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Abstract—Scalla is a distributed low-latency file access sys-
tem that incorporates novel techniques that minimize latency
and maximize scalability over a large distributed system with
a distributed namespace. Scalla’s techniques have shown to
be effective in nearly a decade of service for the high-
energy physics community using commodity hardware and
interconnects. We describe the two components used in Scalla
that are instrumental in its ability to provide low-latency, fault-
tolerant name resolution and load distribution, and enable its
use as a high-throughput, low-latency communication layer
in the Qserv system, the Large Synoptic Survey Telescope’s
(LSST’s) prototype astronomical query system.
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I. INTRODUCTION

Scalla has been the primary distributed file access system
for the high-energy physics community for nearly ten years,
and has allowed the community to provide uniform access
to a large distributed federation of large data sets. Its
design accounts for key needs of a distributed file access
system for large scientific communities. It must allow access
from geographically diverse scientists to data servers which
are also geographically distributed among many countries.
It must provide efficient access to large files through a
namespace with minimal central control. It must tolerate
network and server failures and be self-healing so it can
be managed without a dedicated operations staff.

This paper begins with a brief architectural overview of
Scalla to provide some context. It continues with a deep
inspection of Scalla’s name cache management and name
resolution protocol, describing both their design principles
and implementations and explaining how low-latency look-
up is achieved in the face of failure and without a persistent
central directory. The data structure used for caching is de-
scribed along with the policies that maintain and manipulate
it. The resolution protocol is described with attention to how
lookups proceed scalably even in high load conditions. Two
examples of Scalla usage are then presented, followed by
brief treatments of related work and a conclusion.

II. OVERVIEW

A. Motivation

In 2001 the BaBar experiment, a collaboration of 400
physicists from over 9 countries studying the relationship
between matter and anti-matter, decided to switch their data

analysis framework from Objectivity/DB database system to
the Root framework. The new analysis framework relied
largely on structured flat files either locally accessible to
a compute node or served through a network-based file
server. Flat files were seen as a great simplification to
the experiment’s massive data handling and distribution
requirements.

While data handling and distribution would be simplified,
the problem area shifted into finding a file server solution
that could scale to the petabytes of data the experiment
would generate and handle peak loads from a thousand or
more simultaneous analysis jobs. The nature of the load
was driven by the peculiarities of the framework which
would perform several meta-data operations on dozens of
files per job prior to commencing analysis. This meant that
any new file access system needed to sustain thousands
of transactions per second, cluster hundreds of physical
data servers just to handle the amount of data, and recover
gracefully from failures expected when a massive amount of
hardware is deployed.

The three main system requirements: low latency, scaling,
and recoverability, all needed to be met simultaneously;
otherwise, it was clear that the BaBar collaboration would
not be able to perform data analysis in a timely manner. Such
an event would doom the experiment and the investment of
hundreds of millions of dollars.

A search of systems available in 2001 reveals now, as
it did then, that no affordable commercial solutions existed
that could meet all three requirements. Hence, the stage was
set for the development of Scalla.

B. Architecture

Scalla, Structured Clustering for Low Latency Access,
is a network-based file access system consisting of one
or more low latency data servers, called xrootd, coupled
with cluster management services provided by servers called
cmsd'. The system is symmetric in that for each xrootd there
is a corresponding cmsd. Cluster organization is shown in
Figure 1.

1) Cluster topology: In Scalla, nodes (i.e., an xrootd
paired with a cmsd) are clustered in sets of 64 and the sets

IScalla can be used as an un-clustered system, in which case no cmsd’s
need be started.
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Figure 1: Scalla Cluster Organization

are arranged in a 64-ary tree’. As long as linear algorithms
are employed, it takes only O(1) time per set or tree node
to locate a file. It follows that the upper time limit is in
any sized cluster is O(loggs(number of servers)), which is
an exceptionally good value. Every node in the cluster can
be replicated to provide an arbitrary level of reliability.

2) Name resolution: Clients first contact the logical head
node (which can be one of many) with a request for a file.
On the first access to the file, the head node queries its
immediate subordinate nodes and asks if they have the file.
If a subordinate node has nodes attached to it (i.e., is a
supervisor), it asks it its subordinate nodes in turn. The
process continues until all leaf nodes (i.e., servers) have
been asked. Only those nodes that have the file respond
indicating whether the file is online or being prepared to be
online (e.g., staging from a Mass Storage System). Multiple
responses that are sent to a supervisor are compressed into
a single response indicating that the supervisor has the file.
Responses are cached by supervisor and manager nodes.
Subsequent requests for the file use cached information.

