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ABSTRACT

The red sequence is an important feature of galaxy clusters and plays a crucial

role in optical cluster detection. Measurement of the slope and scatter of the red

sequence are affected both by selection of red sequence galaxies and measurement

errors. In this paper, we describe a new error corrected Gaussian Mixture Model

for red sequence galaxy identification. Using this technique, we can remove the

effects of measurement error and extract unbiased information about the intrin-

sic properties of the red sequence. We use this method to select red sequence

galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the

red sequence ridgeline location and scatter of each. These measurements provide

precise constraints on the variation of the average red galaxy populations in the

observed frame with redshift. We find that the scatter of the red sequence ridge-

line increase mildly with redshift, and that the slope decreases with redshift. We

also observe that the slope does not strongly depend on cluster richness. Using
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similar methods, we show that this behavior is mirrored in a spectroscopic sample

of field galaxies, further emphasizing that ridgeline properties are independent of

environment. These precise measurements serve as an important observational

check on simulations and mock galaxy catalogs. The observed trends in the

slope and scatter of the red sequence ridgeline with redshift are clues to possi-

ble intrinsic evolution of the cluster red-sequence itself. Most importantly, the

methods presented in this work lay the groundwork for further improvements in

optically-based cluster cosmology. The codes for ECGMM can be accessed from:

https://sites.google.com/site/jiangangecgmm/

Subject headings: Galaxies: clusters - Cosmology: observations - Methods: Data

analysis, Gaussian Mixture, Bootstrap

1. Introduction

Galaxy clusters are the largest gravitationally bound systems in our Universe, whose

masses, abundance and spatial distribution reflect the growth of structure, composition, and

expansion history of the Universe (Evrard 1989; Oukbir & Blanchard 1992). The feasibility

of constraining cosmological parameters using galaxy clusters has been demonstrated by

many authors (Majumdar & Mohr 2004; Hu 2003; Lima & Hu 2004, 2005) and realistic

constraints on cosmological parameters from optically selected galaxy clusters have been

implemented recently by Gladders et al. (2007) and Rozo et al. (2009) on the RCS cluster

catalog (Gladders & Yee 2005) and maxBCG catalog (Koester et al. 2007a,b) respectively.

The predominantly red, bright, passively evolving red sequence, or “E/S0 ridgeline” (Visvanathan & Sandage

1977; Annis et al. 1999) found in the cores of clusters of varied richness up to at least

z ∼ 1.4 (Bower et al. 1992; Smail et al. 1998; van Dokkum et al. 1998; Barrientos 1999;

Blakeslee et al. 2003; Mullis et al. 2005; Eisenhardt et al. 2005; De Lucia et al. 2007) provide

an efficient means for cluster detection, and have been an integral part of modern cluster

cosmology. The red sequence itself is ubiquitous in the galaxy population (Renzini 2006,

e.g.), and in clusters red sequence galaxies dominate the bright end of the cluster luminosity

function (Sandage et al. 1985; Barger et al. 1998). They are extremely tightly clustered

in color space, containing old populations of stars whose observed color varies smoothly

with redshift (e.g. Gladders & Yee 2000). The pervasiveness of this phenomenon in clusters

enables efficient optical cluster detection while a fortuitous color-redshift relation yields ac-

curate photometric redshifts (Gladders & Yee 2000; Koester et al. 2007b). Simple counting

of photometrically identified cluster red sequence galaxies (Koester et al. 2007a, e.g) has

also been shown to be an effective proxy for cluster mass (Becker et al. 2007; Sheldon et al.

https://sites.google.com/site/jiangangecgmm/
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2007; Johnston et al. 2007), with more sophisticated applications yielding improvements in

richness as a cluster mass proxy (Rozo et al. 2008). In the era of precision measurements,

the extent to which the red sequence can be exploited for cluster cosmology depends on how

accurately its characteristics can be measured at a given redshift.

In addition to its relevance to cluster cosmology, the red sequence plays an important role

in constraining the complex physical processes that drive galaxy formation and evolution. At

the field scale this includes measurements of the red galaxy luminosity function (Wake et al.

