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Abstract
As accelerator technology advances, the requirements on accelerator beam

quality become increasingly demanding. Facing these new demands, the topic of
phase space gymnastics is becoming a new focus of accelerator physics R&D. In
a phase space gymnastics, the beam’s phase space distribution is manipulated
and precision tailored to meet the required beam qualities. On the other hand,
all realization of such gymnastics will have to obey accelerator physics principles
as well as technological limitations. Recent examples of phase space gymnastics
include Emittance exchanges, Phase space exchanges, Emittance partitioning,
Seeded FELs and Microbunched beams. The emittance related topics of this
list are reviewed in this report. The accelerator physics basis, the optics design
principles that provide these phase space manipulations, and the possible appli-
cations of these gymnastics, are discussed. This fascinating new field promises
to be a powerful tool of the future.

1 Introduction

As we demand more and more from accelerators, beam manipulation techniques
get more advanced, and phase space gymnastics has evolved to become a crit-
ical topic in accelerator physics. Just like the physical gymnastics, e.g. in the
Olympic games, the skills needed in phase space gymnastics are highly techni-
cal and precise, while the resulting performance exquisite and beautiful. The
ability to manipulate the beam’s 6D phase space offers many precision oriented
operations of the beam, and opens up many applications, e.g. for linear colliders
and FELs. This is a new and very fertile R&D field.

Earlier phase space gymnastics have been mostly applied to the 2D longitu-
dinal phase space, and took the form of RF manipulations in beam injection,
extraction, and phase space displacement acceleration [1]. The recent advances,
led by the seminal papers by Derbenev [2], begin to incorporate the transverse
dimensions and become much more sophisticated, yielding a new wealth of ad-
ditional applications. This new development has so far led to the inventions of
Adapters, Emittance exchanges, Phase space exchanges, and various Emittance
partitioning techniques. We will discuss these emittance related topics in this
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report. The other new phase space manipulations applied to various seeded and
microbunching techniques for the free electron lasers are not contained in this
report.

The idea of flat-to-round and round-to-flat adapters was first introduced
by Derbenev [2] and later rapidly extended by him and many others [3]-[13].
Derbenev first envisioned applying it to a storage ring collider to form round
beams at the collision point to mitigate the effect of the encountered beam-
beam nonlinear resonances. This idea has also been considered for electron
cooling [3, 7]. The production of a very flat beam from a round photocathode
immersed in a solenoid followed by a round-to-flat adapter has been experi-
mentally demonstrated [10, 11, 12]. During this time, several other kinds of
adapters have been invented, including emittance exchange adapters and phase
space exchange adapters [14]-[22]. Non-symplectic applications for emittance
partitioning have also been developed [23]-[25].

Phase space gymnastics permit precision manipulations because phase space
is conserved. Liouville theorem is the root cause of this phase space technology.

2 Adapters

Consider the 4D canonical phase space Xcan = (x, px, y, py). We have two
representations to describe particle motion in this phase space:

1. For uncoupled case, use the Courant-Snyder basis of planar modes (x and
y modes) in a familiar matrix form [26]:

Xcan = V a (1)

where

V =


√
βx cosφx

√
βx sinφx 0 0

−αx cosφx−sinφx√
βx

−αx sinφx+cosφx√
βx

0 0

0 0
√
βy cosφy

√
βy sinφy

0 0
−αy cosφy−sinφy√

βy

−αy sinφy+cosφy√
βy


(2)

and

a =


√

2εx sinχx√
2εx cosχx√
2εy sinχy√
2εy cosχy

 (3)

These equations describe the motion of particles in a planar beamline
whose x- and y beam emittances are εx, εy. Lattice functions αx,y, βx,y, φx,y
are the familiar betatron parameters in this representation; χx,y are the
initial betatron phase of the particle under consideration.
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2. For a fully coupled beam with rotational symmetry (e.g. in a solenoidal
field), one can describe particle motion using the basis of circular modes
(left-handed and right handed modes) [8]:

Xcan = Ub (4)

where

U =
1√
2


√
β cosφ+

√
β sinφ+ −

√
β cosφ− −

√
β sinφ−

− sinφ+−α cosφ+√
β

cosφ+−α sinφ+√
β

sinφ−+α cosφ−√
β

− cosφ−+α sinφ−√
β√

β sinφ+ −
√
β cosφ+

√
β sinφ− −

√
β cosφ−

cosφ+−α sinφ+√
β

sinφ++α cosφ+√
β

cosφ−−α sinφ−√
β

sinφ−+α cosφ−√
β


(5)

and

b =


√

2ε+ sinχ+√
2ε+ cosχ+√
2ε− sinχ−√
2ε− cosχ−

 (6)

for a beam with left-handed and right-handed emittances ε+ and ε−. Lat-
tice parameters are α, β, φ+, φ−, i.e., there is only one β-function but two
(left-handed and right-handed) phases.