3) Redirection: Once the manager discovers the subor-
dinate node holding the file, it redirects the client to that
node. The client then re-issues the request. If the node
is a supervisor, the client is also redirected to one of the
supervisor’s nodes. The process continues until the client
reaches a leaf node (i.e., server). If more that one node has
the file, a selection is made based on configuration defined
criteria (e.g., load, selection frequency, space, etc.).

4) POSIX-like semantics: As a file access system, Scalla
provides most, but not all, POSIX file system semantics.
Semantics that conflict with the goal of low latency are
not natively present (e.g., an lIs-type function across all
nodes in a cluster). However, full POSIX semantics can
be implemented in higher level functions® should they be
needed.

2The choice of cluster size is crucial. [1]

3An implementation using native Scalla features exists and is imple-
mented with a Cluster Name Space daemon and the Linux FUSE file
system.

Clustering provides clients with a uniform view of a
POSIX-like namespace regardless of the number or location
of the data servers. The namespace is not exactly POSIX
conforming at the manager and supervisor levels since
file paths are treated as simple prefixes to a file name;
essentially providing a flat namespace. At a data server
level, the namespace conforms to full POSIX semantics
since each data server uses the host’s native file system to
implement the data store. The difference in the treatment
of namespaces is done for simplicity and generally yields
better performance when managing location attributes.

5) Name caching: Recall that file locations are cached
by managers and supervisors. It is the cache design that is
largely responsible for very low client redirection latency. In
fact, requests for files whose information has been cached
require less that 50us per tree level. Requests for unknown
files incur an additional latency equal to the time it takes a
leaf node to respond; increasing the redirection time to about
150us, depending on the network speed. Of course, as more
simultaneous requests need to be processed, the average
redirection time increases as well. However, the cache uses
linear and constant-time algorithms, so the redirection time
rises with a very low linear slope as load increases.

III. TECHNIQUES FOR LOW-LATENCY

This section describes the cache implementation used by
Scalla’s cmsd and how its algorithms are responsible for the
system’s low latency.

A. Caching structure

1) The file location cache: Each file is associated with
a location object that holds the file’s location state. The
location state is described by three 64-bit vectors: Vj,, V),
and V. Vector V}, describes the set of servers that have the
associated file. Vector V,, describes the set of servers that are
making the file ready (e.g., staging it from a Mass Storage
System). Vector V,, describes the set of servers that need to
be queried about the file. Bits in V,, are never present in V,
or V.

Each bit in the vector corresponds to a particular server.
This is accomplished by assigning each server a number
from O to 63. Server; then corresponds to bit (1<<i) in
each vector. While this clearly imposes an upper limit of 64
directly-addressable servers, it follows directly from Scalla’s
cluster organization. Furthermore, the limit allows placing a
deterministic upper bound on the amount of time it takes to
locate a file in any sized cluster.

Location objects are cached in memory and are accessible
by a one-level hash table using linear chaining to resolve
collisions. This is illustrated in Figure 2.

The hash key is a CRC32 encoding of the file name. The
table itself is sized to be a Fibonacci number of entries.
When the number of entries reaches 80% of the table size, a
new table is created whose size is the subsequent Fibonacci
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Figure 2: File location hash table and eviction window

number and all of the keys are redistributed. The combi-
nation of a CRC32 number modulo a Fibonacci number
produces a very uniform dispersion of file names with few
collisions*. Since the table size grows at a geometrically, the
resizing rate decreases as the number of entries increase. In
practice, look-up time is constant and resizing ceases in a
relatively short time.

2) Global cache object lifetime: Table growth eventually
ceases because the maximum number of entries in the table
is bounded by an equilibrium reached between the object
creation rate and the object lifetime. Each location object
has a fixed lifetime, L, that is configurable but usually
set to eight hours. From a practical stand-point, the server
has a maximum number of location objects it can create
per second, largely determined by its CPU clock rate and
network speed. Current state-of-the-art systems, connected
via a 1Gb interface, can create about 1,000 location objects
per second. Thus, no more than 28,800,000 location objects
can exist in the cache over an eight hour period>. This also
provides an upper bound on memory usage as 28,800,000
location objects represent approximately 16GB of RAM.
Since the location object creation rate is far less in practice
(e.g., 50-100/second), the memory utilization normally stays
well below 1GB.