2006; Faber et al. 2007), the clustering of red galaxies in various environments (Zehavi et al.

2005; Coil et al. 2008), and color-magnitude relations of spectroscopically and morphologi-

cally identified early-type galaxies (Cool et al. 2006; Mei et al. 2006; Stanford et al. 1998).

The high density environments of clusters of galaxies are dominated by red sequence galax-

ies; the red sequence portion of the galaxy populations in the cores of rich clusters to at

least z ∼ 1 form the basis for various monolithic collapse scenarios (e.g. Bower et al. 1992;

Blakeslee et al. 2003; Mei et al. 2009). Faber et al. (2007) summarize some of these results

to fill out a picture of galaxy formation that includes a mechanism for the formation of the

red sequence.

In color-magnitude space, the red sequence is typically characterized by its slope, zero

point, and scatter. Many theoretical modeling have been proposed to explain the red se-

quence (e.g. Arimoto & Yoshii 1987; Kauffmann & Charlot 1998). Various models posit that

in the rest frame, the scatter in the red sequence is driven primarily by age effects, its slope

is a manifestation of the mass-metallicity relation, and the zero point is set by combina-

tion of age and mass-metallicity differences (e.g. Bernardi et al. 2005; De Lucia et al. 2007;

Faber et al. 2007).

Studies of the cluster red sequence have been accomplished by simply measuring the

photometric color-magnitude relation (e.g. López-Cruz et al. 2004; De Lucia et al. 2007;

Stott et al. 2009), supplemented with HST morphological information (e.g Gladders et al.

1998) and spectroscopy at higher redshift (Mei et al. 2006; Stott et al. 2009). Extra mor-

phological and spectroscopic data allow precise separation of E and S0-types from the rest of

the galaxy population, as well as refined identification of cluster members (Blakeslee et al.

2003; Mei et al. 2009). The situation also benefits significantly from precise color measure-

ments afforded by deep, CCD-based imaging (e.g van Dokkum et al. 1998). In the literature,

the red sequence has been measured with various levels of scrutiny in dozens of individual

clusters.

In the past several years, researchers have turned to the considerable resources of the

the Sloan Digital Sky Survey (SDSS) and similar wide field surveys to probe red sequence

and elliptical galaxies in various environments (Hogg et al. 2004; Bernardi et al. 2005, 2006;
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Cool et al. 2006). These studies include both spectroscopically and morphologically iden-

tified red galaxies at z ∼ 0.1 that aim to constrain galaxy evolution scenarios for the

cosmologically-relevant luminous red galaxy (LRG) samples that extend to z ∼ 0.6 (e.g.

Cool et al. 2006).

With the maxBCG cluster catalog, we are positioned to use the SDSS to make one of

the most statistically robust photometric measurements of the cluster red sequence, using

nearly 14,000 clusters between 0.1 ≤ z ≤ 0.3. In this paper we focus on the slope and

scatter of the red sequence. We clearly show the systematic effects photometric errors have

on the measurement of the underlying slope and scatter of the red sequence, and introduce a

method for properly handling these effects. This method, based on an error-corrected Gaus-

sian Mixture Model (ECGMM), reliably recovers the properties of the ridgeline by taking

measurement errors into account. After presenting the method, we describe its application

to measurement of maxBCG clusters. Of particular relevance to cluster cosmology are the

observed mean, scatter, and slope of the E/S0 ridgeline for all maxBCG clusters. These

results are presented, along with a discussion of observed trends with redshift.

2. Methods

2.1. Intrinsic properties of red sequence ridgeline

The existence of the red sequence ridgeline is evidence that cluster galaxies are clustered

in color space in addition to real space. The emission from early-type galaxies is dominated

by old stellar populations, which gives rise to these remarkably similar galaxy colors. In

addition, there is a close mapping between galaxy color and redshift for these galaxies as

a result of the restframe 4000 Å break in their spectra. For the SDSS filter sets, the

4000 Å break is within the g band as long as the redshift is below 0.35. Therefore, the most

informative ridgeline color for the maxBCG catalog is g − r.