Once we have the planar basis V and the circular basis U — both are sym-
plectic — we can now consider “adapters”.

2.1 Flat-to-flat adapters

Flat-to-flat adapter from s1 to s2 is well known. The job is to design a lattice
that provides the map from V (s1) to V (s2), i.e. the optics matching from one set
of lattice parameters to another. A moment’s reflection shows that the needed
matching map is given by V (s2)V (s1)−1, and a simple calculation gives

V (s2)V (s1)−1 =


√

βx2

βx1
(cosµx + αx1 sinµx)

√
βx1βx2 sinµx

(αx1−αx2) cosµx−(1+αx1αx2) sinµx√
βx1βx2

√
βx1

βx2
(cosµx − αx2 sinµx)

0 0
0 0

0 0
0 0√

βy2

βy1
(cosµy + αy1 sinµy)

√
βy1βy2 sinµy

(αy1−αy2) cosµy−(1+αy1αy2) sinµy√
βy1βy2

√
βy1

βy2
(cosµy − αy2 sinµy)


(7)

Equation (7) of course is a well known result; µx = φx2 − φx1, µy = φy2 − φy1
are the betatron phase advances from s1 to s2. A particle with initial condition
(3) is now brought from position s1 to position s2.
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2.2 Round-to-round adapters

Round-to-round adapter from s1 to s2, i.e., from one set of circular lattice
parameters to another is given by the map U(s2)U(s1)−1. Although the algebra
is somewhat involved, it can be shown that the result can be written as

U(s2)U(s1)−1 = R(θ)T (8)

where R(θ) is a rotation matrix with rotation angle θ,

R(θ) =


cos θ 0 sin θ 0

0 cos θ 0 sin θ
− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

 (9)

and

T =


√

β2

β1
(cosµ+ α1 sinµ)

√
β1β2 sinµ

(α1−α2) cosµ−(1+α1α2) sinµ√
β1β2

√
β1

β2
(cosµ− α2 sinµ)

0 0
0 0

0 0
0 0√

β2

β1
(cosµ+ α1 sinµ)

√
β1β2 sinµ

(α1−α2) cosµ−(1+α1α2) sinµ√
β1β2

√
β1

β2
(cosµ− α2 sinµ)

 (10)

The left-handed and right-handed betatron phases at s2 are then given by φ+2 =
φ+1 + µ− θ and φ−2 = φ−1 + µ+ θ.

There are two ways to accomplish this desired map (8):

• a quadrupole channel that provides the map (10), followed by rotating the
entire subsequent beamline (not including the quadrupole channel) by −θ.

• A uniform solenoid with strength ks and length z (including its two ends)
will produce this map with θ = µ = ksz/2, β1 = β2 = 2/ks, α1 = α2 = 0.

2.3 Round-to-flat adapters

A round-to-flat adapter is given by the map U(s2)V (s1)−1, which can be shown
to have a general form of a round-to-round adapter, followed by a round-to-flat
insertion with map (UV −1)0, followed by a flat-to-flat adapter,2 where (UV −1)0

2For completeness, the needed round-to-round transformation is from (α, β, φ+, φ−) to
(α = 0, β, φ+ = φy + µ− π/4, φ− = φy + µ+ π/4). The needed round-to-flat transformation
(V U−1)0 is from (α = 0, β, φ+ = φy + µ − π/4, φ− = φy + µ + π/4) to (αx = αy =
0, βx = βy , φx = φy). The needed flat-to-flat transformation from (αx = αy = 0, βx =
βy , φx = φy) to (αx, βx, φx, αy , βy , φy). Combining all steps, we then have finally an adapter
from (α, β, φ+, φ−) to (αx, βx, φx, αy , βy , φy). Each step, although stated in language of
mathematics, is directly translatable to conventional lattice designs.
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has a simple form [3, 9, 10]

(UV −1)0 = R
(π

4

)


√
β
βy

cosµ
√
ββy sinµ 0 0

− sinµ√
ββy

√
βy

β cosµ 0 0

0 0
√

β
βy

sinµ −
√
ββy cosµ

0 0 cosµ√
ββy

√
βy

β sinµ


R
(
−π

4

)

(11)
It is easy to see that (UV −1)0 represents a regular quadrupole channel (miminum
of three quadrupoles in general) rotated 45◦. The 45◦ rotation renders the
quadrupoles skew quadrupoles. Design of the adapter therefore reduces to a
regular lattice matching problem.