3) Time-based eviction policy: Location object lifetime is
enforced by using a sliding window algorithm that operates
in the background. L, is divided by 64 and a thread ticks

4Despite the uniform distribution of CRC32, we found much higher
collision rates with power-of-two sized tables compared to Fibonacci-sized.
5Based on 1,000 creates/second.

an internal window clock, T,,, at a L;/64 rate (e.g., 7.5
minutes). When a location object is added to the cache, it is
assigned an add time, 7, equal to the current 7', modulo 64.
All location objects with the same T, are chained together.
This allows the system to find all entries added in a particular
window in linear time. Every time T, ticks, the system
hides all entries whose T, equals6 the new T, modulo 64
and schedules a background job to physically remove those
entries from the cache. The hiding process is trivial as it
simply requires that the text key length in each location
object matching 77, to be set to zero preventing the location
object from being found in the hash table. As physical
removal is a background task, it has minimal interference
with cache look-ups. Thus, the cost of cache maintenance is
equally spread across L; and overhead scales linearly with
the number of entries; on average only 1.6% of the cache is
processed at any one time.

4) Maintaining cache accuracy: The location informa-
tion is approximate, in that once recorded it is not corrected
when the external configuration changes. This is done for
scalability reasons. Since millions of files may exist in
the cache, keeping the cached information accurate in real
time is impractical. Thus, the information is only corrected
when it is fetched by applying two correction vectors whose
accuracy is maintained in real-time using an O(1) algorithm.

To understand the nuances of location accuracy, several
possible occurrences must be considered after location in-
formation is cached:

This is not necessarily every object in the chain, as discussed under
cache refreshes.



1) a server disconnects,

2) a server is dropped from the cluster,
3) an un-dropped server reconnects, or
4) a new server connects.

In case 1, the server is simply marked as being offline.
The server is still considered part of the cluster, though
unreachable. In case 2, cached location information referring
to the server involved is invalid. In cases 3 and 4, any cached
location information that should have considered the server
is incomplete.

The first three cases require some further explanation.
In order to minimize server queries, the system does not
immediately drop a server from the cluster when it dis-
connects. The hope is that the server is encountering a
transient problem and will soon reconnect. When it does
reconnect, all existing location information relative to that
server remains valid. However, any information cached since
the time the server disconnected is incomplete. Normally,
this represents a tiny fraction of all cached information.
Should the server not reconnect in a configurable amount of
time, it is dropped from the cluster and is treated as a new
server upon reconnection. If the server reconnects within
the drop time limit but has a new set of exported paths the
reconnection is also treated as a new connection.

Correction of cached location information relies on two
pieces of information:

e vector V,,, representing currently known servers that
can possibly hold a particular file based on the paths
they export, and

o vector V., representing servers in the cluster that have
recently connected.

V, and V. are maintained by the server login and drop
methods. Login is the time a server declares the paths it
exports. Each exported path is associated with a V,, that
defines the servers eligible for that path. The appropriate V,,,,
relative to the incoming path, is looked up prior and passed
to the cache look-up method. V,, is used by the method to
limit the servers present in V3, V,, and V,. Login is also
the time that the sever is added to V.. When a server is
dropped from the cluster, it is removed from each V,,,. where
it appears.

Location objects cached prior to a new server connection
are incomplete; and V. must be added to V, when the
location object is looked up. Location objects cached after a
server connects are necessarily complete because all servers
that can possibly serve the file, based on V,,, are queried.
Any servers that are currently offline (i.e., the time between
disconnect and drop) are added to the location object’s V,
by the method fetching the cached location object and are
queried on the next look-up.

