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Harmonic seeding of free electron lasers has attracted significant attention from the promise of
transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding
to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may
degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high
gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm
analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary
seed laser envelope and phase.

I. INTRODUCTION

The recent success of Self-Amplified Spontaneous
Emission (SASE) Free Electron Lasers (FELs) has led
to x-ray sources of unprecedented brightness [1, 2].
However, some applications still require higher power
(e.g. [3, 4]), and the poor longitudinal coherence of SASE
FELs can inhibit optimization schemes. To improve the
longitudinal coherence, there is strong interest in seeding
FELs at high harmonics of optical or UV lasers.

There are numerous challenges for seeding schemes,
and previous theoretical and experimental studies have
focused on a wide variety of accelerator and FEL re-
quirements. In particular, it is well known that har-
monic seeding schemes must contend with increasingly
strict electron beam tolerances as the harmonic number
increases. Initial errors that are insignificant compared
to the modulation wavelength may be large relative to
a much shorter wavelength harmonic. For example, har-
monic multiplication amplifies electron shot noise, which
can overwhelm external seeding sources [5–8]. More re-
cently attention has turned to errors from the seed laser
itself (see e.g. [9]). Without sufficient control of the ini-
tial seed laser phase, seeding may have little or no benefit
compared to SASE FELs.

In this paper, we study the effects of laser phase errors
on the seeded electron density. Recent papers have used
analytical methods to derive the sensitivity of seeding
schemes to quadratic laser phase [10, 11]. Here we de-
velop simulations to observe the increase in phase errors
as a function of harmonic number in High Gain Harmonic
Generation (HGHG) and Echo-Enabled Harmonic Gen-
eration (EEHG). We show that simulations match ana-
lytical results for the case of quadratic phase, and extend
the simulations to arbitrary higher order spectral phase.
Finally, we consider a practical HGHG case to estimate
the required level of noise control in future seeded FELs.

II. SCHEMATIC DESCRIPTION OF
HARMONIC PHASE MULTIPLICATION

As a simple example of seeding, we begin with the case
of HGHG driven by a temporally flat-top laser pulse. In
idealized HGHG [12], the laser produces an energy mod-
ulation in the electron beam, and a dispersive region con-

verts the energy modulation into a density modulation.
After the combined modulation and dispersion, the elec-
tron beam has periodic density spikes separated by the
laser wavelength, λL; i.e., the electrons are ’bunched’ at
a wave vector k1 = kL, with kL ≡ 2π/λL. For a given
harmonic number, H, if the density spikes are short rela-
tive to λL/H, the electrons are also bunched at the har-
monic wave vector kH = Hk1. (Later we will quantify
the degree of density modulation from the bunching fac-
tor, Eq. 5.)

In a realistic laser pulse, the wavelength varies as a
function of time. As the wavelength changes, the result-
ing separation of electron density spikes also shifts from
the central wavelength, as illustrated in Fig. 1. The frac-
tional shift in wavelength is constant at all harmonics; if
the peak electron bunching shifts from k1 → k1 +dk1, we
expect an accompanying harmonic bunching shift from
kH → kH + dkH , with dkH

kH
= dk1

k1
.

The electron bunching drives the FEL radiation, so
the shift in kH increases the radiated bandwidth. If the
seed laser pulse has an initial bandwidth of ∆kL, we then
expect total radiated bandwidth to grow to

∆kFEL = ∆kL +Hdk1 . (1)

FIG. 1: Cartoon illustrating the effect of seed phase errors
on HGHG electron bunching. A time-varying wavelength in
the seed laser (blue line) results in a varying separation of the
bunched electrons (red bunches).

To quantify the effect of the variation in the seed laser,
we calculate the Time-Bandwidth Product of the FEL,

TBP = ∆TFEL∆kFEL , (2)
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from the RMS pulse duration, ∆TFEL, and bandwidth,
∆kFEL. For a given spectral distribution, the minimal
TBP corresponds to a transform-limited pulse. As the
TBP grows, the seeded FEL characteristics revert to
those of a SASE pulse.