Inserting a round-to-flat adapter brings a beam from a round optics with
(α, β, φ+, φ−) to a flat optics with (αx, βx, φx, αy, βy, φy). A round beam with
left-handed and right-handed emittances of (ε+, ε−) is transformed to a planar
beam with x- and y-emittances given by (εx = ε+, εy = ε−).

2.4 Flat-to-round adapter

Reversing the round-to-flat adapter, a flat beam with x- and y-emittances of
(εx, εy) is transformed to a round beam with left-handed and right-handed-
emittances (ε+ = εx, ε− = εy). This adapter can also be achieved by three skew
quadrupoles.

2.5 Applications of flat-to-round and round-to-flat adapters

As mentioned, the idea of adapters was first introduced by Derbenev 1993 to
control the beam-beam effect in storage ring colliders. But it has subsequently
been much extended for other applications.

Storage ring colliders In this collider application [2], a planar flat beam in
regular arc cells is transformed by a flat-to-round adapter to become a round
beam at the collision region. The collision region is immersed in a solenoidal
field. After the collision region, the beam is brought back to the regular arc
by a round-to-flat adapter. With a round beam at the collision point, this
possibly reduces the beam-beam effect due to much reduced number of nonlinear
resonances.

Linear colliders In this application [5], a round beam is produced at the
cathode immersed in a solenoidal field. After exiting the solenoid, a round-to-
flat adapter transforms the beam into a flat planar configuration, which is what
is needed for linear collider applications. The use of adapter here avoids the
need of a damping ring to provide flat beams.
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Relativistic electron beam cooling Applying a flat-to-round adapter to a
very flat beam (εx � εy), a round beam can be produced with ε+ � ε−. Immers-
ing the beam in a matched solenoid with appropriate magnetic field, particles
in the beam will move in the solenoid with very small angular divergence, i.e.,
the beam becomes extremely laminar with all particles moving almost straight
ahead along the solenoidal field with zero Larmor radius and as a result almost
zero temperature. This is an ideal beam for performing electron cooling [3, 7].

Diffraction limited synchrotron radiation facility The electron cooling
configuration can be installed in a synchrotron radiation storage ring. By an
insertion with the configuration (flat-to-round adapter + solenoid + round-to-
flat adapter), a conventional 3rd generation synchrotron radiation storage ring
can reach diffraction limit for X-rays [6, 13] without a push to achieve the ultra-
small emittances aimed by the “ultimate rings” [27].

For any given ring lattice that is able to produce a flat beam with εy � εx,
one can in principle produce a round beam inside a solenoid with extremely
small angular divergence. The full insertion consists of the solenoid and three
adapter skew quadrupoles on each side. A coherent X-ray radiator is then
inserted inside the solenoid.

3 Emittance and Phase space exchangers

There are more adapter types than mentioned so far. For example, one may stay
with flat-to-flat, but wish to exchange the x and y coordinates. This means we
want an adapter that transforms the base vectors from V of Eq.(2) at position
s1 to

V ′ =


0 0

√
βx2 cosφx2

√
βx2 sinφx2

0 0 −αx2 cosφx2−sinφx2√
βx2

−αx2 sinφx2+cosφx2√
βx2√

βy2 cosφy2
√
βy2 sinφy2 0 0

−αy2 cosφy2−sinφy2√
βy2

−αy2 sinφy2+cosφy2√
βy2

0 0


(12)

at position s2. The adapter needs to provide the map V ′(s2)V −1(s1) — we
omit the explicit calculation here. Obviously, when αx2 = αy1, αy2 = αx1, βx2 =
βy1, βy2 = βx1, φx2 = φy1 and φy2 = φx1, we will have

V ′V −1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (13)
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One way to produce the map (13) is a solenoid with ksz = π, followed by a
normal quadrupole channel of

0 − 2
ks

0 0
ks
2 0 0 0
0 0 0 2

ks

0 0 −ks2 0

 (14)

When inserted, this adapter will cause x- and y-emittances to be exchanged.
One can also exchange x and z instead of x and y. Consider a planar lattice

in X = (x, x′, z, δ) coordinates. Let the transformation map be[
A B
C D

]
where A,B,C and D are 2×2 matrices. An emittance exchanger (EEX) requires
A = D = 0 and it provides an exchange between the two phase spaces (x, x′) and
(z, δ). A phase space exchanger, on the other hand, requires not only A = D = 0
but also B and C = diagonal. It provides a cleaner exchange between x and z,
and between x′ and δ (variations are also possible).

