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Abstract

We have studied through analytical and numerical methods the use of a relativistic

electron bunch to drive a metallic beam pipe with small corrugations for the purpose

of generating terahertz radiation. For the case of a pipe with dimensions that do not

change along its length, we have shown that—with reasonable parameters—one can

generate a narrow-band radiation pulse with frequency ∼ 1 THz, and total energy of

a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds.

We have also shown that, if the pipe radius is tapered along its length, the generated

pulse will end up with a frequency chirp; if the pulse is then made to pass through a

compressor, its final length can be reduced to a few picoseconds and its peak power

increased to 1 GW. We have also shown that wall losses tend to be significant and

need to be included in the structure design.

a Work supported by Department of Energy contract DE–AC02–76SF00515.
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I. INTRODUCTION

For applications in fields as diverse as chemical and biological imaging,

material science, telecommunication, semiconductor and superconductor re-

search, there is great interest in having a source of short, intense pulses of

terahertz radiation. There are laser-based sources of such radiation [1, 2], ca-

pable of generating e.g. (several-cycle) pulses with frequency over the range

10–70 THz and energy of 20 µJ [3]. And there are beam-based sources, utilizing

short, relativistic electron bunches [4, 5]. One beam-based method impinges

an electron bunch on a thin metallic foil and generates coherent transition

radiation (CTR). Recent tests of this method at the Linac Coherent Light

Source (LCLS) have obtained single-cycle pulses of radiation that is broad-

band, centered on 10 THz, and contains > 0.1 mJ of energy [6]. Another

beam-based method generates THz radiation by passing a bunch through a

metallic pipe with a dielectric layer [7]. At UCLA this method was used to

generate narrow-band pulses with frequency 0.4 THz and energy 10 µJ. In this

report we investigate a similar idea, that of using a short, relativistic beam to

generate THz radiation in a metallic pipe with small corrugations, to explore

what the possibilites of this approach might be.

It has been noted in the past, in the study of wall-roughness impedance,

that a beam passing through a metallic pipe with small-scale corrugations

excites a high-frequency mode that propagates with the beam. We propose

introducing a short driving bunch into such structure, with aperture on the

order of a millimeter and length on the order of a meter, in order to generate

a pulse of radiation with frequency on the order of a terahertz and energy

on the order of milli-Joules. With a pipe where the corrugations do not vary

along the structure, we shall see that we obtain a narrow-band pulse that is

relatively long, on the order of tens of picoseconds. To obtain a shorter pulse,
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one can imagine using a corrugated pipe that varies along its length, in order

to introduce a frequency chirp in the pulse. If this is followed by a properly

designed dispersive device—analogous to what is done in chirped pulse ampli-

fication (CPA) in high power lasers—the pulse can then be compressed, at the

expense of being more broad-band than in the previous, unchirped case.

In this report we will study both ideas, THz pulse generation in a corru-

gated pipe that does not vary along its length and in one that does. In the

second case, however, we will not attempt to solve the entire problem. We

will focus on the first part of the process—generating the chirped pulse. Pulse

generation in a corrugated pipe is studied using analytical formulas and nu-

merical simulations. For the simulations we employ I. Zagorodnov’s program

ECHO, which computes the fields generated by an ultra-relativistic bunch in

a structure in the time domain [8]. We begin with lossless beam pipe walls,

and then include wall losses in the calculations. The pulse compression that

follows is only treated conceptually, by simulating the effect of an ideal disper-

sive compressor. It is understood however, that working out an actual design

for such a compressor will be a crucial component in getting a short, high peak

power THz pulse from a pipe with small corrugations.