For a flat-top seed laser with a small linear variation
in wavelength, all harmonics have the same pulse length.
From Eq. 1 we then expect the TBP to grow linearly with
harmonic number. (This holds only for small changes
in wavelength, when the entire laser pulse satisfies the
HGHG bunching condition, Eq. 9.)

While it is possible to produce seed laser pulses with
nearly minimal TBP, at sufficiently large harmonic num-
bers the growth in ∆kFEL will lead to pulses far from the
transform-limit. For realistic laser envelope and phase,
the harmonic amplification is more complicated, but the
TBP still grows with increasing harmonic number. These
cases are studied in detail in the following sections.

III. HGHG WITH SPECTRAL PHASE ERRORS

A. Laser in Spectral Domain

Experimental laser measurements are predominantly
spectral, so it is convenient to describe the laser pulse
using the electric field in the spectral domain

Ẽ(ω) = A(ω)e−iφ(ω) , (3)

with spectral intensity, A(ω) and phase

φ(ω) =

∞∑
n=2

φn
n!

(ω − ω0)n . (4)

(We ignore the φ0 and φ1 terms, which represent the
carrier-envelope offset and the envelope temporal delay
respectively, and are not relevant to this analysis.) A
transform-limited pulse by definition has minimal TBP
and flat spectral phase, φ(ω) = 0. Realistic laser pulses
will have non-negligible spectral phase, and these phase
terms produce longer pulses with greater intensity fluc-
tuation in the time domain; i.e. pulses farther from the
transform limit.

We start by considering laser pulses with Gaussian
spectrum, A(ω), and only quadratic spectral phase, φ2,
as these are easily studied analytically in the time do-
main. With simulations, we then extend the results to
include arbitrary spectral envelope and phase.

B. Electron Bunching Factor

The final electron distribution is responsible for the
properties of the FEL. To estimate the FEL radiation at
wave vector k, we define the averaged electron bunching

factor

b(k) ≡ 1

NT

NT∑
j=1

e−ikz̄j , (5)

where the sum is over the final longitudinal position, z̄,
of all NT electrons in the bunch. We can also define a
local bunching factor by summing over a single slice of
the beam. In this case, we change the normalization of
Eq. 5 to the number of electrons in the local slice, Nslice,

bslice,k(z) ≡ 1

Nslice(z)

Nslice(z)∑
j=1

eikz̄j . (6)

In HGHG and EEHG, the seeded bunching factor
largely determines the FEL characteristics at saturation.
For example, the length of the slice bunching, bslice,k(z),
determines the duration of the FEL pulse, ∆TFEL. The
width of a harmonic in the averaged bunching, b(k), de-
termines the FEL bandwidth, ∆kFEL. From the product
of the FEL duration, ∆TFEL, and bandwidth, ∆kFEL, we
find the TBP of the FEL.

We can also define a spectral phase of the electron
bunch from the argument of the averaged bunching fac-
tor,

φFEL(k) = Arg
[
b(k)

]
. (7)

The electron spectral phase is directly analogous to the
laser spectral phase (Eq. 4).

Central to all calculations is the assumption that the
seeded bunching factor determines the properties of the
FEL radiation. While the FEL process is itself a narrow
band amplifier, for LCLS the FEL bandwidth is as large
as ∆kSASE = 1% [1]. By contrast, seeded FELs hope to
generate bandwidths as small as ∆kSEED = 0.01%, so we
assume that ∆kSEED � ∆kSASE; in the opposite limit,
there is little purpose to seeding as the SASE process
will dominate. However, for the case of short-pulse seed-
ing when ∆kSEED

<∼ ∆kSASE, the FEL process could in
principle limit the bandwidth broadening of large phase
errors.