3.1 Cornacchia-Emma EEX

The first EEX proposed by Cornacchia and Emma [14] is shown as the chicane
scenario in Fig. 1 [19]. It consists of a simple 4-dipole chicane and a transverse
cavity.

Figure 1: Emittance exchange beam line based on a chicane (the Cornacchia-
Emma EEX) and two dog-legs (the Kim EEX).

The transfer matrix for the beamline is (the first and the fifth matrices are
the two dog-legs on the two sides; η and ξ are the dispersion and the momen-
tum compaction contributions from a dog-leg; the middle matrix represents the
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transverse cavity with strength k)
1 L 0 −η
0 1 0 0
0 −η 0 ξ
0 0 0 1




1 L2 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 k 0
0 0 1 0
k 0 0 1




1 L1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 L 0 η
0 1 0 0
0 η 0 ξ
0 0 0 1



=


0 2L+ 2L2

L−L2

η
Lξ+L2ξ−η2

η

0 2 1
η

ξ
η

ξ
η

Lξ+L1ξ−η2
η 0 2ξ

1
η

L−L1

η 0 2

 (15)

where ηk = 1 has been chosen. However, the exchange is incomplete as evi-
denced by the non-zero elements in the two diagonal 2× 2 block matrices.

3.2 Kim EEX

An exact exchange optics was later proposed by Kim [15, 16]. Two identical
dog-legs replace the chicane, as shown with dashed line scenario in Fig. 1 [19].
The transfer matrix for this beam line is Rd+RL2

RkRL1
Rd+. Exact EEX is

achieved when ηk = −1. Based on this optics, experiments at FNAL [10] have
been performed and others are being planned at ANL [17]. The transform map
is calculated to be

0 0 −L+L2

η −Lξ+L2ξ−η2
η

0 0 − 1
η − ξ

η

− ξ
η −Lξ+L1ξ−η2

η 0 0

− 1
η −L+L1

η 0 0

 (16)

if ηk = −1. The exchange is complete.

3.3 Xiang-Chao EEX

From a practical point of view, EEX with a chicane may be more desirable
because of its minimal perturbation to existing beamlines. A chicane-type exact
EEX scheme is shown in the upper figure in Fig. 2 [19]. The key to make it work
is a −I transformation inserted in the chicane. The transform map is found to
be 

0 0 L+L2

η
Lξ+L2ξ−η2

η

0 0 1
η

ξ
η

− ξ
η

−Lξ+η2
η 0 0

− 1
η −Lη 0 0

 (17)

when ηk = 1.
Furthermore, as shown in the lower figure of Fig. 2, by inserting telescopic

sections, the condition for complete exchange can be relaxed to ηk = 1/N which
reduces the required strength of the transverse cavity.
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Figure 2: (Top) A chicane-type exact EEX beam line. Two quadrupoles (green
diamonds) are put upstream of the transverse cavity to reverse the dispersion.
(Bottom) Exact EEX beam line with |ηk| < 1.

3.4 x-z Phase Space Exchanger

A clean x-z phase space exchanger can be obtained by inserting
−Lη

Lξ−η2
η 0 0

1
η − ξ

η 0 0
0 0 1 0
0 0 0 1


upstream and inserting 

ξ
η −Lξ+L2ξ−η2

η 0 0

− 1
η

L+L2

η 0 0
0 0 1 0
0 0 0 1


downstream the Xiang-Chao section. Then the complete map becomes

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


i.e. x ↔ z, x′ ↔ δ, which provides a clean phase space exchanger. Note that
these added insertions are straightforward, each consisting of two quadrupoles.
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Note also that they are inserted external to the EEX and do not affect any of
the optics within the EEX already worked out.

3.5 x-y Phase Space Exchanger

For completeness, we mention that a clean phase space exchanger between x
and y was discussed before [See Eq.(14)], i.e. a solenoid with ksz = π. The map
is 

0 0 0 2
ks

0 0 −ks2 0
0 − 2

ks
0 0

ks
2 0 0 0


and it provides a clean phase space exchange x↔ y′, x′ ↔ y.

