{m_t^2} \) which should be kept in its original form, and the other one is proportional to \(\ln \frac{Q^2}{m_t^2} \) which should be absorbed into the lower-order \(\alpha_s \)-terms through the standard PMC scale setting. In such a way, we can isolate the correct \(n_f \)-terms from the NLO and NNLO scaling functions.

For the PDFs, we adopt CTEQ version 2010, i.e. CT10 [52], for our discussion. The effects from the PDF uncertainty and normalization of the QCD coupling will be determined by adopting different PDF sets determined by varying \(\alpha_s(m_Z) \in [0.113, 0.230] \). The NNLO \(\alpha_s \)-running is adopted whose behavior is determined by using the same value of \(\alpha_s(m_Z) \) used in the chosen PDF set [53].

<table>
<thead>
<tr>
<th></th>
<th>Conventional scale setting</th>
<th>PMC scale setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>((q\bar{q}))-channel</td>
<td>4.989</td>
<td>0.975</td>
</tr>
<tr>
<td>((gg))-channel</td>
<td>0.522</td>
<td>0.425</td>
</tr>
<tr>
<td>((gq))-channel</td>
<td>0.000</td>
<td>-0.0366</td>
</tr>
<tr>
<td>((g\bar{q}))-channel</td>
<td>0.000</td>
<td>-0.0367</td>
</tr>
<tr>
<td>sum</td>
<td>5.511</td>
<td>1.326</td>
</tr>
</tbody>
</table>

TABLE I. Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron with \(\sqrt{s} = 1.96 \text{ TeV} \). For the conventional scale setting, we set the renormalization scale \(\mu_r \equiv Q \). For the PMC scale setting, we set the initial renormalization scale \(\mu_{\text{init}}^{\text{ren}} \equiv Q \). Here \(Q = m_t = 172.9 \text{ GeV} \) and the central CT10 as the PDF [52].

<table>
<thead>
<tr>
<th></th>
<th>Conventional scale setting</th>
<th>PMC scale setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>((q\bar{q}))-channel</td>
<td>23.283</td>
<td>3.374</td>
</tr>
<tr>
<td>((gg))-channel</td>
<td>78.692</td>
<td>45.918</td>
</tr>
<tr>
<td>((gq))-channel</td>
<td>0.000</td>
<td>-0.401</td>
</tr>
<tr>
<td>((g\bar{q}))-channel</td>
<td>0.000</td>
<td>-0.420</td>
</tr>
<tr>
<td>sum</td>
<td>101.975</td>
<td>48.471</td>
</tr>
</tbody>
</table>

TABLE II. Total cross-sections (in unit: pb) for the top-quark pair production at the LHC with \(\sqrt{s} = 7 \text{ TeV} \). For the conventional scale setting, we set the renormalization scale \(\mu_r \equiv Q \). For the PMC scale setting, we set the initial renormalization scale \(\mu_{\text{init}}^{\text{ren}} \equiv Q \). Here \(Q = m_t = 172.9 \text{ GeV} \) and the central CT10 as the PDF [52].

We first present the total cross-sections for the top-quark pair production under the PMC scale setting by
fixing all the input parameters to their central values. The results are presented in Tables I, II and III, where for comparison, the total cross-sections for the “conventional scale setting” method are also presented. Here “conventional scale setting” means we will directly use Eq. (6) to do the numerical calculation, which stands for “conventional scale setting” method. The results after PMC scale setting, we set the initial renormalization scale $\mu_{\text{init}} = Q$. Here $Q = m_t = 172.9$ GeV.

The results of the PMC scale setting, we set the renormalization scale $\mu_r \equiv Q$. For the PMC scale setting, we set the initial renormalization scale $\mu_{\text{init}} = Q$. Here $Q = m_t = 172.9$ GeV and the central CT10 as the PDF [52].

• Tables I, II and III show that the pQCD convergence is improved after PMC scale setting, especially since the NNLO contribution becomes small. This is due to the fact that we have resummed the universal and gauge invariant higher-order corrections associated with the $\{\beta_i\}$-terms into the LO and NLO -terms by suitable choice of PMC scales. It is also the reason why after PMC scale setting, the total cross-section $\sigma_{t\bar{t}}$ is increased by $\sim 2\%$ at the Tevatron and $\sim 4\%$ at the LHC. Such a small increment of the total cross-section after PMC scale setting in some sense means that the naive choice of $\mu_r \equiv m_t$ is a viable approximation for estimating the total cross-section. However as will be shown later, by using PMC, the renormalization scale uncertainty is greatly suppressed and essentially eliminated at the NNLO level.