In the projected vicinity of a detected cluster, there are both cluster member galaxies

and field galaxies. Red sequence galaxies form a part of the member population, whose

colors are clustered tightly and can be approximated with a Gaussian distribution with

narrow width. On the other hand, the field galaxies’ and blue member galaxies’ colors are

not tightly clustered and can be approximated by a Gaussian distribution with a broader

width1. The problem of separating the ridgeline from the field can be specified as following:

1There are complicated situations where the distribution in color space is not simply unimodal or bimodal,

for example when two clusters are seen in projection. For maxBCG catalog, it covers about 7,500 square
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What are the two Gaussian components (one for the ridgeline and one for the field) that

represent the color distribution in the vicinity of a galaxy cluster? If this double Gaussian

is an adequate model for describing this color distribution, the one dimensional Gausian

Mixture Model (GMM) is well suited to the problem.

In the traditional applications of GMM (Titterington et al. 1985), measurement errors

are not considered. In our case, there are non-negligible measurement errors associated

with the galaxy colors. We are interested in measuring the intrinsic color scatter of clus-

ter members, absent contamination by the increasing measurement errors of faint galaxies.

Without accounting for the increasing photometric errors, we expect that the color scatter

will increase as the measurement errors become larger. While the intrinsic color scatter may

increase as redshift increases (because the 4000 Å line break is shifting toward r band and

making the g − r color less discriminative.), measurement errors may make us overestimate

the increase in intrinsic scatter with redshift. To avoid this problem, we include measure-

ment error into our likelihood function to remove the contamination. We will refer to this

as the error-corrected Gaussian Mixture Model and derive the corresponding Expectation

Maximization (EM) recursive relation in the following section.

It is clear that we can always improve the fit by adding more Gaussian components, al-

though this is clearly not good in the sense of parsimony. So, we need to somehow decide on

the number of Gaussian components by trading off quality of fit against the number of intro-

duced free parameters. To do so, we use the Bayesian Information Criterion (BIC) (Schwarz

1978; Connolly et al. 2000) to determine how many mixtures we should use. The BIC is

defined as:

BIC = −2 logLmax + k log(M) (1)

Where k is the number of free parameters. For mixture models with different number of

components, we compare their corresponding BIC and select the model with the smallest

BIC.

degrees with about 14,000 clusters. This leads to about 2 clusters per square degree. Each cluster is about

the size of a few arcminutes across, so the chance of two or more overlapped clusters is low. Therefore, a

unimodal or bimodal distribution in color space is a good approximation.
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2.2. Error-corrected Gaussian Mixture Model

In what follows, we describe how to fit a multi-component Gaussian mixture model to a

one dimensional distribution of data with both intrinsic scatter and Gaussian measurement

errors. Our method is an extension of the traditional expectation maximization method for

GMM (Dempster et al. 1977).

We assume the data are to be modeled by a mixture ofN Gaussians fit to the distribution

of M data points. The subscript i cycles through N and j cycles through M , and we use

µi, σi and wi to denote the location, width and weight of each Gaussian component. yj and

δj denote the data points and their measurement errors which are assumed to be Gaussian.

For brevity, we denote the parameters (µi, σi and wi) collectively by θ. Then the likelihood

of the parameters given the data and measurement errors is:

L(θ|y) =

M
∏

j=1

{

N
∑

i=1

wi
√

2π(σ2
i + δ2j )

exp
[

−
(yj − µi)

2

2(σ2
i + δ2j )

]}

(2)

The optimal parameters θ could be estimated by maximizing the above likelihood func-

tion. The Expectation Maximization algorithm provides an efficient way to get the maximum

likelihood estimators in such a setting. To utilize this, we need to introduce a hidden vari-

able, zj , which tells which Gaussian component the data point yj is sampled from. In our

case, different from the standard EM prescription, we have non-negligible measurement er-

rors present. After some algebra, we arrive at a set of recursive relations that lead to the

maximum of the likelihood (see appendix for details).