C. Second Order Spectral Phase, Analytical
Approach

We are now ready to consider the effects of laser spec-
tral phase on the electron bunching. A seed laser pulse
with a Gaussian spectral amplitude of RMS width, σω,
and second order spectral phase, φ2, transforms into itself
in the time domain; i.e. a pulse with a Gaussian E-field

A(z) = A0e
−t2/2σ2

Lei(w0t+α2t
2) . (8)

where the temporal envelope, σL, and second order tem-
poral phase, α2, are determined by the spectral equiv-
alents, σω and φ2. The derivative of the phase deter-
mines the instantaneous wavelength, so quadratic tem-
poral phase, α2, produces a linear change in wavelength.
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Because the time domain pulse has a simple analytical
form, we can solve for the resulting electron bunching
factor analytically as well. (The derivation for the fol-
lowing section can be found in Ref. [10].)

To calculate the averaged bunching factor, b(k), we
assume a longitudinally uniform distribution with an en-
ergy spread of σp. In the case of HGHG, the final particle
position is given by z̄ = z + R56[p + A(z)], with initial
longitudinal position, z, energy p, dispersion R56, and
laser modulation given by the E-field, A(z). To produce
bunching at harmonic H � 1, we require the standard
HGHG condition A0

>∼ Hσp, and optimize bunching at
the laser center with

R56 ≈ (1 + 0.81H−2/3)/A0kL . (9)

To find the bunching factor at wave vector δkH near a
harmonic kH , we then integrate Eq. 5 over the electron
distribution to find the average bunching factor [10]

bH(δk) ∝ σLe−H
2r2(1+0.81H−2/3)2/2A2

0

×G(HGHG)
H (δkσL, Hβσ

2
L, r) , (10)

with

G
(HGHG)
H (x, y, r) ≡

∫ ∞
−∞

dξeixξ+iyξ
2

× JH
[
r(H + 0.81H−1/3)e−ξ

2/2

]
,

(11)

where β ≡ α2/2k
2
L is the dimensionless second order

phase and r ∼ 1 optimizes the bunching factor near
the peak of the laser pulse. From bH(δk) we can deter-
mine both the bandwidth, ∆kFEL and the spectral phase,
φFEL(k), as a function of harmonic number.

In this paper we assume a long electron bunch com-
pared to the laser pulse. Production of sufficient laser
power at short wavelengths is currently a challenging lim-
itation for seeding X-ray FELs; the long electron bunch
ensures there is no wasted laser pulse energy. However,
there are advantages to a long laser pulse. Phase con-
trol is simpler for a narrow bandwidth pulse, and a short
electron bunch will sample the phase only at the center
of a long seed laser (Section III E). This complementary
case of a short electron bunch and long laser pulse was
described recently in Ref. [11].

D. Second Order Spectral Phase, Simulation

To extend the study to higher order spectral phase, we
developed a 1-D particle simulation of an HGHG seed-
ing scheme. Starting from a longitudinally uniform elec-
tron beam (much longer than the seed laser pulse) with a
Gaussian energy distribution, we apply an energy modu-
lation from the electric field of a laser pulse (e.g. Eq. 8),
followed by a dispersive region. Finally, we calculate the
bunching factor (Eq. 5) at the exit of the HGHG scheme.

Using the metrics described in section III B, we calcu-
late the TBP as a function of harmonic number. Figs. 2
and 3 show the bunching factor and TBP for a laser pulse
with quadratic spectral phase. We confirm that higher
harmonics are increasingly sensitive to phase errors, as
predicted by Eq. 11.

The normalization of the average bunching factor,
Eq. 5, depends on the total number of electrons in the
entire bunch, while the shorter laser pulse determines the
length of the final radiated pulse. As a result, the aver-
age bunching factor may be small even though the slice
bunching factor, Eq. 6, is large where the short seed laser
overlaps the electrons. Here we are interested primarily
in the width and phase of each bunching peak, rather
than the overall amplitude scaling.
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FIG. 2: Electron bunching factor for a Gaussian seed laser
pulse with quadratic phase. The seed laser phase and am-
plitude are φ(σω) = π and A0 = 30σp. Amplitude of the
bunching factor is small due to averaging over a long elec-
tron bunch (Eq. 5). Simulated bandwidths (blue) reproduce
the analytical result (Eq. 11 in green, scaled to match the
bunching amplitude).
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FIG. 3: Time-bandwidth product, ∆TFEL∆kFEL, for the elec-
tron bunching factor of Fig. 2. The TBP increases at higher
harmonics (squares), but slower than would be expected from
a flat-top pulse. For comparison, a transform-limited pulse
with flat phase has minimal TBP at all harmonics (stars).