Table III. Total cross-sections for the top-quark pair production at the LHC with $\sqrt{s} = 14$ TeV. For the conventional scale setting, we set the renormalization scale $\mu_r \equiv Q$. For the PMC scale setting, we set the initial renormalization scale $\mu_{\text{init}} = Q$. Here $Q = m_t = 172.9$ GeV and the central CT10 as the PDF [52].

<table>
<thead>
<tr>
<th>Channel</th>
<th>Conventional scale setting</th>
<th>PMC scale setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>$(q\bar{q})$-channel</td>
<td>73.445</td>
<td>9.003</td>
</tr>
<tr>
<td>(gq)-channel</td>
<td>487.517</td>
<td>262.960</td>
</tr>
<tr>
<td>(gg)-channel</td>
<td>0.000</td>
<td>9.290</td>
</tr>
<tr>
<td>sum</td>
<td>560.962</td>
<td>281.285</td>
</tr>
</tbody>
</table>

FIG. 6. PMC scales versus the sub-process collision energy \sqrt{s} for the top-quark pair production up to $\sqrt{s} = 7$ TeV, where we have set the initial renormalization scale $\mu_{\text{init}} = Q$. Here $Q = m_t = 172.9$ GeV.

- $(q\bar{q})$-channel
- (gg)-channel
- LO, NLO, $NNLO$, $total$
FIG. 7. Typical n_f^2-terms for the electron-muon elastic scattering process at α^3-order, where the solid circles stand for the light-lepton loops. Diagrams (a) and (b) are vacuum polarization contributions to the dressed photon propagator which will be absorbed into $\alpha(t)$ as shown by Eq.(1). Diagrams (c) and (d) introduce new type of $\{\beta_i\}$-terms and new PMC scales must be introduced.

- Since different channels have quite different behaviors, it is necessary to use different PMC scales for each channel. The PMC scales are functions of \sqrt{s}, whose behaviors up to $\sqrt{s} = 7$ TeV are presented in Fig.(8). Because of the behaviors of the PMC coefficients shown in Fig.(9), the LO PMC scale for the $(q\bar{q})$-channel increases with \sqrt{s} and is much larger than m_t for large \sqrt{s}. As a result, its LO cross-sections at the Tevatron and LHC are decreased by 3% - 5% relative to the standard guess of setting $\mu_r \equiv m_t$ under the conventional scale setting method. Because $|B_{1gg}/A_{1gg}| \ll 1$, the LO PMC scale for the (gg)-channel is slightly different from m_t and its LO cross-section remains almost unchanged. It is noted that there is a dip for the NLO scale of the $(q\bar{q})$-channel, which is caused by the fact that B_{2gq}/A_{1gq} reaches its smallest value when $\sqrt{s} \approx [\sqrt{2}\exp(5/6)]m_t \sim 563$ GeV. The NLO PMC scale for the $(q\bar{q})$-channel is smaller than m_t by about one order of magnitude in the low x-region. As a result, its NLO cross-section will be greatly increased; i.e. it is a factor of two times larger than its value derived without PMC scale setting. As for the (gg)-channel, its NLO PMC scale slightly increases with \sqrt{s}, but it is smaller than m_t for $\sqrt{s} \lesssim 1$ TeV, so that its NLO cross-sections at the Tevatron and LHC are increased by 15% - 20%. These points are shown explicitly in Tables I and II.

- As has been mentioned in the Introduction, there is residual initial renormalization scale dependence because of the unknown-higher-order $\{\beta_i\}$-terms. For the simpler QED process such as the electron-muon elastic scattering through the one-photon-exchange only, there is one type of $\{\beta_i\}$-terms, which can be conveniently summed up to all orders and its renormalization scale can be unambiguously set as the virtuality of the exchanged photon as shown by Eq.(1). Thus there is no residual initial scale dependence for the one-photon exchange process. When two or more photon exchange diagrams are involved, more than one types of $\{\beta_i\}$-terms will emerge; i.e. Fig.(7,8) shows the diagrams with two-photon exchange, and there are two types of $\{\beta_i\}$-terms which must be absorbed into two different PMC scales. Because of the unknown higher-order corrections for these two types of $\{\beta_i\}$-terms, there is still residual initial scale dependence.