While conceptually easy, V. cannot be maintained as a
single vector since it must also capture the time the server
connected relative to the time a location object was cached.
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Figure 3: Corrections when C,, # N, in fetched location
object

In order to accomplish this, an array of 64 counters, C[], is
defined in 1-to-1 correspondence with bit positions in V.
So, C[i] corresponds to bit (1<<i) in V.. A master counter,
N, starts at zero. When server j connects, N, is increased
by one and assigned to C[j]. Hence, C[] keeps track of the
time each server connected. Whenever a location object is
placed in the cache, V. is recorded in the location object
as C,. When a location object is fetched, the object’s C,
is compared with N.. If they do not equal, V. is generated
from each C[i] where C[i] > C,. Then, C,, is updated to
the current value of N.. The resulting V. is added to V; and
is used to remove the corresponding bits from the location
object’s V}, and V,,. The corrections are shown in Figure 3.

The new V, represents all of the servers that could
possibly serve the file but have not yet been queried about
the file. The servers that have the file, V},, as well as the
servers that are preparing the file, V), are simply the old
value less the servers that need to be queried. Finally, C,, is
updated to the current N, so that the next fetch only corrects
the location object if the cluster configuration changes again.
The algorithm adds O(1) overhead to each look-up and, in
practice, is not often applied over the course of a location
object’s lifetime.

However, an additional optimization is used to further
reduce the overhead to practically constant time regardless
of the number of location objects in the cache. Here, each
time window maintains a private V. and C),, called Vi,
and C,,, respectively. When a location object is fetched
and its C,, # N, a check is made whether an applicable
Ve has already been generated for the window in which
the location object was added. If so, the window’s V. is
used. This avoids having to generate V. on every look-up.
If a V. must be generated, it is saved in the window’s
Vwe along with the fetched location object’s Cl,,. The
optimization works because server connections and location
object creation have time locality, making the probability
high that most location objects within a time window can
re-use a previously computed V.. At the worst, the system
suffers a small degradation for one perhaps two L./64 time
periods (e.g., 7.5 to 15 minutes).

B. Optimized resolution protocol

Recalling from Section II-B2 that names are resolved
by flooding requests downward from the manager, Scalla



employs a request-rarely-respond protocol for server queries.
That is, when a server is asked whether it has a file it
responds only when it actually has the file. A non-response
is treated as a negative response. This protocol is provably
the most efficient way of maintaining location information
in the event that less than half the servers have the file in
question [2]. However, the protocol comes with a latency
penalty for the client causing the query. Since the method
invoking the query does not know when a server might
respond, it must delay the client some reasonable amount
time to ensure that a response, if any, is received with a
very high probability before telling the client that the file
does not exist. By default, the delay is set to 5 seconds.
This is sufficient but in most cases arguably much too high.

The cache employs a fast response mechanism in order to
lower the delay to the minimum time it takes any one server
to respond; typically, about 100us, without risking a missed
response. Each location object is defined with two response
queue indices, R, and R,,. Index R, refers to clients waiting
for read access to the file associated with the location object
while R,, for write access. The response queue is simply an
array of 1024 anchors for a list of response objects and
the corresponding cache entry. Response objects describe
which client needs a response for the location of the file.
The response queue is handled by a separate thread that
runs asynchronously to cache management.

The response queue is loosely coupled to the cache so
that response queue management has no impact on cache
look-ups. That is, while a location object refers to a re-
sponse queue element, that element may be asynchronously
removed without any need to correct the reference to it
in the cache. Cache methods can trivially check if any
existing location object reference to a response queue object
is correct at the time the reference needs to be used by
checking whether the association is still valid. Hence, cache
management and response queue management can indepen-
dently execute their functions.

1) Resolution steps: The general sequence of events is:

1) A cache entry is looked up. If V, is not null, a
processing deadline of 5 seconds from the current time
is set in the location object.

2) If Vy, V), and V,, are empty then,

o if the location object processing deadline has
passed, the client is told the file does not exist;
otherwise,

o the cache is asked to add the client to the fast
response queue (R, for read access and R, for
write access) for the location object associated
with the file the client wants.

3) If V}, or V), is not empty the client is directed to one of
the online servers represented in V;, or V},, depending
on the type of access required.

4) If V, is not empty but V}, and V}, are empty or all of the

servers are offline, the cache is asked to add the client
to the fast response queue (R, for read access and R,,
for write access) for the location object associated with
the file the client wants.

5) Each server in V,, is asked whether it has the file in
question.

6) The location objects V; is updated to indicate the set
of servers that could not be queried; which usually is
null.