II. THEORY

A. Analytical estimates

Consider a short, ultra-relativistic bunch of electrons passing on-axis

through a periodic (cylindrically-symmetric) metallic structure with small

corrugations. Let the pipe radius be a, and the corrugations have depth δ,

period p, and gap g, with δ, p � a (see Fig. 1). When δ & p (a case that

we call “steeply corrugated”) the beam excites one dominant mode at a fre-
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quency that is far above cut-off, in a pulse that follows the beam near the

speed of light, c (many higher frequency weak modes are also excited)1. For

the dominant, fundamental mode the wave number, k, and group velocity, vg,

are well approximated by [9, 10]

k =
2√
aδ

, (1)

(
1− vg

c

)
=

2δ

a
� 1. (2)

Here, and in the rest of the report, for simplicity we have let the gap g = p/2

(for the general case, when this relation does not hold, the analytical formulas

can be found in Refs. [9, 10]).

FIG. 1. A sketch of a part of the corrugated structure.

A schematic of how the pulse is generated, and how it would arrive at

a monitor located at the structure end is shown in Fig. 2. As the beam

(the blue elliptical symbol in frames a-c) traverses the structure, parts of a

radiation pulse are continually being generated by it and then fall behind (the

blue, green, and red stripes represent parts of the radiation pulse created,

respectively, at the beginning, middle, and end of the structure). Finally, at

the field monitor the parts of the pulse arrive in the reverse order in which

1 Note that if the beam moves through the structure slightly off axis, a dominant dipole

mode of the same frequency will also be excited.
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they were created. If the pipe length is L, then Eq. 2 implies that the length

of the radiation pulse at the downstream end is

` =
2δL

a
. (3)

FIG. 2. Schematic of: pulse generation by bunch in corrugated beam pipe (a-c),

and signal measured at a monitor at the end of the structure (d).

Let us assume, for the moment, that the walls are perfectly conducting.

Then the energy in the pulse at the end of the corrugated pipe is approximately

equal to the energy lost by the exciting bunch during its passage through

the pipe. And this loss, in turn, is approximately given by the loss to the

fundamental mode alone (assuming a steeply corrugated structure, i.e. δ & p).

(In the simulations, to be presented below, we will confirm these statements.)

The energy loss (or “wake loss”) is given by Uw = Q2κL, with Q the charge

in the bunch and κ the loss factor [9–11]:

κ =
Z0c

2πa2
e−k

2σ2
z , (4)

where Z0 = 377 Ω and σz is the rms bunch length. Note that with a very short

bunch (kσz � 1), κ = Z0c/2πa
2, and the wake loss is the largest (steady-

state) loss in any structure with minimum aperture a and length L (see e.g.
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discussion in Ref. [12]). The peak power in the pulse is then given by P =

2cUw/`.

As a practical example, consider a beam pipe with a = 2 mm, δ = 50 µm,

p = 40 µm, L = 50 cm, and an exciting bunch with σz = 100 µm, Q =

1 nC. For this example, the analytical formulas give: frequency f = kc/2π

= 0.3 THz; kσz = 0.63, bunch energy loss Uw = 1.5 mJ (for a point charge the

loss would be Uw = 2.25 mJ); peak power P = 30 MW; and final pulse length

` = 2.5 cm. We see that the frequency is on the order of 1 THz, the energy in

the pulse is significant, and the pulse is quite long.

Some notes to consider concerning the results of this section:

1. All of our analytical results are valid for the case of a steeply corru-

gated structure (δ & p). If this condition is slightly violated, the mode

frequency will be higher and the excitation (loss factor) lower than the

analytical values. In the regime of a “shallowly corrugated” structure

(δ � p) the dominant mode is gone, and the structure has a completely

different behavior.

2. The results given here are steady-state results. When a beam first enters

a corrugated pipe there is a different, transient response that we have

ignored. After a distance on the order of the catch-up distance, zcu =

a2/2σz, the analytical formulas become valid. We will see that for the size

of parameters discussed in this report, the transient distance is relatively

small and transient effects can indeed be ignored.

3. The radiation pulse generated by the corrugated structure will be cylin-

drically symmetric of radius a. The fields vary linearly with radius:

Er = Hφ = H0r/a, with Er the radial electric field, Hφ the azimuthal

magnetic field, and H0 a constant [13].
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4. Resistive wall losses, which are ignored here, will significantly affect the

pulse energy and peak power that can be achieved. This important issue

will be addressed in a later section of this report.