FIG. 8. The ratio $R_{Q}^{PMC} = \frac{\mu_r^{PMC}}{\mu_r^{\text{LO}}} |_{|\mu_r^{\text{LO}}| = m_t}$ versus the sub-process collision energy \sqrt{s} up to 14 TeV, where $Q = 10 m_t$, $20 m_t$ and \sqrt{s} respectively. Here $m_t = 172.9$ GeV. These results show that the renormalization scales for $t\bar{t}$ production determined by PMC scale setting at finite order is insensitive to the choice of very disparate initial scales.
The PMC scales should be a perturbative series of α_s so as to absorb all $\{\beta_i\}$-dependent terms properly. Therefore, the residual initial renormalization scale uncertainty can be greatly suppressed due to the fact that those higher-order $\{\beta_i\}$-terms can be absorbed into the PMC scales’ higher-order terms. We define a ratio R_Q^{PMC} to show how the change of initial renormalization scale affects the PMC scales; i.e.,

$$R_Q^{PMC} = \frac{\mu_r^{PMC}|_{\mu_r^{\text{init}}=Q}}{\mu_r^{PMC}|_{\mu_r^{\text{init}}=m_t}},$$

(21)

where $\mu_r^{PMC}|_{\mu_r^{\text{init}}=Q}$ stands for the PMC scales determined under the condition of $\mu_r^{\text{init}} = Q$, which is Q_1^s (LO scale for the non-Coulomb part), Q_2^s (NLO scale for the non-Coulomb part) or Q_3^s (LO scale for the Coulomb part) respectively. In Fig. (8), we present the value of R_Q^{PMC} versus \sqrt{s} up to 14 TeV. In order to amplify the differences, we take three disparate scales to draw the curves, i.e. $Q = 10m_t$, $20m_t$ and \sqrt{s} respectively. In Fig. (8), the ratios for the dominant $q\bar{q}$- and gg- channels are presented, and the ratios for the LO/NLO non-Coulomb PMC scales and LO Coulomb PMC scale are presented in a separate way.

As shown in Fig. (8), the LO PMC scale Q_2^s for the Coulomb-term in both channels are unchanged under different choice of Q. Among these choices, $Q = \sqrt{s}$ usually gives the largest deviation from the case of $Q = m_t$. The residual initial scale dependence for the (gg)-channel is small, $R_Q^{PMC} \sim 1$, only for the LO non-Coulomb PMC scale Q_1^s, it has sizable effect. As an example, for the case of $Q = \sqrt{s}$, its Q_1^s deviates from that of $Q = m_t$ by $\sim 1\%$ at $\sqrt{s} = 7$ TeV, and it is raised only up to $\sim 7\%$ at $\sqrt{s} = 14$ TeV. In the case of the $(q\bar{q})$-channel, the residual scale dependence of the LO/NLO PMC scale for the non-Coulomb part is somewhat larger; i.e. the deviation is about 12% for the case of $Q = \sqrt{s}$ at $\sqrt{s} = 2$ TeV, and the deviation reaches up to $\sim 60\%$ at $\sqrt{s} = 14$ TeV. (We expect that this dependence on Q will be greatly reduced at NNNLO.) However in such high collision region ($\sqrt{s} > 2$ TeV), the total cross-sections are highly suppressed by the parton luminosities and their values are almost unchanged by using very different initial scales.

![Fig. 9](image_url)

FIG. 9. A comparison of the hadronic “effective” differential cross-sections $d\sigma_{ij}/d\sqrt{s} \propto (2\sqrt{s}L_{ij}\hat{\sigma}_{ij})$ derived from Eq.(5) by taking the initial renormalization scale $Q = m_t$, $20m_t$ and \sqrt{s} respectively. The symbol (ij) stands for $(q\bar{q})$ or (gg) respectively. Here $m_t = 172.9$ GeV. For each channels, the differential cross-sections with different Q almost coincide with each other. These results thus show that the total cross-sections for tt production determined by PMC scale setting at finite order is insensitive to the choice of a wide range of initial renormalization scales.
FIG. 10. A comparison of the hadronic “effective” differential cross-sections $d\sigma_{t\bar{t}}/d\sqrt{s} \propto (2\sqrt{s}L_{ij}\hat{\sigma}_{ij})$ derived from Eq.(5) by taking the initial renormalization scale $Q = m_t$, $2m_t$ and \sqrt{s} respectively. The symbol (ij) equals to (gq) or $(\bar{g}q)$ respectively. Here $m_t = 172.9$ GeV. For each channel, the differential cross-sections with different Q almost coincide with each other. At the Tevatron, the (gq)- and $(\bar{g}q)$-channels give the same contributions and are negative. These results thus show that the total cross-sections for $t\bar{t}$ production determined by PMC scale setting at finite order is insensitive to the choice of a wide range of initial renormalization scales.