In order to provide constant time processing for steps
4 and 6, the cache look-up method returns the reference
to the location object and a reference authenticator to the
caller in step 1. This allows subsequent cache methods to
directly manipulate the location object without additional
look-ups. Also, locks need not be maintained across calls
to the cache methods. This reduces overhead and increases
cache availability. The authenticator allows cache methods
to determine whether the reference is still valid. If it is no
longer valid, which is rare, a full look-up is performed.
References only become invalid when the target location
object has been removed from the cache because its lifetime
has expired. We say “removed” because once a location
object is created it is never deleted though its storage area
can be reused for some other location object. This allows
references to always point to a valid albeit incorrect location
object. The reference authenticator merely verifies that the
reference still refers to the same location object for which the
reference was generated. This is done by a simple counter in
the location object. The counter is increased by one when a
location object is removed from the cache. Thus, a reference
is valid if its authenticator equals the current counter value
in the object it points to. When a reference becomes invalid
and the fall-back look-up fails to find a location object for
the file, the client requesting the file is asked to retry the
operation so that processing can restart from a consistent
state.

In step 4 the client’s request is added to the fast response
queue. If the location object already has a reference to a
request queue object and the queue entry is still associated
with the location object, the request is added to the existing
request. Otherwise, a new request queue entry is obtained
and the request added to that entry. If no available entries
exist, the client is asked to wait a full time period (i.e., 5
seconds) and retry the operation.

When an entry is added to the fast response queue, the
response queue thread is notified that there is an outstanding
request. The notification is only performed if the queue was
empty implying that the response queue thread is idle.

Once the response queue thread is notified, it starts
clocking 133ms time periods. Any request that has been in
the queue for longer that 133ms is removed and the cache
association is invalidated. Each client request is asked to
wait a full time period (i.e., 5 seconds) and then retry the
request. Thus, a request is given up to 133ms to be satisfied



before a full wait is imposed. It follows that a request is
satisfied if a server responds that it has the requested file
within 133ms. Generally, servers respond within 100us so a
comfortable margin of safety exists allowing for practically
all queries for existing files to be satisfied without imposing
a large delay.

When a server responds that it has a requested file, the
cache update method is called to indicate in V}, or V,, which
server has the file. This process is streamlined in that file
names and hash keys are passed along. This eliminates the
need to generate the hash key for each response. The cache
update method checks whether there is an outstanding client
request that needs a response that corresponds to the access
mode the server allows to the file (i.e., R, for read access
and R,, for write access). If a response queue reference
exists and if it is still associated with the location object,
the response objects are moved to the response ready queue
with an indication of the server that has the file and the
response thread is notified. The reference is then cleared in
the location object. The response thread sends the server
location to each client waiting for a response and deletes
the response object.

2) Mitigating timeout delays: Fast redirection is effective
when files already exist on leaf nodes. This is normally not
the case when a client tries to create a file. Indeed, the client
usually wants to be assured that the file about to be created
does not already exist. Because file non-existence is based
on no server responding that it has the file, the client is
necessarily forced to wait a full time period (i.e., 5 seconds)
when creating a file. The same is true when a client tries to
access an offline file (i.e., one in a Mass Storage System).
In the latter case, the full delay usually represents a small
fraction of the time it takes to stage a file; which is typically
on the order of minutes.

Scalla mitigates this side-effect with a parallel prepare
operation. Here, a client can provide a list of files that will
be needed, regardless of access mode, ahead of any indi-
vidual file request. The list spawns parallel look-ups in the
background. While each background look-up suffers a full
delay; externally, at most a single full delay is encountered
by the client. While this does not address ad hoc requests, it
is effective for production type processing of multiple files
(e.g., large scale data analysis, bulk transfers, etc.). This is a
major trade-off in the design. Scalla is specifically designed
to efficiently handle read and update processing modes and
bulk file creations. These are the modes most often used by
research analysis frameworks.

C. Other techniques

1) Cache Refresh Processing: Occasionally, a cached
location object must be refreshed. The refresh is driven by a
client request and is triggered when the client is vectored to
a server that, in fact, cannot serve the requested file. Such
an event can be caused by an I/O error, a Mass Storage

System failure, or by timing edge effects. The last possibility
is an anticipated after-effect of the Scalla model. In order
to provide low latency, synchronization points are kept at a
minimum. For instance, a file may be deleted by one client
at the same time another client is requesting access to that
file. In such a case, the requesting client may be directed to a
server that no longer has the file. From the requesting client’s
stand-point erroneous location information was provided.