Another simple example is to insert a quadrupole channel with
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


but rotated by 45◦. This insertion will produce

0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


3.6 Applications of x-z exchangers

As emphasized before, adapters can be envisioned for a wide range of applica-
tions. An incomplete list for x-z phase space exchangers, for example, might
have the following envisioned applications [19]:

• When εz � εx, EEX allows small εx for FEL

• When εz � εx, EEX allows bunch compression

• Observing z-distribution by an x-profile monitor

• Tailoring z-distribution by an x-scraper

• Measuring slice energy spread by an x-profile monitor

• Cleaning the z- and δ-tails by an x-scraper

• Observing beam microbunching in z by an x-profile monitor

• Generating z-microbunching by modulating the x-profile of a beam

• Generating z-double bunches by an x-wire scraper
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• Longitudinal phase space linearizer by a sextupole

• Study coherent synchrotron radiation (CSR) effects by converting CSR-
induced z-δ correlation to x-x′ correlation

• When εz � εx, suppress CSR in a beamline section by EEX and reversing
the exchange afterwards

• Observing curvature of z(y) by an x-y profile monitor in the effort to
condition the beam for FEL

• Bunch compression without energy chirp

It is clear that more applications can be envisioned. A few of the above appli-
cations are detailed below.

Generating z-microbunching by modulating the x-profile of a beam
Using EEX to generate sub-ps microbunch trains with a transverse multi-slit
mask has been experimentally demonstrated [20]. A schematic layout is shown
in Fig. 3 [19]. A mask is first used to generate density modulation in transverse
direction. After the mask, a phase space exchanger is inserted to provide exact
mapping x → z and x′ → δ with a unity magnification. An x-mask with
0.8 µm slits gives beam with 0.8 µm microbunches in z. Obviously, shorter
microbunches can be obtained by larger x-to-z demagnification factor.

Figure 3: Schematic of a beamline to generate optical microbunch based on x-z
phase space exchanger. A two-dog-leg scheme is shown in this example.

Observing curvature of z(y) by an x-y profile monitor A curvature in
z(y) in the microbunches (as illustrated in Fig. 4(left) below) hurts the FEL
mechanism and needs to be cured by beam conditioning. An x-z phase space
exchanger will allow observation of z(y) curvature on an x-y profile [19]. Figure
4 is a simulation of one example of this application.
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Figure 4: (Left) Initial z-y correlation; (Right) Final x-y correlation after an
x-z phase space exchanging.

Bunch compression without energy chirp This idea was proposed by
Zholents and Zolotorev [18]. With two back-to-back x-z phase space exchang-
ers and a telescopic beamline in between, as illustrated in Fig. 5, a bunch
compression is executed without an energy chirp as required in a conventional
bunch compressor. No rf cavities are needed in this scheme, thus avoiding the
associated rf nonlinearities. With back-to-back exchanges, there is no net emit-
tance or phase space exchanges. The beam optics is described as

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



−N 0 0 0

0 − 1
N 0 0

1 0 0 0
0 1 0 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 −N 0
0 0 0 − 1

N


(18)

Figure 5: This scheme of two back-to-back x-z exchangers with a telescope in
between provides a bunch compression without the use of transverse cavities.
(Courtesy Zholents 2011)
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4 Emittance partitioning

The emittance exchangers and phase space exchangers are special cases of
adapters. Adapters are symplectic devices. As sympectic devices, they manipu-
late the phase spaces but, as a theorem in Hamiltonian beam dynamics, they do
not alter the eigen-emittances [28, 29]. They can cleverly exchange emittances
among the eigen-dimensions, but do not change them. In some applications, it is
desirable to change the emittances. In such applications, emittance and phase
space exchanges are not sufficient. One then seeks the help from emittance
partitioning devices to be described in this section.

It should be noted that in all emittance partitioning applications, the product
of the three eigen-emittances shall remain invariant. To illustrate the applica-
tion of emittance partitioning, for example, we might consider a beam initially
produced with eigen-emittances (εx0, εy0, εz0) = (0.4µm, 0.4µm, 4µm) for an
FEL. With an EEX device, we will be able to exchange the three values of eigen-
emittances around, but will not be able to alter their values. With an emittance
partitioning device, we might aim to change them to (0.1µm, 0.1µm, 64µm) for
some FEL applications. Note that in this application, what is important is to
reach εx = εy = 0.1µm. Note also that the product of the three eigen-emittances
is not varied. Once available, emittance partitioners can be powerful devices.

We now have a dilemma. Since all beamline elements are necessarily sym-
plectic, it follows from the above theorem that the beam’s eigen-emittances
cannot be changed once the beam was born at the cathode. It then follows that
there are only two ways to design an emittance partitioner:

• Try to affect the way the beam is born at the cathode.

• If the partitioning device has to be installed after the beam is born, then
it has to contain non-symplectic beamline elements.

As it stands today, there have been three proposed ways to make emittance
partitioning:

• Magnetized cathode for x-y partitioning,

• Tilted laser at photocathode for x-z or y-z partitioning,

• Tapered foil for x-z or y-z partitioning.