To show this point more clearly, we draw the “effective” differential cross-sections $d\sigma_{t\bar{t}}/d\sqrt{s}$ versus the subprocess collision energy \sqrt{s} in Fig.(9) and Fig.(10), where $d\sigma_{t\bar{t}}/d\sqrt{s} \propto (2\sqrt{s}L_{ij}\hat{\sigma}_{ij})$ for a specific (ij)-channel which can be derived from Eq.(5). At the Tevatron, the (gq)- and $(\bar{g}q)$- channels give the same contributions and are negative, so we have put their absolute values in the figure for easy comparison. The differential cross-sections almost coincide with each other. These results thus show that the total cross-sections $\sigma_{t\bar{t}}$ determined by PMC scale setting are insensitive to the difference choices of the initial renormalization scale. More over, Figs.(9,10) explicitly shows the relative importance of different production channels, i.e. at the Tevatron the total cross-section is dominated by the (gq)-channel, while at LHC the dominant one is the $(\bar{g}q)$-channel. This agrees with the previous observation from Tables I, II and III.

<table>
<thead>
<tr>
<th>PMC scale setting</th>
<th>Conventional scale setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = m_t/4$</td>
<td>$\mu_r \equiv m_t/2$</td>
</tr>
<tr>
<td>$Q = m_t/2$</td>
<td>$\mu_r \equiv m_t$</td>
</tr>
<tr>
<td>$Q = m_t$</td>
<td>$\mu_r \equiv 2m_t$</td>
</tr>
<tr>
<td>Tevatron (1.96 TeV)</td>
<td>7.620(5) 7.622(5) 7.626(3) 7.622(6) 7.623(6)</td>
</tr>
<tr>
<td>LHC (7 TeV)</td>
<td>171.6(1) 171.7(1) 171.8(1) 171.7(1) 171.7(1)</td>
</tr>
<tr>
<td>LHC (14 TeV)</td>
<td>941.8(8) 941.9(8) 941.3(5) 941.4(8) 941.4(8)</td>
</tr>
</tbody>
</table>

TABLE IV. Dependence on the initial renormalization scale of the total $t\bar{t}$ production cross-sections (in unit: pb) at the Tevatron and LHC. Here $m_t = 172.9$ GeV and the central CT10 as the PDF [52]. The number in the parenthesis shows the Monte Carlo uncertainty in the last digit.

Total cross-sections with several typical initial renormalization scale $\mu_r^{\text{init}} = Q$ are presented in
explicitly how the breaking of conformal symmetry affects the final results.

<table>
<thead>
<tr>
<th></th>
<th>$\mu_r^{\text{PMC}} \rightarrow \mu_r^{\text{PMC}/2}$</th>
<th>$\mu_r^{\text{PMC}} \rightarrow \mu_r^{\text{PMC}}$</th>
<th>$\mu_r^{\text{PMC}} \rightarrow 2\mu_r^{\text{PMC}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron (1.96 TeV)</td>
<td>9.683</td>
<td>7.626</td>
<td>6.163</td>
</tr>
<tr>
<td>LHC (7 TeV)</td>
<td>223.0</td>
<td>171.8</td>
<td>136.4</td>
</tr>
<tr>
<td>LHC (14 TeV)</td>
<td>1221.0</td>
<td>941.3</td>
<td>748.9</td>
</tr>
</tbody>
</table>

Table V: A comparison of the $t\bar{t}$ production cross-sections (in unit: pb) under “wrong PMC scales”, i.e. all PMC scales μ_r^{PMC} are changed by 2 or 1/2. Here $m_t = 172.9$ GeV and the central CT10 as the PDF [52]. Such “PMC scale uncertainty” shows explicitly how the breaking of conformal symmetry affects the final results.

- After PMC scale setting, the effective PMC scales are unique at each order. Slight change of PMC scales may lead to large effects due to the explicit breaking of the conformal invariance. This, inversely, can be adopted as a check of whether the renormalization scales have been set correctly or not. To see this point more clearly, we make a discussion on the “PMC scale uncertainty” by varying the PMC scale within the region of $[\mu_r^{\text{PMC}}/2,2\mu_r^{\text{PMC}}]$, where μ_r^{PMC} stands for the canonical renormalization scale after PMC scale setting. The results are presented in Table V. Large “PMC scale uncertainty” shows explicitly how the breaking of conformal symmetry affects the final results.