The general client recovery mechanism from failing ac-
cess situations is to reissue the request asking for a cache
refresh along with the name of the host that failed to provide
access to the file. When such a request is received, the
location object is refreshed by asking all relevant servers
whether they have the file and avoiding the failing server
when vectoring the client request.

A location object refresh is logically treated as a new
un-cached request. However, the overhead of placing the lo-
cation object in the cache is eliminated. Since fresh location
information is obtained, the location object’s Ty, is updated
to the current time (i.e., window). A significant optimization
is that even though T}, is updated, the location object is not
placed in the corresponding window chain of objects as this
would require too much processing time. Instead, the task is
left to a future thread that will be spawned to delete expired
location objects in the window chain where the refreshed
location object currently resides.

Deferring re-chaining is a significant optimization strat-
egy. Since the deletion thread processes the complete win-
dow chain, it can trivially recognize location objects that no
longer belong in the window about to be deleted. It is equally
trivial to place such objects in the correct chain at this
point. By deferring the re-chaining operation, a single linear-
cost task can re-chain all objects whose T, has changed,
where re-chaining each object individually results in a more
quadratic cost.

2) Deadline-based synchronization: When a location ob-
ject is newly cached or when it is refreshed, a processing
deadline equal to the current time plus 5 seconds’ is set
for the object. The purpose of the deadline is to provide
processing synchronization for the location object. It is quite
possible that two or more clients cause the same location
object to be fetched. Should the location object have a non-
null V,, the servers in V;, are queried. Only one thread should
issue the queries. The deadline effectively prohibits multiple
threads from issuing queries regardless of the state of V.
An active deadline implies that some thread is in the process
of issuing queries. Thus, threads that fetch location objects
whose processing deadline has not passed simply defer® the
client past the deadline, should V}, and V), be null, to provide
enough time for accurate location information to be collected
by some other thread.

"The time is configurable.
8Clients are deferred using the fast response queue.



Deadlines greatly simplify query synchronization. No
additional locks or queues are required.

IV. APPLICATIONS
A. Production usage

Scalla is available as a packaged system under a BSD
license and has been widely deployed, either in total or
as a critical component, across the High Energy Physics
and Astrophysics community. We describe a few notable
deployments.

The ALICE LHC [3] experiment uses Scalla to provide
world-wide file access by clustering storage over 60 sites
in 20 countries. The US Atlas [4] and CMS LHC [5]
experiments are using Scalla to create regional clustered data
repositories consisting of dozens of sites to make petabytes
of data available for on-demand copying as well as real-time
WAN file access.

The Fermi-GLAST [6] astrophysics experiment is using
Scalla as a key component to perform timely data analysis
and data reconstruction at SLAC and simulation at IN2P3 of
data down-linked from its gamma-ray satellite observatory.

The Star experiment [7] at Brookhaven National Labora-
tory is using Scalla to augment data storage by clustering
over 600 batch server nodes and making their storage
uniformly available to all batch jobs.

The widely used Parallel Root Facility (PROOF) [8], a
Hadoop-like system for the Root framework, uses Scalla as
a fundamental part of its data access infrastructure.

B. Distributed dispatch

Scalla is used as a distributed communications layer for
the Large Synoptic Survey Telescope’s (LSST’s) [9] proto-
type query access system, Qserv. LSST’s astronomical cata-
log, in its final data release, will contain records of billions
of celestial bodies in trillions of observations, supporting
both quick retrieval (retrieve all facts for a single object)
and longer analysis (pair-wise combinations, summaries over
all records) efficiently. Such scale both in raw data size and
computation was not supported by any off-the-shelf software
at an affordable price, so Qserv was built [10].

Limited resources were available for building Qserv, so
its design re-used MySQL and Scalla as building blocks
for its shared-nothing parallel architecture. MySQL was
used as lower-level query engine, and Scalla provided a
means of tracking large numbers of worker nodes, handling
when they joined or left, communicating with them, and
sending work to them. Gearman [11] was considered as an
alternative distributed dispatch system, but was not well-
matched—for example, its method for returning results was
not scalable to large data sizes. Scalla’s maturity in handling
of node registration/de-registration, node/network faults, and
stability was a key factor in its selection.