2.3. Bootstrapping to increase the robustness of ECGMM

Though the ECGMM is generally stable for estimating the parameters of the Gaussian

Components, it can fail occasionally due to very inappropriate choice of initial parameters or

some very big measurement errors of certain galaxies. To make our measurement more ro-

bust, we introduced a bootstrap-like scheme. Suppose we have M data points. We randomly

pick one of the data points and record it. We then repeat this process M times and get M

recorded data points. These M points form one resampling set of the original data set. Now,

we apply the ECGMM to this new data sample and measure the corresponding parameters.

After this, we start a second round, getting another resampling set with M data points in it

and measure the parameters using ECGMM again. We repeat this process X times and have

X estimates of each parameters. We throw away those outlier estimates (estimates beyond
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the upper and lower inner fences2) for each parameter and use the mean of good estimates

as the value of each parameter. Using this scheme, our resulting parameter estimates are

much more robust, at a cost of a tolerable increase in computation time. In this application,

we took X to be 50.

2.4. Monte Carlo test of the ECGMM for our application

Before we delve into real data, we first conduct Monte Carlo tests to see whether the

ECGMM approach can reliably identify the cluster and background Gaussian components.

These tests are used to determine whether this method can reliably recover the true pa-

rameters input in the simulation, and to see whether the extracted parameters are generally

unbiased with respect to measurement errors.

For this purpose, we generate two Gaussian random data sets, one representing cluster

member colors, denoted CL, and the other representing the field galaxies/blue galaxies’

colors, denoted as BG. The CL set is generated from ∼ N(0.5, 0.042) and BG set is generated

from ∼ N(0, 0.32). To represent clusters with different richness, we allow the normalization

(also denoted as Ngals in the plots) of CL data set to vary as 10, 15, 20, 25, 30, 40, 50, 60

and 70 while keep the normalization of BG set as 30. All the parameters used to generate

the mock data are chosen to make the simulation as close to the real data as possible. Then

we combine CL and BG to create a mock data set that mimics the colors of both cluster

members and background galaxies in a field. It is worth noting that these mock colors are

error free so far. Next, we will add some noise to them to mimic the measurements errors.

To do this, we first generate random numbers from a uniform distribution in the range of

[0, 0.1], which play the role of δj in Eq.2. Then, we generate from N(0, δ2j ) and add them to

the noise free data set to produce a noise added mock color data set. In Fig.1, we plots the

results from the ECGMM fitting. The results show that for clusters with Ngals ≥ 10, the

method can recover the locations (µ) and widths (σ) of the Gaussian components very well.

Next we test for possible bias in the estimators. For each cluster richness Ngals, we re-

generate the data as well as errors 200 times and then apply our methods to each to obtain

estimates for the parameters. In each case, we calculate the bias of parameters θ (the σ and µ

in our case) defined as E(θ̂)−θ. In Fig.2, we plot the results from both GMM and ECGMM

for comparison. Clearly, the introduction of error correction(as shown in the bottom two

2In statistics, lower inner fence is defined by Q1 − 1.5IQR and higher inner fence is Q3 +1.5IQR, where

Q1 and Q3 are the first and third quartiles respectively. The IQR is the the interquartile range, defined as

Q3 −Q1.
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Fig. 1.— Basic Monte Carlo tests of the ECGMM method for fitting mock galaxy g − r

color distributions (see text). µ and σ denote the locations and widths of the corresponding

Gaussian components, for clusters of increasing richness. The true µ are 0 and 0.5 for BG

and CL sets respectively. The true σ are 0.3 and 0.04 for BG and CL sets respectively.
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Fig. 2.— Monte Carlo test of the bias, (E(θ̂) − θ), of the estimators for the location and

width using GMM (bottom two panels) and ECGMM (top two panels) as a function of

richness for the cluster component of the mock clusters (see text). The scales of the plots

are chosen to be close to the size of the true parameters in the plot to illustrate the fraction

precision.

panels) is essential for removal of the bias of the width resulting from measurement error(as

shown in the top two panels).