4.1 Magnetized cathode

Consider a photocathode immersed in solenoid field Bs. Consider the case when
incident laser is normal to the cathode and is cylindrically symmetric. The 4×4
beam second-moment matrix at the cathode is round, with

Σ0 =


σ2
x0 0 0 0

0 σ′x0
2

0 0
0 0 σ2

x0 0

0 0 0 σ′x0
2

 (19)
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where we have used X = (x, x′, y, y′) coordinates (instead of the canonical Xcan

coordinates) because that is how the beam gets produced at the cathode, even
if magnetized.

As soon as the beam is born at the cathode, its eigen-emittances are de-
termined, because, as mentioned, any subsequent symplectic beamlime element
will not be able to alter their values. The eigen-emittances however are not given
simply by σx0σ

′
x0 as one might casually expect. To find the eigen-emittances,

one must not use the X coordinates but has to use the canonical coordinates,

Xcan =

(
x, px = x′ − ks

2
y, y, py = y′ +

ks
2
x

)
(20)

where ks = Bs/(Bρ), or
Xcan = MX

where

M =


1 0 0 0
0 1 −ks2 0
0 0 1 0
k2
2 0 0 1


In terms of the canonical coordinates Xcan, the beam matrix is

Σ1 = MΣ0M
T (21)

The new-born beam always has the same Σ0 distribution in the X coordinates
regardless of Bs. However, when projected to the Xcan coordinates, it changes
with Bs according to Σ1. Magnetizing the cathode is therefore one way to
partition the eigen-emittances. Note that the matrix M is non-symplectic.

To compute the eigen-emittances, we note that they are determined once
the second-moment matrix Σ is known, and in fact are simply given by the
eigen-values of iJΣ, where J is the symplectic form

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


Explicit calculation then gives the two eigen-emittances for Σ1:

ε1,2 = σx0

√
σ′x0

2 +
k2s
4
σ2
x0 ±

ks
2
σ2
x0 (22)

Figure 6 shows the eigen-emittances (blue and purple curves) and the emit-
tance aspect ratio ε1/ε2 (green curve) as functions of the parameter ξ = ksσx0/σ

′
x0.

The parameter ξ controls the partitioning of the two eigen-emittances (keeping
their product invariant). To produce a very flat beam (from a round laser cath-
ode!), one takes a large value of ξ. For example, ε1/ε2 = 1/250 if ξ = 8, which
might be realized for example if σx0/σ

′
x0 = 1 m, Bs = 0.3 T, E = 100 keV.
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Figure 6: Emittance partitioning by immersing the electron gun in a solenoid.

By choosing appropriate values of ξ, we control the eigen-emittances after
exiting the solenoid. However, at the solenoid exit, phase space is entangled.
We still need to insert a round-to-flat adapter so that the eigen-planes align
with x and y [30]. This adapter consists of three skew quarupoles as discussed
earlier, and is symplectic, so will not further alter the eigen-emittances. The
skew quadrupole channel will have to provide a map (11) with proper optical
matching,

1

β2
=

1

β2
y

=
k2s
4

+
σ′x0

2

σ2
x0

(23)

Inserting this channel after the solenoid exit, the beam distribution matrix be-
comes diagonal,

Σ1 =


σ2
x1 0 0 0

0 σ′x1
2

0 0
0 0 σ2

x2 0

0 0 0 σ′x2
2

 (24)

and by properly choosing the solenoid strength, one of the dimensions will have
a very small emittance.

4.2 Partitioning by tilted laser

Magnetized cathode is a way to partition the x- and y-emittances, leaving z-
emittance intact. But how to control x- and z-emittances (leaving y-emittance
intact)? One way suggested by B. Carlsten is to tilt the laser pulse-front at
the photo-cathode [22, 25]. A tilted laser can be described by an equivalent
coordinate mapping,

x = x0
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z = z0 − x0 tan θ (25)

Note that the tilt is applied to the laser, not the electrons, and this coordinate
correlation is non-symplectic.