Fig. 4 shows the spectral phase, φFEL(k), for the first
ten harmonics, calculated from both simulations and
Eq. 10. When the seed pulse has quadratic phase, the
electron bunching factor also shows quadratic phase. As
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expected, the phase increases as a function of harmonic
number.
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FIG. 4: Spectral phase of the electron bunching factor from
Fig. 2 for the first ten harmonics. Solid line calculated from
Eq. 11, with crosses taken from simulations. At higher har-
monics the curves are wider due to the increasing bandwidth.

In principle it is possible to correct for a linear change
in wavelength (or ’chirp’) by compressing the radiated
x-ray pulse with a diffraction grating. Indeed, Chirp-
Pulse Amplification (CPA) schemes have long been pro-
posed for generating short, high power FEL pulses (see
e.g. [13–15]). In the case of a CPA FEL, the TBP of the
seeding overestimates the TBP of the final compressed
x-ray pulse. At present, grating efficiencies near 1nm are
too low for CPA to increase the peak power, but advances
in blazed gratings may make CPA schemes more effective
in the future (see e.g [16]).

E. Pulse Shortening

The increase in TBP for Gaussian pulses is not as
large as predicted by the flat-top argument in section II.
The flat-top and Gaussian cases differ primarily due to
the effect of harmonic pulse shortening. High harmonic
bunching relies on the creation of sharp density spikes;
when the laser E-field amplitude drops away from the
peak of a Gaussian pulse, the HGHG bunching condition
(Eq 9) is sub-optimal and broadens the density spikes.
The widening density spikes cut off high harmonics, pro-
ducing increasingly short harmonic pulses. Fig. 5 shows
the local slice bunching factor (Eq. 6) as a function of po-
sition along the bunch; as expected, the pulse lengths are
shorter at higher harmonics. In Fig. 6 we confirm that
in HGHG from a Gaussian seed laser, the pulse length is
approximately proportional to H−1/3 [10]. By contrast,
when seeding from a flat-top pulse, the width of den-
sity spikes is independent of longitudinal position, and
all harmonics have the same duration.

Pulse shortening changes the harmonic spectral phase;
while the fundamental bunching follows the seed laser
amplitude and phase, the harmonic bunching samples
phase only from the center of the seed pulse. As a re-

sult, the harmonic spectral phase from a Gaussian seed
laser is smaller than that from an equivalent flat-top
pulse. Whereas section II predicts an increase in phase
proportional to harmonic number (Eq. 1), Figs. 3 and 4
show that a Gaussian envelope produces weaker growth
in bandwidth and TBP (Eq. 11).
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FIG. 5: Slice electron bunching factor and laser E-field as
a function of longitudinal position. Each bunching factor
point corresponds to a slice of the electron bunch of width
λL (Eq. 6).
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FIG. 6: Pulse length as a function of harmonic number. Sim-
ulation pulse lengths determined from the electron bunching
factor (stars) follow the expected H−1/3 scaling (line).

While pulse shortening has the beneficial effect of lim-
iting the harmonic phase errors, the shorter pulses result
in a larger coherent bandwidth and lower spectral bright-
ness. To produce a narrow bandwidth FEL requires long
seed lasers with high pulse energy. While the phase of
the long pulse may be easier to control, it is not possible
to use arbitrarily long laser pulses as the corresponding
increase in pulse energy will push already challenging pa-
rameters.