3. Data

3.1. SDSS

Three main resources are included in this work: the SDSS galaxy catalog, the maxBCG

catalog, and a value-added SDSS spectroscopic catalog.

The maxBCG cluster sample and the galaxy catalogs used to remeasure cluster richness

in this paper are derived from the SDSS (Adelman-McCarthy et al. 2006). The maxBCG

cluster sample covers a sky area of about 7500 square degrees. The camera design (Gunn et al.
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2006) and drift-scan imaging strategy of the SDSS enable acquisition of nearly simultaneous

observations in the u, g, r, i, z filter system (Fukugita et al. 1996). Calibration (Hogg et al.

2001; Smith et al. 2002; Tucker et al. 2006), astrometric (Pier et al. 2003), and photomet-

ric (Lupton et al. 2001) pipelines reduce the data into object catalogs containing a host of

measured parameters for each object. Galaxies are selected from SDSS object catalogs as

described in (Sheldon et al. 2007). In this work we use CMODEL COUNTS as our total magni-

tudes, and MODEL COUNTS when computing colors. Bright stars, survey edges and regions of

poor seeing are masked as previously described (Koester et al. 2007a; Sheldon et al. 2007).

The spectroscopic galaxy catalog is comprised of galaxies from the DR6 of SDSS Value

Added Galaxy Catalog. A detailed description about this catalog can be found in Blanton et al.

(2005, VAGC).

3.2. Cluster Sample

We obtain sky locations, redshift estimates, and initial richness values from the maxBCG

cluster catalog. Details of the selection algorithm and catalog properties are published

elsewhere (Koester et al. 2007b,a). In brief, maxBCG selection relies on the observation

that the galaxy population of rich clusters is dominated by luminous, red galaxies clustered

tightly in color (the E/S0 ridgeline). Since these galaxies have old, passively evolving stellar

populations, their g − r color closely reflects their redshift. The brightest such red galaxy,

typically located at the peak of the galaxy density, defines the cluster center.

The maxBCG catalog is approximately volume limited in the redshift range 0.1 ≤ z ≤

0.3, with very accurate photometric redshifts (δz ∼ 0.01). Studies of the maxBCG algorithm

applied to mock SDSS catalogs indicate that the completeness and purity are very high, above

90% (Koester et al. 2007a). The maxBCG catalog has been used to investigate the scaling of

galaxy velocity dispersion with cluster richness (Becker et al. 2007) and to derive constraints

on the power spectrum normalization, σ8, from cluster number counts (Rozo et al. 2009).

4. Measuring the ridgeline location and width of maxBCG clusters

We apply the above prescriptions of ECGMM to the maxBCG cluster catalog and the

galaxy catalog (Koester et al. 2007a), measuring the red sequence g − r ridgeline. The pro-

cedures are as follows: for each cluster in maxBCG catalog, we choose a scaled aperture

Rlens
200 to ensure we are considering equivalent regions of clusters of varied masses and there-

fore varied richness. Rlens
200 is the critical radius, interior to which the mean mass density
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of the cluster is 200 times of the critical energy density. Based on the weak lensing anal-

ysis (Johnston et al. 2007; Hansen et al. 2007), the scaling relation between Rlens
200 and the

original maxBCG richness N200 is given by Rlens
200 = 0.182(N200)

0.42, which ranges from 0.47

Mpc to 1.68 Mpc.

