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Abstract

In this paper, a linac simulation code written in Fortran90 is presented and several simu-
lation examples are given. This code is optimized to implement linac alignment and steering
algorithms, and evaluate the accelerator errors such as RF phase and acceleration gradient,
quadrupole and BPM misalignment. It can track a single particle or a bunch of particles
through normal linear accelerator elements such as quadrupole, RF cavity, dipole corrector
and drift space. One-to-one steering algorithm and a global alignment (steering) algorithm
are implemented in this code.

1 Overview

In a linear accelerator, one outstanding problem is to align the accelerator components or steer the
beam, in order to preserve the beam condition (such as transverse emittance). After the initial
survey of the linac components which usually achieves mm range accuracy, there are several beam-
based alignment (BBA) techniques that could be applied to improve the alignment.

A linac simulation code is written in Fortran90 which achieves some general functions such as
particles tracking, beam and lattice error generation and addition. At the mean time this code is
optimized for linac alignment or steering algorithm implementation. Some study results using this
simulation code can be found in [1] [2] [3].

The basic modules of this simulation code are listed here which will be discussed in details in
the following sections.

• General setup

• Linac model

• Error generation and addition

• Single particle tracking

• Macro-particle tracking

• Post processing
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2 General setup

In this module, initial beam parameters are read in, such as beam energy, transverse emittance,
RMS energy spread and bunch length. One could generate a Gaussian or Uniform distribution of
the bunch. Other parameters such as RMS quadrupole misalignment, RMS BPM to quadrupole
offset, RMS BPM resolution, initial beam offset and angle are also specified and generated in this
module.

One can choose to use either single particle mode or bunch mode here. Single bunch mode and
multi bunch mode are also available.

The linac lattice (sequence) is read in by this module which is an element-by-element definition
with the key parameters of each component.

3 Linac model

There are two available methods to model a linac lattice, which are thin lens kick method and
matrix mode. All momentum-dependent higher order terms are kept in thin lens kick mode. In the
matrix mode, basic linac components such as quadrupole, RF cavity, dipole corrector and drift are
modeled as first order thin lens.

The transfer of the particle’s coordinates are (up to first-order) shown below, where R denotes
the first order transfer matrix between initial and final locations.
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3.1 Quadrupole

The 6 by 6 transport matrix of a quadrupole magnet with integrated strength K1 can be written as

RQuad =

















1 0 0 0 0 0
−K1 1 0 0 0 0

0 0 1 0 0 0
0 0 K1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(2)

3.2 RF cavity

The 6 by 6 transport matrix of an RF cavity with length LRF and energy ratio a = E0

Ef
can be

written as
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RRF =

















1 LRF 0 0 0 0
0 a 0 0 0 0
0 0 1 LRF 0 0
0 0 0 a 0 0
0 0 0 0 1 0
0 0 0 0 0 a

















(3)

3.3 Dipole corrector

The 6 by 6 transport matrix of the normal dipole magnet can be written as

RB(θ,ρ) =

















cos θ ρ sin θ 0 0 0 ρ(1 − cos θ)
− sin θ/ρ cos θ 0 0 0 sin θ

0 0 1 ρθ 0 0
0 0 0 1 0 0

− sin θ ρ(cos θ − 1) 0 0 1 ρ(sin θ − θ)
0 0 0 0 0 1

















(4)

3.4 Drift

The 6 by 6 transport matrix of a drift with length L can be written as

RDrift =

















1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(5)

4 Error generation and addition

Random and systematic errors can be generated and then added on all the linac elements, such as RF
phase and amplitude, linac components offset and tilt, higher order magnetic fields of quadrupoles,
sextupoles and dipoles. Here an example for higher order fields error is given. A general formula for
higher order fields (with normal and skew components) is listed below with the normalized magnet
multipole strength defined.

By + iBx = B

10
∑

n=1

(bn − ian)

(

x

r0

+ i
y

r0

)n−1

(6)

where B denotes the magnetic field on the reference trajectory, bn the normal multipole coefficient,
and an the skew multipole coefficient. The index n is associated with the 2(n + 1) pole.

Kn =
∂nB/∂xn

· L

Bρ
(7)
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where Kn denotes the normalized magnet multipole strength, ∂nB/∂xn field gradient, L magnetic
length of this element, and Bρ the beam rigidity.

Other types of error such as magnetic field scale error and BPM scale error can also be included.
Feedback systems can also be included in the simulation such as to maintain constant energy gain
over the linac.

5 Single particle or Macro-particle tracking

In the thin lens kick mode, an element-by-element tracking procudure is adopted for both single
particle and macro-particle tracking. Meanwhile for matrix mode, one could either track element-
by-element or calculate the overall transfer matrix directly.

For single particle tracking mode, one could specify 6-D coordinates up to 20 particles. For
Macro-particle tracking mode, one could choose single bunch or multi bunch mode. Gaussian or
Uniform distribution are available internally, and external input files can also be read in as initial
coordinates. Beam parameters can be varied between different bunches in the multi bunch mode.

6 Post processing

In post processing module, statistical calculation is performed on beam parameters and lattice
parameters. Beam trajectory and RMS beam size can be calculated. ‘TWISS’ parameters at
different linac locations could also be calculated using the bunch coordinates, such as beta functions
and dispersion functions. Projected emittance and linear dispersion subtracted emittance can then
be calculated using these beam-induced ‘TWISS’ parameters or by using design optics ‘TWISS’
parameters.

7 Simulation results examples

In this section several simulation examples are presented (from Figure 1 to Figure 10), to illustrate
the functions of this simulation code.
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Figure 1: Left: dipole corrector strength; Right: difference trajectory.
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Figure 2: Left: dispersion; Right: dispersion and emittance.
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Figure 3: Left: Filamentation from initial beta mismatch; Right: Filamentation from initial trajec-
tory offset.
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Figure 4: Left: energy error along linac; Right: energy error along linac with klystron cluster.
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Figure 5: Left: confidence level for linear dispersion subtracted emittance; Right: confidence level
for projected emittance.
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Figure 6: Left: emittance growth with KCS and 1-to-1 steering etc.; Right: emittance growth and
trajectory.
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Figure 7: Left: benchmark trajectory R matrix and tracking; Right: benchmark trajectory single
particle and bunch.
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Figure 8: Left: benchmark trajectory with acceleration; Right: benchmark trajectory without
acceleration.
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Figure 9: Left: illustration emittance growth in single cell; Right: illustration emittance growth
with emittance bump.
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Figure 10: Left: phase space and trajectory; Right: phase space.
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