B. Tapered Structure

The pulse power can be enhanced if it is compressed to a fraction of a

centimeter. This can be achieved by generating a terahertz pulse whose fre-

quency varies from head to tail, and sending it through a dispersive system in

which the head travels a shorter path than the tail. We will call such a system

a compressor. Mathematical representation of the compressor action of the

pulse is discussed in the next subsection.

To introduce a frequency chirp into the pulse, we have considered adiabat-

ically varying the corrugation parameters along the pipe. One of the simplest

methods is to keep the actual corrugations unchanged, and to just vary the

beam pipe radius gradually. Fig. 3 gives a sketch of the idea: the beam passes

through a pipe that becomes gradually smaller. At the end there is a monitor

to measure the pulse. This is followed by, at the moment, an ideal pulse com-

pressor. In the configuration shown the front of the pulse will have a higher

frequency than the back. However, the inverse configuration—small-to-large

beampipe—should, in principle work as well.

The parameters for the tapered, corrugated structure and for the exciting

bunch to be used in simulations presented below are given in Table I. In

particular, the pipe radius varies linearly from a = 2 mm in the beginning to

1 mm at the end. The taper is gradual, so we assume the equation for k (Eq. 1)

is valid locally; averaging along the structure, we estimate the central frequency

to be 0.35 THz, and the bandwidth 0.125 THz. Note that estimating the final

radiation pulse length is not so easy, and requires a detailed knowledge of the
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FIG. 3. Schematic of pulse generation by bunch in tapered, corrugated beam pipe,

followed by pulse compression. The front of the pulse measured at the monitor will

have higher frequency than the back.

dispersion curve of a corrugated pipe—something that is beyond the scope of

this report.

TABLE I. Parameters for the standard tapered, corrugated structure and for the

exciting bunch, to be used in simulations given in the next section.

Pipe radius a, mm 2–1

Pipe length L, cm 50

Depth δ, µm 50

Period p, µm 40

Gap g, µm 20

Bunch charge Q, nC 1

Bunch length σz, µm 100

The analytical approximation of the energy in the radiation pulse, given

by the wake energy, is Uw = Q2L〈κ〉, with κ given in Eq. 4 and the brackets

means to average along the length of the pipe. For our linear taper the average

can be performed explicitly, giving

Uw =
Z0c

8π

Q2Lδ

σ2
z(af − a0)

[
exp

(
−4σ2

z

afδ

)
− exp

(
−4σ2

z

a0δ

)]
, (5)
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with a0 (af ) the initial (final) pipe radius.

C. Pulse Compression

The pulse generated in the tapered structure will have a frequency chirp.

For compression the pulse then needs to traverse a properly designed dispersive

device or region, a compressor.

Without actually designing the compressor we can formulate the action of

the compressor on the pulse. The transverse electric field of a pulse with a

linear chirp and a Gaussian envelope can be written as (see e.g. [14])

E(t) = E0 exp[−αt2] exp[i(ω0t− βt2)] + c.c. , (6)

with ω0 the central frequency. The rms pulse length σzp = c/
√

2α and the

frequency chirp dω/dt = −2β. The Fourier transform of the field is given by

Ẽ(ω) = E0 exp

[
− α/4

α2 + β2
(ω − ω0)

2

]
exp

[
−i β/4

α2 + β2
(ω − ω0)

2

]
, (7)

where the result has been factored into amplitude and phase parts. Note that

the phase arg(Ẽ) is proportional to (ω − ω0)
2.