- We can analyze the combined PDF and α_s uncertainty by using different CTEQ PDF sets, i.e. CT10 [52], which are global fits of experimental data with varying $\alpha_s(m_Z) \in [0.113,0.230]$. As for the total cross-section after PMC scale setting, we obtain

\[
\sigma_{\text{Tevatron}, 1.96 \text{ TeV}} = 7.626^{+0.705}_{-0.610} \text{ pb} \quad (22)
\]
\[
\sigma_{\text{LHC}, 7 \text{ TeV}} = 171.8^{+19.5}_{-16.2} \text{ pb} \quad (23)
\]
\[
\sigma_{\text{LHC}, 14 \text{ TeV}} = 941.3^{+83.3}_{-77.7} \text{ pb} \quad (24)
\]

where the errors are caused by the PDF+α_s uncertainty. Here a larger PDF+α_s error than that of Refs. [34, 37] is due to the choice of PDFs with a wider range of $\alpha_s(m_Z)$. If taking the present world average $\alpha_s(m_Z) \simeq 0.118 \pm 0.001$ [54], we will obtain a much smaller PDF+α_s error; i.e.

\[
\sigma_{\text{Tevatron}, 1.96 \text{ TeV}} = 7.626^{+0.143}_{-0.130} \text{ pb} \quad (25)
\]
\[
\sigma_{\text{LHC}, 7 \text{ TeV}} = 171.8^{+3.8}_{-3.5} \text{ pb} \quad (26)
\]
\[
\sigma_{\text{LHC}, 14 \text{ TeV}} = 941.3^{+14.6}_{-15.6} \text{ pb} \quad (27)
\]

where the errors are caused by the top-quark mass uncertainty. In Fig. (11) we present the total cross-section $\sigma_{t\bar{t}}$ as a function of m_t, where $\sigma_{t\bar{t}}$ with or

\[
\sigma_{\text{LHC}, 7 \text{ TeV}} = 171.8^{+5.8}_{-5.6} \text{ pb} \quad (29)
\]
\[
\sigma_{\text{LHC}, 14 \text{ TeV}} = 941.3^{+28.8}_{-26.4} \text{ pb} \quad (30)
\]

- The total cross-section $\sigma_{t\bar{t}}$ is sensitive to the top-quark mass, and it is found that the total cross-sections decrease with the increment of top-quark mass. After the PMC scale setting, by varying $m_t = 172.9 \pm 1.1$ GeV [50], we predict

\[
\sigma_{\text{Tevatron}, 1.96 \text{ TeV}} = 7.626^{+0.265}_{-0.257} \text{ pb} \quad (28)
\]

- Even though the present NNLO result is an approximation, it contains the necessary $\{\beta_i\}$-terms for determining the lower-order PMC scales. After doing the PMC scale setting, the LO- and NLO-terms are conformally invariant and do not depend on the renormalization schemes. However, because the NNNLO $\{\beta_i\}$-contribution is not available at the present, we do not have enough information to set the NNLO PMC scale, so we have set it as Q_1^{**}. The NNLO-term is then the only term which contains a non-conformal contribution. However, after PMC scale setting, such remaining non-conformal contribution is negligible; e.g., at the Tevatron it is found that the NNLO contribution itself is reduced to be $\sim 1\%$.

Table [IV] For the present considered NNLO level, it is found that the residual scale uncertainty to the total cross-section is less than 10^{-3} by setting $Q = 4m_t$ or $Q = m_t/4$. In fact, even by setting $Q = 20m_t$ and \sqrt{s}, such residual scale uncertainty is still less than 10^{-3}. As a comparison, we also present the results for the conventional scale setting in Table [IV] by varying the renormalization scale within the region of $[m_t/2,2m_t]$, we obtain a large renormalization scale-uncertainty (3–4%) at the Tevatron and LHC, which agrees with the previous results derived in the literature, c.f. Refs. [34, 37]. This shows that the renormalization scale uncertainty is greatly suppressed and essentially eliminated using PMC at the NNLO level.