F. Arbitrary Spectral Phase, Simulation

A realistic laser pulse contains non-negligible spectral
phase beyond the 2nd order. Due to the difficulty of writ-
ing an analytical expression for arbitrary spectral phase
in the time domain, we use simulations to study harmonic
amplification of such pulses.
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Fig. 7 shows the 10th harmonic electron spectral phase,
φFEL(k), from seed lasers with 2nd through 5th order
spectral phase. We note that the odd order phases have
less impact on the electron bunch than the even orders.
Fig. 8 illustrates the reasoning as follows: odd order spec-
tral phase produces side pulses in the time domain, with
a π flip in the temporal phase between each pulse. In
section III E we found that at high harmonics, bslice,k(z)
is significant only in the center of the laser pulse, where
the temporal phase is constant. This central region dom-
inates the averaged bunching, b(k), so φ3 and φ5 make
little contribution to φFEL(k).
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n
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FIG. 8: Slice bunching factor (Eq. 6) as a function of position
for the fundamental and 10th harmonic. Third order spectral
phase on the seed laser produces side pulses on the time-
domain E-field (solid red line). The temporal phase (solid
green line) is flat within each pulse, but jumps by π between
pulses. The 10th harmonic bunching factor (dash blue line)
exists only in the center of the largest pulse, and consequently
is not affected by the third order phase.

The loose constraints on odd order phase may aid in
production of transform-limited pulses. For example,
canceling only the even order seed laser phase will re-
duce the complexity of the optical setup. Alternatively,
it may be beneficial to treat the laser phase as a total

minimization problem; rather than separately minimiz-
ing each order, it is possible to collectively select all or-
ders to minimize the TBP of the FEL. This collective
approach is analogous to methods used in the produc-
tion of transform-limited laser pulses [17, 18].

IV. EEHG WITH SPECTRAL PHASE ERRORS

The EEHG seeding mechanism [19] shares many simi-
larities with HGHG. In the standard EEHG arrangement,
the first laser-chicane combination filaments the electron
beam in phase space. The second laser-chicane stage then
simultaneously bunches each filament, resulting in multi-
ple density spikes within each seed wavelength. Spectral
phase on the seed laser will affect the two stages differ-
ently. On the first laser pulse, spectral phase distorts the
separation of the filaments, so that the density spikes do
not fall exactly at the harmonic spacing. This distortion
will reduce the bunching factor, but will not affect the
TBP. (If the reduced bunching factor also shortens the
pulse length, there may be coherent broadening of the
bandwidth.)

The second stage of EEHG is similar to the HGHG
process, but with the energy-separation of the filaments
determining the final harmonic number. Following the
approach of section III, we again find that the electron
bunching factor follows the spectral phase of the seed
laser. If we assume a flat-top laser pulse in the first
stage and a Gaussian pulse of length σL2 in the second
stage, the increase in electron bunching factor bandwidth

is given by G
(EEHG)
H [δkσL2, (H + 1)βσ2

L2] [10], with

G
(EEHG)
H (x, y) ≡

∫ ∞
−∞

dξeixξ+iyξ
2

× JH+1

(
r
[
(H + 1) + 0.81(H + 1)−1/3

]
e−ξ

2/2

)
,

(12)

analogous to Eq. 11 for the case of HGHG. In Fig. 9,
simulations match Eq. 12.

As for HGHG, we use the simulations to expand on
the analytical results. In Fig. 10 we simulate an EEHG
scheme at the 10th harmonic, using pulses with gaus-
sian envelope and arbitrary spectral phase for both laser
stages. We consider three cases: flat phase on both
stages, quadratic spectral phase on only the first stage,
and quadratic spectral phase on only the second stage.
As expected, a chirp on the second stage increases the
electron bunching factor bandwidth, while a chirp on the
first stage only decreases the overall bunching factor. We
note that the increase in TBP is actually worse than sug-
gested by Fig. 10; the spectral phase on the second stage
stretches the laser pulse in time, so the increase in band-
width is accompanied by an additional increase in pulse
length.