Passage of the pulse through an ideal dispersive medium adds an additional

phase φ(ω) to the electric field (7) without changing its amplitude. If this phase

is chosen in such a way that it cancels the phase in Eq. 7, the resulting pulse

length becomes σz,comp = c
√
α/2(α2 + β2). We find that the ratio of pulse

length before to after compression—the compression factor—is given by

fc =
σzp

σz,comp

=

√
α2 + β2

α
, (8)

which in the limit of large enough chirp, β � α, is approximately equal to

β/α and is much larger than one.
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Let us make a rough estimate of the relative sizes of α, β, and the com-

pression one can expect for the nominal tapered structure (a more detailed

analysis based on our simulations is presented in Section III). Suppose the

initial pulse envelope is relatively uniform with length ` = 4 cm (which we will

see in simulations below), meaning that σzp = 1.2 cm. The chirp parameter

can be approximated β ∼ c2[k(a0)− k(af )]/2`, with a0 (af ) the initial (final)

beam pipe radius. Then α/c2 = 0.004 mm−2 and β/c2 = 0.033 mm−2, much

larger. This gives for the compression factor fc ∼ 8.

Note that a simple dispersive medium for an electromagnetic pulse is rep-

resented by a straight round pipe with smooth conducting walls. The lowest

TM01 mode in such a pipe with frequency ω has a longitudinal wavenumber

kz =
ω

c
− cµ2

01

2a2ω
, (9)

where a is the radius of the pipe, µ01 is the first root of the zero order Bessel

function, and we assumed that the frequency ω is well above of the cutoff

frequency cµ01/a. It is easy to see that for a wave packet with a small frequency

spread around ω0, a passage of the packet through a pipe of length L introduces

a phase difference whose quadratic (in ω − ω0) part is

φ ≈ 1

2
L(ω − ω0)

2d
2kz
dω2

∣∣∣∣
ω=ω0

= −L(ω − ω0)
2 cµ

2
01

a2ω3
0

, (10)

which in principle can be used to compensate for the frequency chirp in (7).

Unfortunately, numerical estimates show that, due to the high frequency of

terahertz radiation and for reasonable values of radius a, the dispersive effect

of a smooth pipe is tiny. To use such a pipe for compression would require

it to be extremely long (in which case the wall losses would no longer be

negligible). Even if one uses a low-loss pipe with periodic irises [15] (which,

in the lowest order has the same dispersive properties as a smooth pipe with

radius equal to the iris radius) the required length does not seem practical.
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We believe that a practical compressor should be based on diffraction gratings

and mirrors, similar to ones used in optics for CPA. The detailed design of

such a compressor is, however, beyond the scope of this paper.

III. SIMULATIONS

We perform numerical simulations using I. Zagorodnov’s 2D version of the

time-domain, finite difference Maxwell equation solver ECHO [8]. The pro-

gram finds wakefields excited by a speed-of-light Gaussian bunch that passes

through a metallic structure, such as a corrugated beam pipe. The program

was recently modified to allow for “monitors”, chosen locations within the

structure where one can record the electric and magnetic fields as functions of

time.

Our first simulation is for the 50 cm long corrugated pipe of Table I, but

without the taper, keeping the pipe radius at a = 2 mm. At the output end

of the corrugations we’ve placed a field monitor that covers a few mesh points

in z and all of r ≤ a; we use it to monitor Er(t) and Hφ(t). From these fields

we obtain the outgoing power

P (t) =
c

2

∫ a

0

Er(r, t)Hφ(r, t)r dr . (11)

The energy in the pulse then is U =
∫
P (t) dt. We expect U ≈ Uw, the energy

lost by the bunch.

There are in total 12,500 corrugations. The bunch length in the simulation

σz = 100 µm and the mesh size is 10 µm. (When a coarser mesh of 20 µm

is used, the wake energy Uw is not much affected, though the pulse energy U

begins to deviate.) In Fig. 4 we display the pattern of transient electric fields,

generated by the beam, as it begins its traversal through a corrugated beam

pipe. The beam on axis (at bottom right in the plot) is moving to the right
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at speed c. The corrugated wall is at the top. In a standard run, the field is

calculated over a window that reaches 8 cm behind the bunch, in order that a

pulse as long as 8 cm can be captured. A whole run takes several hours on a

Windows desktop machine.