A Qserv master needs to communicate with its workers in
order to transmit work (queries) and retrieve results. Masters

dispatch work to nodes hosting the data of interest, and
retrieve results similarly. Since Scalla, at its heart, maintains
a filesystem abstraction, Qserv masters communicate with
workers by opening, reading, writing, and closing files in
Scalla. Workers (Scalla servers) in a Qserv Scalla system
report their data availability by “publishing” or “exporting”
paths that include a partition number. When a master opens
a path for a particular partition number, Scalla guarantees
that it has a communications channel to a worker host-
ing that particular partition. In this way, Qserv leverages
Scalla’s mapping between data and host, enforcing a strong
separation between master and worker that simplifies fault-
tolerance, replication, and load balancing. Indeed, in Qserv’s
current implementation, there is no configuration for the
number of nodes in the cluster.

More information about Qserv may be found in [10] or
at http://dev.Isstcorp.org/trac/wiki/dbQservOverview.

V. RELATED WORK

Scalla is one of many distributed file access systems
that have stood the test of time. However, it differs from
most others by its choice to track only file paths requested
by clients. In the Andrew file system (AFS) [12], Vice
servers must each maintain a consistent replica of the volume
location database, which must maintain locations for all vol-
umes (regardless of actual use). Changes are expected to be
infrequent. Cluster masters in the Google File System (GFS)
[13] maintain locations of all files in a cluster regardless of
use. For Scalla, this means that node registration and de-
registration are extremely light operations’. In GFS, node
registration is more expensive since the incoming server
must transmit its entire manifest to the master. Scalla’s
design choice means its scalability is weakly dependent on
the number of currently popular files (see Section III-A2)
but completely independent of the number of files available.
Its disadvantage is that obtaining global lists of files is
not implemented except through a separate Cluster Name
Space Daemon. In practice, this is not problematic for users
accessing scientific files since they will determine the files
of interest by searching metadata databases that catalog the
science data within those files.

Few other systems use distributed lookup to locate names
among servers that each host a subset of the namespace. In
many cases, especially when updates are infrequent, lookups
are more efficiently executed on a single machine. The
Domain Name System (DNS) [14] arose out of a need to dis-
tribute the administration, distribution, and management of a
host-to-address mapping since the previous technique, main-
taining and exchanging a single mapping file (HOSTS . TXT),
could not cope with a growing number of mappings from

9Nodes need only identify path prefixes for their hosted data, without
guaranteeing that they host all files on those prefixes. Servers in a cluster
generally export the same prefixes even though they generally host different
files.



distributed entities. Distributed lookup in DNS meant that a
large mapping file no longer had to be exchanged and kept
consistent. In Scalla, distributed lookup performs a similar
function in preventing the need for the bulk exchange of file
location mappings. Early in development, it was found that
an incoming server’s submission of its file list caused long
delays (minutes for a single server) that not only slowed
lookups through not only data structure updates but heavy
network traffic. This was an intolerable delay. By foregoing
persistent state and only caching file recently-requested,
Scalla clusters of hundreds of nodes can begin serve files
within seconds of restarting.

VI. CONCLUSION

Scalla arguably exceeded its three main design objectives:
low latency, scaling, and recoverability. In retrospect, these
objectives were met using a simple but effective design.

o Low latency was met by uniformly using linear or
constant time algorithms in all high-use paths, avoid-
ing locks whenever possible, and using compact data
structures to maximize the memory caching efficiency.

o Scaling was achieved by architecting the system as a
64-ary tree. Nodes can be added easily and as the num-
ber of nodes increases, search performance increases at
an exponential rate.

o Recoverability is inherent in that no permanent state in-
formation is maintained and whatever state information
is needed it can be quickly constructed or reconstructed
in real time. This allows dynamic changes in a cluster
of servers with little impact on over-all performance or
usability.

Today, Scalla is being deployed in environments and for
uses that were never conceived in 2001. This speaks well for
the systems adaptability but the underlying reason is that the
system can meet its three fundamental objectives at the same
time.
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