It is possible to treat the arbitrary case of Fig. 10 by
extending the approach of Ref. [10]. However, we note
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that the approximate solution given in Eq. 12 predicts
the simuolated increase in bandwidth reasonably well
(Fig. 10), validating the assumption of a flat-top pulse
with flat phase in the first stage.
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FIG. 9: Averaged bunching factor for 10th harmonic EEHG
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expression (Eq. 12) and simulation assume gaussian envelope
and quadratic laser phase, φ2σ

2
ω /2 = 1, for the second stage.
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FIG. 10: Averaged bunching factor for 10th harmonic EEHG
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on the first seed laser (φ2σ

2
ω /2 = 1) reduces the bunching fac-

tor, but does not broaden the bandwidth. The same quadratic
phase on the second seed laser increases the bandwidth and
TBP as found for HGHG. Solid lines show the numerical in-
tegral, Eq. 12.

V. PRACTICAL EXAMPLE

We conclude by simulating a practical example us-
ing an 800 nm laser pulse. Table I gives experimen-
tally measured spectral parameters from an ultrafast
Ti:Sapphire amplifier (the Coherent Legend Elite USX).
The pulse length of 22 fs is close to the transform-limited
(flat phase) pulse length of 20 fs. Despite the nearly
transform-limited initial seed laser pulse, Fig. 11 shows
that the electron bunching factor at the 30th harmonic
is approximately three times the transform limit.

We can use the parameters of Table I to give a rough
estimate of the phase control required for HGHG and
EEHG seeding of transform-limited pulses. Fig. 12 shows
the slice bunching factor (30th harmonic) vs. time for the
cases of flat phase, measured phase, and double measured
phase. If the phase errors increase beyond the level of
Table I by just a factor of two, the formerly transform-
limited pulse starts to acquire temporal modulations. As
a result, we expect that it will be necessary to include
phase control at the level of Table I to preserve the tem-
poral characteristics of the seed laser. While this example
assumes an 800 nm laser, the results scale to the shorter
seed wavelengths of interest to x-ray seeding.

We conclude that it will be difficult to achieve
transform-limited pulses beyond the 50th harmonic, and
seeding of x-ray pulses at 1 nm will require laser phase
control at wavelengths below 50 nm. It is currently pos-
sible to measure pulse characteristics into the XUV range
(see e.g. [20]), but there is still a need to develop short
wavelength phase control to the level currently achievable
at 800 nm.

Alternatively, a single harmonic of a High Harmonic
Generation (HHG) source could be used as a seed. Sin-
gle harmonics of HHG sources have been measured with
flat spectral phase at wavelengths below 100 nm [21, 22].
However, we note that the power level required by multi-
plicative seeding schemes such as HGHG and EEHG push
the current state of the art for a single HHG harmonic.

Measured Laser Pulse

Central Wavelength 800 nm

Bandwidth (FWHM) 73 nm

Pulse Duration 22 fs

Second Order Phase (GDD) 0.5 fs2

Third Order Phase (TOD) 2.4 × 103 fs3

Fourth Order Phase (FOD) −4.6 × 104 fs4

Fifth Order Phase (5OD) −1.2 × 106 fs5

TABLE I: Measured parameters for a nearly transform-
limited 800 nm pulse. The fourth order phase dominates the
FEL performance.

VI. CONCLUSION

We have studied the effect of seed laser phase on
HGHG and EEHG schemes. Using analytical results
and simulations we find that the electron bunching factor
copies the seed laser spectral phase. The electron spectral
phase increases with harmonic number, but pulse narrow-
ing due to the laser envelope decreases the phase growth,
especially for odd order spectral phase. The pulse nar-
rowing may aid in the production of transform-limited
pulses, but will also increase laser energy requirements.
We simulate a case with realistic laser parameters and
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ters given in Table I. Even for this nearly transform-limited
seed pulse, the TBP at the 30th harmonic (green stars) is al-
most three times the transform-limited flat-phase case (blue
squares).
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FIG. 12: Slice electron bunching vs. time for parameters of
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find a seeded electron beam at the 30th harmonic at ap-
proximately three times the transform limit. We con-
clude that seeding near transform-limited pulses in the
soft x-ray regime will require development of new meth-
ods for phase measurement and control of short wave-
length lasers or HHG sources. The required level of phase
control is on par with that currently available at 800 nm.