FIG. 4. Pattern of transient electric fields, generated by a beam, as it begins its

traversal through a corrugated beam pipe (ECHO output). The beam on axis (at

bottom right in the plot) is moving to the right at speed c.

The Er field recorded at the monitor at r = 1.5 mm, is shown in Fig. 5

(the left plot). The monitor is at z = 50.2 mm. Until the bunch reaches it,

at ct = 50.2 mm, there is no signal; for ∆ct = 2.7 mm, Er oscillates with

amplitude 32 MV/m; finally, the field drops to near zero again. The absolute

value of the Fourier transform of the field |Ẽr| is plotted on the right. We see

that the spectrum is quite narrow, with a peak at f = 290 GHz.

Next we consider the tapered structure, with parameters given in Table I.

For this structure the beam pipe radius decreases from a = 2 mm at the

beginning to a = 1 mm at the end. In Fig. 6, in the left plot, we give Er

at the monitor. We see that the pulse has an amplitude that is again nearly

constant, ∼ 70 MV/m, and its length ` ∼ 3.7 mm. The energy in the pulse

U = 2.30 mJ. The analytical approximation (Eq. 5) gives Uw = 2.15 mJ. The

agreement is quite good, with the discrepancy giving a measure of the accuracy

of the numerical result.
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FIG. 5. For untapered structure, with a = 2 mm: Er at monitor, at r = 1.5 mm

(left plot); note that pulse length ` ∼ 2.7 cm. Absolute value of Fourier transform

of Er (right plot).

FIG. 6. For tapered structure Er at monitor, at r = 0.75 mm: before compression

(left plot), and after (right plot, discussed below).

In Fig. 7 we plot the amplitude of the Fourier transform of Er (left figure)

and its phase (in radians, on the right). We see that the spectrum width and

central frequency are (∆f)fw = 110 GHz and fcen = 360 GHz; which are close

to the analytical estimates from above, (∆f)fw = 125 GHz, fcen = 350 GHz.

In the phase, over the spectrum core, we see a clear quadratic dependence,
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showing that there is a rather linear frequency chirp in the pulse. The dashes

in the curve give the quadratic fit over [260, 480] GHz. The effective chirp

parameter is β/c2 = 0.039 mm−2. To estimate the effectiveness of a compressor

that can remove a linear chirp, we subtract the fitted quadratic dependence

from the phase, and perform the inverse Fourier transform. The result is shown

in Fig. 6, the right plot. The final pulse length (FWHM) is `f = 3.1 mm, and

the ratio of initial to final length is fc = 12.

FIG. 7. For tapered structure: Absolute value of the Fourier transform |Ẽr| (left

plot) and the phase (in radians, right plot). Red dashes give quadratic fit over [260,

480] GHz.

IV. RESISTIVE WALL LOSSES

Until now we have assumed that the walls of our corrugated pipe are per-

fectly conducting. With wall losses some of the wake energy lost by the beam

will be lost into the walls. We present here an analytical estimate of the wall

losses. Recently the program ECHO has been upgraded to included also the

effect of wall losses [16]. For our tapered, corrugated pipe we will perform

simulations including wall losses and then compare with the analytical results.
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TABLE II. Radiation Properties (Numerical Results).

Frequency f , THz 0.30–0.44

Pulse energy U , mJ 2.3

Pre-compression:

Peak power P , MW 40

Pulse length `, cm 3.5

Post-compression:

Peak power P , MW 490

Pulse length `, cm 0.3

It can be shown that the mode fields vary linearly with radius: Er = Hφ =

H0r/a. Then the energy flow, at a given position z, is given by an integral

over the beam pipe cross-section

Σ =
c

8π

∫
|Hφ|22πr dr =

c

16
a2H2

0 . (12)