The laser tilt modifies the eigen-emittances of the electron beam at its birth.
Assume the beam distribution (in x-z phase space, and here we consider the
coordinate system X = (x, x′, y, y′) as we are not immersing the cathode in a
solenoidal field) produced by the laser without pulse-front tilt is

Σ0 =


σ2
x0 0 0 0

0 σ′x0
2

0 0
0 0 σ2

z0 0

0 0 0 σ′δ0
2

 (26)

Then with the x-z correlation (25), the beam matrix becomes

Σ1 =


σ2
x0 0 ασ2

x0 0

0 σ′x0
2

0 0
ασ2

x0 0 σ2
z0 + α2σ2

x0 0

0 0 0 σ′δ0
2

 (27)

where α = − tan θ.
The eigen-emittances are readily obtained,

ε1,2 =

√√√√σ2
z0σ

2
δ0+σ2

x0σ
′
x0

2+α2σ2
x0σ

2
δ0 ±

√
(σ2
z0σ

2
δ0+σ2

x0σ
′
x0

2+α2σ2
x0σ

2
δ0)2−4σ2

z0σ
2
δ0σ

2
x0σ
′
x0

2

2
(28)

The emittance aspect ratio is given by

ε1
ε2

=

√
t2

2
− 1 + t

√
t2

4
− 1 (29)

with
t =

εx0
εz0

+
εz0
εx0

+ α2 σx0σδ0
σ′x0σz0

The aspect ratio ε1/ε2 as a function of two parameters

f0 = εz0/εx0

k = α2σx0σδ0/σ
′
x0σz0

is shown in Fig. 7.
Take for example normalized σx0 = 1.3 mm, σ′x0 = 0.3 mrad, εx0 = 0.4 µm,

σz0 = 0.8 mm, σδ0 = 5× 10−3, and σz0 = 4 µm, we obtain f0 = 10, k = 27α2,
and it follows that ε1/ε2 ranges up to 30.

As always, we still need to diagonalize the coordinates after the tilted laser
gun. That is to be done by an appropriate adapter [30].

16



2 4 6 8 10

0

5

10

15

20

f0

k

Figure 7: Contour plot of emittance aspect ratio controlled by a tilted laser
front at the electron gun cathode.

4.3 Combining magnetized cathode with tilted laser

We now return to the envisioned beam emittances requirement suggested earlier,
i.e.,

(εx0, εy0, εz0) = (0.4µm, 0.4µm, 4µm) → (0.1µm, 0.1µm, 64µm)

Since this envisioned application involves emittance partitioning among all three
dimensions, it is natural to consider now a combined configuration of a tilted
laser (partitioning x and z) and a magnetized photocathode (partitioning x and
y).

We need 6D analysis for this consideration. The 6D beam distribution in
Xcan coordinates is found by a straightforward calculation to be

Σ2 =



σ2
x0 0 0 ks

2 σ
2
x0 ασ2

x0 0

0 σ′x0
2

+
k2s
4 σ

2
x0 −ks2 σ

2
x0 0 0 0

0 −ks2 σ
2
x0 σ2

x0 0 0 0
k2
2 σ

2
x0 0 0 σ′x0

2
+

k2s
4 σ

2
x0

αks
2 σ2

x0 0

ασ2
x0 0 0 αks

2 σ2
x0 σ2

z0 + α2σ2
x0 0

0 0 0 0 0 σ2
δ0


(30)

Eigen-emittances are determined by

E3 − (2 + f20 + g2 + h2)E2 + (1 + 2f20 + g2 + f20h
2)E − f20 = 0 (31)
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where

E =

(
ε

σx0σ′x0

)2

, g =
ασδ0
σ′x0

, f0 =
σz0σδ0
σx0σ′x0

, h =
ksσx0
σ′x0
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Figure 8: Illustration of emittance partitioning by combined effect of tilted laser
and magnetized cathode.
(Left): Cathode magnetized but laser not tilted, with f0 = 5, g = 0.
(Middle): Laser tilted but cathode not magnetized, with f0 = 5, h = 0.
(Right): cathode magnetized and laser tilted f0 = 5, g = 5.

Naively we might think to achieve the desired FEL emittances in two steps:

1. Tilted laser:

(εx0, εy0, εz0) = (0.4µm, 0.4µm, 4µm) → (0.025µm, 0.4µm, 64µm)

2. then with immersed solenoid:

(0.025µm, 0.4µm, 64µm) → (0.1µm, 0.1µm, 64µm)

But as Fig. 8 shows, there is not a combination of parameters that reach the
emittance design goal. This idea does not work and the reason is that both
immersed solenoid and the tilted laser are applied at the cathode, not applied
in sequence. Combined laser tilt and immersed solenoid can not produce the
desired emittances [25].

Based on this attempt, we conclude that, with tilted laser and magnetized
cathode, there are three scenarios for us to reach εx = εy = 0.1µm:

• Start with (εx0, εy0, εz0) = (X,Y, 0.1). Apply magnetized cathode to ob-
tain (10 ∗XY, 0.1, 0.1). Then go through x-z emittance exchanger to get
(0.1, 0.1, 10 ∗XY ).