VII. ACKNOWLEDGEMENTS

We thank Y. Feng, Z. Huang and P. Hering for helpful
discussions. Work is supported by Department of Energy
contract DE-AC02-76SF00515.

[1] P. Emma et al. Commissioning status of the LCLS x-
ray FEL. In Proceedings of the 2009 Particle Accelerator
Conference, 2009.

[2] H. Tanaka. Status report on the commissioning of the
japanese XFEL at SPring-8. In Proceedings of IPAC2011,
San Sebastian, Spain, 2011.

[3] H. Chapman et al. Femtosecond x-ray protein nanocrys-
tallography. Nature, 470:73–77, 2011.

[4] M. Seibert et al. Single mimivirus particles intercepted
and imaged with an x-ray laser. Nature, 470:78–81, 2011.

[5] E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov.
Study of a noise degradation of amplification process
in a multistage HGHG FEL. Optics Communications,
202:169, 2002.

[6] Z. Huang. An analysis of shot noise propagation and
amplification in harmonic cascade FELs. In Proceedings
of the 2006 FEL Conference, page 130, Berlin, Germany,
2006.

[7] G. Stupakov. Noise amplification in HGHG seeding. In
Proceedings of the 2010 FEL Conference, Malmo, Swe-
den, 2010.

[8] G. Stupakov, Z. Huang, and D. Ratner. Noise amplica-
tion in echo-enabled harmonic generation (EEHG). In
Proceedings of the 2010 FEL Conference, Malmo, Swe-
den, 2010.

[9] K. Hacker and H. Schlarb. Tolerances for echo-seeding in
the FLASH ORS section. Report TESLA-FEL 2011-05,

DESY, 2011.
[10] G. Stupakov. Effect of finite pulse length and laser fre-

quency chirp on HGHG and EEHG seeding. Report
SLAC-PUB-14639, SLAC, 2011.

[11] G. Geloni, V. Kocharyan, and E. Saldin. Analytical stud-
ies of constraints on the performance for EEHG FEL seed
lasers. 2011.

[12] L.H. Yu. Generation of intense UV radiation by subhar-
monically seeded single-pass free-electron lasers. Phys.
Rev. A, 44:5178, 1991.

[13] G.T. Moore. Frequency chirping of the free-electron laser.
Phys. Rev. Lett., 60:1825, 1988.

[14] L.H. Yu, E. Johnson, and D. Li. Femtosecond free-
electron laser by chirped pulse amplification. Phys. Rev.
E, 49:4480, 1994.

[15] C. Pellegrini. High power femtosecond pulses from an
x-ray SASE-FEL. Nucl. Instrum. Meth. A, 445:124–127,
2000.

[16] R. K. Heilmann, M. Ahn, A. Bruccoleri, C. Chang, E. M.
Gullikson, P. Mukherjee, and M. Schattenburg. Diffrac-
tion efficiency of 200-nm-period critical-angle transmis-
sion gratings in the soft x-ray and extreme ultraviolet
wavelength bands. Applied Optics, 50:1364–1373, 2011.

[17] S. Kane and J. Squier. Fourth-order-dispersion limita-
tions of aberration-free chirped-pulse amplification sys-
tems. J. Opt. Soc. Am. B, 14:1237, 1997.

[18] J. Squier, C.P.J. Barty, F. Salin, C. Le Blanc, and



8

S. Kane. Use of mismatched grating pairs in chirped-
pulse amplification systems. Applied Optics, 37:1638,
1998.

[19] G. Stupakov. Using the beam-echo effect for generation of
short-wavelength radiation. Phys. Rev. Lett., 102:074801,
2009.
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