The energy dissipation per unit length involves a line integral (azimuthally)

along the wall

P =
c

8π
ζ ′
∫
|H0|2 dl =

c

4
ζ ′aH2

0 , (13)

with ζ ′ = (kc/8πσ)1/2, and σ the conductivity of the metal walls. Note,

however, that the length of wall boundary per unit length of corrugated pipe

is α = 1 + (2δ/p) (for the structure of Table I, α = 3.5). Combining the

three factors, we obtain the dissipation length, i.e. the distance over which

the energy drops by 1/e:

LD =
Σ

αP
=

a

4ζ ′(1 + 2δ/p)
. (14)
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If we take a resistive, corrugated pipe of length L, with parameters that vary

gradually along its length, and excite it by a bunch as described here, then

the fraction of energy (lost by the beam) that ends up in the radiation pulse

when it reaches the end is approximately

η =
1

L

∫ L

0

e−z/LD(z) dz . (15)

In the special case where the pipe dimensions are unchanging with z, η =

LD

L

(
1− e−L/LD

)
.

Let us consider a beam pipe made of Cu, with σ = 5.9 × 107 Ω−1m−1.

Taking our nominal structure (Table I), but untapered with a = 2 mm, and

performing an ECHO calculation (with losses) we find that the fraction of

energy that reaches the end, η = 0.55; the analytical result is η = 0.56, in

good agreement. We then performed an ECHO calculation for our nominal,

tapered structure. The radiation pulse with losses, both before and after ideal

compression is shown in Fig. 8. We clearly see that, before compression, the

amplitude of the pulse decreases dramatically with time. After compression

the peak amplitude is Er = 150 MV/m vs. 235 MV/m in the case of no losses

(Fig. 6, on the right); the energy in the pulse is U = 1.10 mJ vs. 2.30 mJ with

no losses. Here η = 0.44, and the analytical estimate of energy in the pulse,

Q2Lη〈κ〉 = 1.10 mJ, is in excellent agreement with the numerical result.

If we increase the period of corrugation (keeping g = p/2) and keep other

parameters fixed, then the wall length along the surface per unit length along

the axis—α—is reduced, which increases the fraction of energy that makes it to

the end—η. However, the loss factor κ, which gives the strength of excitation,

is reduced (and no longer given by Eq. 4). There is an optimum that maximizes

the energy in the pulse at the end of the structure. If we increase p to 160 µm,

then α = 1.6, and η = 0.64. ECHO finds that the loss factor is reduced by

∼ 20%, and the energy in the pulse at the end, U = 1.20 mJ—slightly larger
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FIG. 8. For tapered structure, including resistive wall losses (Cu) : Er at monitor,

at r = 0.75 mm before (left plot) and after (right plot) compression.

than the 1.10 mJ obtained for the nominal structure.

At liquid nitrogen temperature, 77 K, σ for Cu is increased a by factor of

7.2 [17]. Placing the structure in a liquid nitrogen bath will thus reduce the

wall losses. At 77 K, the estimate for the p = 160 µm example: η = 0.83 and

U = 1.55 mJ.

V. REACHING TO 1 THZ

How can we reach 1 THz with the corrugated pipe, and how can we

maximize the energy in the pulse? For scaling, we see that the frequency

f ∼ (aδ)−1/2, wake energy Uw ∼ L/a2, damping length (LD/L) ∼ a5/4δ1/4/L,

pulse length before compression ` ∼ δL/a, and after compression `f ∼ (aδ)1/2.

Uw does not depend on corrugation size. If we reduce δ (and also p, g) by

factor A, the frequency increases f →
√
Af .

To reach 1 THz, we consider the beam pipe radius a varying linearly

from 1—0.5 mm along the structure, take pipe length L = 12.5 cm, corru-

gation depth δ = 20 µm, corrugation period p = 60 µm, and bunch length
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σz = 40 µm. We’ve run Echo for this example assuming Cu walls (at room

temperature). We obtain a pulse at the output end of the structure that has

peak field at the wall of Er = 260 MV/m and a pulse length ` = 5.9 mm.