- After PMC scale setting, the top-quark mass, and it is found that the total cross-sections decrease with the increment of top-quark mass. After the PMC scale setting, by varying $m_t = 172.9 \pm 1.1$ GeV [50], we predict

\[
\sigma_{\text{Tevatron}, 1.96 \text{ TeV}} = 7.626^{+0.265}_{-0.257} \text{ pb} \quad (28)
\]
without PMC scale setting are shown explicitly. After PMC scale setting, the value of $\sigma_{t\bar{t}}$ is more closer to the central value of the experimental data [20–23], which shows a better agreement with the experimental data.

IV. SUMMARY

The renormalization scales can be set unambiguously by PMC scale setting, which allows us to set the renormalization scale at any required order. The correct scale-displacement between the arguments of different renormalization schemes is automatically set, and the number of active flavors n_f in the $\{\beta_i\}$-function is correctly determined in any scheme. In the present paper, we have presented an explicit example of using PMC scale setting to eliminate the renormalization scale ambiguity and the scheme dependence.

Through PMC scale setting, we have set the LO/NLO PMC scales to the top-quark pair production with the help of the analytic NNLO expressions provided in the literature. After PMC scale setting, all the higher-order $\{\beta_i\}$-terms have been absorbed into the LO- and NLO-α_s running, and we have

- A larger value for the total $t\bar{t}$ cross-section $\sigma_{t\bar{t}}$ is obtained, which agrees with the present Tevatron and LHC experimental data well. More explicitly, by setting $m_t = 172.9 \pm 1.1$ GeV, we predict $\sigma_{\text{Tevatron, 1.96 TeV}} = 7.626^{+0.265}_{-0.257}$ pb, $\sigma_{\text{LHC, 7 TeV}} = 171.8^{+5.8}_{-5.6}$ pb and $\sigma_{\text{LHC, 14 TeV}} = 941.3^{+28.4}_{-26.5}$ pb. This is achieved because we have resummed the universal and gauge invariant higher-order corrections which are associated with the running of the coupling into the LO- and NLO- terms by using suitable PMC scales.
- A more convergent pQCD series expansion is obtained. In contrast to the usual convention of setting $\mu_r \equiv m_t$, the effective LO and NLO PMC scales vary with the subprocess collision energy \sqrt{s}. Different channels are distinct and non-interfering, so their PMC scales have been set separately. The procedure is gauge invariant. For the $(q\bar{q})$-channel, its NLO PMC scale is much smaller than m_t in the dominant small x-region, and its NLO contribution is largely increased by about a factor of two. In the case of the (gg)-channel, its NLO PMC scale slightly increases with increasing \sqrt{s}, but it is smaller than m_t for $\sqrt{s} \lesssim 1$ TeV, and its NLO contribution is increased by $\sim 20\%$.

- After PMC scale setting, the resulting LO- and NLO- terms are conformally invariant and do not depend on the choice of renormalization scheme. Since the non-conformal contributions in the NNLO-terms have been suppressed, especially at the Tevatron the NNLO contribution itself is reduced to be $\sim 1\%$. However, slight change of PMC scales will lead to large effects due to the explicit breaking of the conformal invariance. This, inversely, can be adopted as a check of whether the renormalization scales have been set correctly or not. The PDF+α_s uncertainty and the top-quark mass uncertainty have been discussed in detail.

- In principle, the PMC scale and the resulting renormalized amplitude is independent of the choice of the initial renormalization scale μ_r^{init}. There is residual initial renormalization-scale dependence caused by the lack of information on even higher-order $\{\beta_i\}$-terms. Such residual scale-uncertainty will be greatly suppressed when the PMC scales have been set suitably. At the NNLO level, it is found that the total $t\bar{t}$ cross-sections $\sigma_{t\bar{t}}$ remain almost unchanged by varying the initial scale within a large region of $[m_t/4, 4m_t]$, which is shown explicitly in Table IV. Then, the usual renormalization...
The determination of the factorization scale is a completely separate issue from the renormalization scale setting. We expect that the factorization scale ambiguity may also be reduced by applying the PMC scale setting in the DGLAP evolution equations.

- The PMC can be applied to a wide-variety of perturbatively-calculable collider and other processes. Since the renormalization scale and scheme ambiguities are removed, this procedure can improve the precision of tests of the Standard Model and enhance sensitivity to new phenomena.

Acknowledgements: We thank Leonardo di Giustino, Robert Shrock, Stefan Hoeche and Michelangelo Mangano for helpful conversations. This work was supported in part by the Program for New Century Excellent Talents in University under Grant NO. NCET-10-0882, Natural Science Foundation of China under Grant NO. 11075225, and the Department of Energy contract DE-AC02-76SF00515. SLAC-PUB-14888.