• Start with (εx0, εy0, εz0) = (X, 0.1, Z). Apply tilted laser cathode to obtain
(0.1, 0.1, 10 ∗XZ).

• Start with ((εx0, εy0, εz0) = (0.1, Y, Z). Apply tilted laser cathode to ob-
tain (0.1, 0.1, 10 ∗ Y Z).

In all cases, however, at least one of the initial emittances has to be 0.1 µm.
To achieve our emittance goal, we will have to give up on combining tilted laser
and magnetized cathode.
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4.4 Partitioning by foil

We in fact learned that combining steps at the cathode where the beam is born
does not work well. Partitioning steps must be clearly separated. This means
the second step, necessarily applied after the beam is born, will have to be non-
symplectic. The idea, first introduced by Peterson 1983 and re-introduced by
Carlsten, is to insert a tapered foil [23, 22, 30].

A tapered foil is a foil whose thickness depends on the horizontal displace-
ment x. When inserted in the beam’s passage way, a beam particle with hori-
zontal displacement x will see a small energy loss that contains a term that is
linearly dependent on x. This effect is represented by the non-symplectic map

1 0 0 0
0 1 0 0
0 0 1 0
S 0 0 1


in the coordinates X = (x, x′, z, δ).

Due to this tapered foil, the beam distribution

Σ0 =


σ2
x0 0 0 0

0 σ′x0
2

0 0
0 0 σ2

z0 0
0 0 0 σ2

δ0

 (32)

is transformed to

Σ1 =


σ2
x0 0 0 Sσ2

x0

0 σ′x0
2

+ ∆σ′x
2

0 0
0 0 σ2

z0 0
Sσ2

x0 0 0 σ2
δ0 + +S2σ2

x0 + ∆σδ
2

 (33)

where ∆σ′x
2

is added to the 〈x′2〉 and ∆σδ
2 added to 〈δ2〉 to model the effects of

Coulomb scattering by the foil. The foil introduces three quantities: S,∆σ′x
2
and

∆σδ
2 — S is what the tapered foil is designed to provide, while the other two

quantities are undesired but nevertheless come along with the foil unavoidably.
The x eigen-emittance is found to be

εx =

√
A−
√
A2 −B2

2
(34)

where

A = (σ′x02 + ∆σ′x
2
)σ2
x0 + (σ2

δ0 + ∆σδ
2)σ2

z0 + S2σ2
x0σ

2
z0

B2 = 4σ2
x0σ

2
z0(σ′x0

2
+ ∆σ′x

2
)(σ2

δ0 + ∆σδ
2)

Let us now assume the use of a carbon foil, and let df = Lfoil/Lrad (Lfoil is
the foil thickness at x = 0 and Lrad is the radiation length of carbon), and cut
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4% of the tail particles after passage through the foil, then for df < 10−3, we
have [25]

Sσx0 = 41.5
df
γ

∆σ′x
2

= 157.4
df
γ2

∆σδ
2 =

(
35.5

df

γ

)2

where γ is the Lorentz energy factor.
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Figure 9: Contour plot of eigen-emittance with tapered foil. Input parameters
are: σz0 = 0.5 mm, σδ0 = 2.8 mrad/γ, σx0 = 0.083 mm/γ1/2, σ′x0 = 8.3
mrad /γ1/2. The contour lines correspond the range 0.8 – 0.5 µm for the eigen-
emittance.

The result of beam emittance after the tapered foil is shown in the contour
plot of Fig. 9. The beam is assumed to have initial emittances (εx0, εy0, εz0) =
(0.7µm, 0.7µm, 1.4µm) and we wish to reduce εx as much as possible using the
tapered foil. We found that when foil scattering is included, it is difficult to
lower εx to < 0.5µm unless much more tail particles are cut. The root cause of
this difficulty is that the foil-induced energy spread ∆σδ has become larger than
the initial energy spread σδ0 for the needed foil thickness. In fact it was shown
analytically that the best one can achieve by a tapered foil is εx = 63% εx0 [25].
Simulations also confirmed this analytic expectation. Usefulness of tapered foil
for emittance partitioning seems rather limited so far. More work is needed.

20



5 Summary

We have reviewed a new and powerful accelerator physics technique of phase
space gymnastics. It presently contains the following topics:

• Adapters

• Emittance exchangers

• Phase space exchangers

• Emittance partitioning

– by magnetizing the cathode

– by tilting the photocathode laser

– by tapered foil

This is an on-going R&D, and much studies are still being developed by the
accelerator physics community.
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