The wake energy Uw = 2.2 mJ and the pulse energy U = 1.6 mJ. In Fig. 9 we

plot (at r = 0.375 mm) |Ẽr(ω)| (left frame) and Er(t) after ideal compression

(right frame). The spectrum has a central frequency of 0.9 THz, with FWHM

of 0.25 THz. Post compression the peak power P = 1.0 GW and the pulse

length ` = 1.1 mm. The compression factor is 5.4.

FIG. 9. For 1 THz structure, at r = 0.375 mm: Fourier transform of Er at monitor

(left plot) and Er after ideal compression (right plot).

One issue that might be of concern is that the fields on the walls are quite

large, 260 MV/m, and the corrugations have sharp edges. We believe, however,

that the radiated pulse properties will be relatively unchanged if the rectangu-

lar corrugation is replaced by a sinusoidal one that represents the first term in

the Fourier series of the original structure. This modification, combined with

the fact that the radiation pulse is of very short length, leads us to anticipate

no damage to the walls, though this question needs more study.

What is the practical limit to the frequency that can be generated by such

a structure? Consider a structure with fixed a = 1 mm and L = 12.5 cm (as
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in the previous example), but with the corrugation dimensions reduced by a

further factor of 10, so that e.g. δ = 2 µm. If we also reduce the bunch length

by
√

10 to σz = 12.5 µm, we should in theory be able to reach f = 2.8 THz.

The wall losses and energy in the pulse should be relatively unchanged from

the previous example, and the pulse length, even without compression, should

be relatively short, ` ∼ 0.5 mm. A practical question is, can such small

corrugations be produced reasonably accurately? Also, note that the catch-up

distance a2/2σz ∼ 4 cm, which is a third of the pipe length, meaning that the

transient fields start to become important and the analytical formulas begin

to lose their validity.

VI. CONCLUSION AND DISCUSSION

We have analyzed and studied through numerical simulation the use of

an electron bunch to drive a metallic beam pipe with small corrugations for

the purpose of generating terahertz radiation. For the case of a pipe with

dimensions that do not change along its length, we have shown that—with

reasonable parameters—one can generate a narrow-band radiation pulse with

frequency ∼ 1 THz, and high total energy: 1 or 2 milli-Joules. The pulse

length, however, tends to be rather long, on the order of 10’s of ps. We have

further shown that: (i) by using a tapered pipe, one generates a pulse with a

frequency chirp, and (ii) if the chirped pulse then passes through a dispersive

device (a “compressor”), one can end up with a final pulse only a few ps in

length, at the cost of a wider bandwidth.

We have shown that wall losses in the corrugated pipe tend to be significant

and need to be considered in the calculations. The energy in the radiation

pulse is given by the (wake) energy lost by the bunch minus the energy lost in

the walls. For a given corrugation amplitude there is an optimal corrugation
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period: if it is shorter, the wall losses increase; if it is longer the wake energy

decreases. We have found that analytical estimates of resistive wall losses and

pulse energy agree very well with numerical results.

Among the practical problems that need to be addressed before this method

of generating THz radiation can be realized are: (1) (in the chirped pulse case)

how to design a real THz pulse compressor, (2) how to extract the THz pulse

from the pipe without destroying its properties, and (3) how to guide and focus

the pulse to an experiment. Recently Geloni, et al, have found that a round

metallic pipe of radius of several cm’s, with a periodic array of shallow irises,

can be used to transport THz radiation with little loss [15]. We can imagine

that a smooth metallic pipe that is gradually tapered from the end of our

corrugated structure to such a transport pipe may be an effective transition

piece for transporting the THz pulse, though this needs more study.

One limitation of using a round, corrugated pipe to generate THz radiation

is that once it is manufactured its frequency response is fixed. If, instead,

we used two flat, corrugated plates to generate a pulse between them, the

frequency could be adjusted by changing the separation of the plates. Earlier

studies have found that a mode similar to that in the round pipe is generated

by this configuration, though for a given aperture the excitation appears to

be about a factor of two weaker (see e.g. [12]). Nevertheless, this may be an

attractive alternative geometry for future studies.
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