Next, we identify all SDSS galaxies inside this aperture range, fainter than the BCG,

and brighter than an i band magnitude corresponding to 0.4 L* at the redshift of the clus-

ter (Koester et al. 2007a). Then, we apply the ECGMM procedure to the g − r colors and

corresponding measurement errors of these galaxies. One of the resulting two Gaussian com-

ponents from the ECGMM will represent the cluster red sequence color distribution while the

other represents the background/blue galaxy color distribution. To determine which Gaus-

sian Component belongs to the cluster, we calculate the likelihood of the BCG’s g − r color

on each Gaussian Component. The component for which the BCG has a higher likelihood

is assigned as the cluster component and the other is declared background. By this way,

each maxBCG cluster gets a new richness, N lens
200 . It is worth noting that we apply the above

measurements to all maxBCG clusters whose original N200 ≥ 10. But we will only continue

our analysis on a subsample of the clusters whose new measured richness N lens
200 ≥ 10 and

have two identified Gaussian mixture components in order to guarantee the reliability of our

measurements. After this selection, we are left with about 7100 clusters and all our further

analysis are based on them. We need to point out that the clusters falling outside of this

selection are not necessarily bad clusters. They are just fall below the richness threshold we

imposed for quality control. In Fig.3 and Fig.4, we show the ECGMM fitting of 9 big and 9

small clusters as described above. Their corresponding CMRs are plotted in Fig.5 and Fig.6.

For comparison, we measure the red-sequence location and width using both ordinary

GMM and ECGMM. The top panel of Fig. 7 shows the evolution of the average g-r ridgeline

location and width measured using ordinary GMM. We observe the well-known trend in the

average ridgeline zeropoint, and there is additional apparent strong evolution in the average

ridgeline width, which becomes nearly 140% larger by z = 0.3. However, from the lower two

panels which are measured using ECGMM, one can see very clearly the power of ECGMM

in constraining the intrinsic width of the ridgeline without contamination from measurement

error. The results show that the mean observed g−r ridgeline location retains the same linear

dependence on redshift while the mean scatter of the ridgeline shows a weak dependence on

redshift, with the g − r scatter σ(z = 0.1) = 0.051 ± 0.003 and σ(z = 0.3) = 0.079 ± 0.005

or a broadening by ∼ 55% from z = 0.1 to z = 0.3. The strong dependence of the scatter

on redshift from the GMM is mostly due to the increased measurement errors for cluster

members at higher redshift.



– 12 –

Fig. 3.— The ECGMM fitting to the galaxy color distribution around 9 rich clusters. Note

the fact that we corrected for measurement errors, the two Gaussians appear to be narrower

than the histogram.
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Fig. 4.— The ECGMM fitting to the galaxy color distribution around 9 small clusters.

Note that when there are fewer galaxies histogram is no longer a good way to show the

distribution.
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Fig. 5.— The CMR around the 9 rich clusters in Fig.3. The red diamonds and error bars are

those from the selected members (red sequence) and the blue dots and error bars are those

from field galaxies. The red cross symbol represent the BCG of that cluster. All the galaxies

are within Rlens
200 around the BCG, fainter than BCG but brighter than the 0.4L*(see text).

The green line is a weighted least square fit (weighted by the inverse square of color errors)

to the cluster galaxies.
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Fig. 6.— The CMR around the 9 small clusters in Fig.4.
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Fig. 7.— Tracking the (g − r) red sequence zeropoint and width as a function of redshift,

measured using ordinary GMM (upper panels) and ECGMM (lower panels) respectively. We

bin the measured ridgeline color and width into redshift bin of 0.04 and then fit the means

with a straight line. After error correction, the broadening of the observed red-sequence

width with redshift is greatly suppressed, revealing the effect of photometric errors on the

observed broadening.
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5. The red sequence ridgeline slope

5.1. Ridgeline slope from galaxy clusters

It has been pointed out that the color-magnitude relation (CMR) of cluster member

galaxies has a negative slope (e.g Kodama & Arimoto 1997; Gladders et al. 1998), so that

fainter member galaxes are generally bluer. The evolution of these CMR slopes with respect

to redshift and richness has been difficult to address, largely due to the lack of a sufficiently

large cluster catalog with well measured photometry for all its galaxies. The maxBCG

catalog provides about 14,000 galaxy clusters, extending over 0.1 ≤ z ≤ 0.3, which enables

us to measure the slope of the CMR for clusters with good statistics across a range in both

richness and redshift.

Measurement of the slope of the CMR typically proceeds by identification of the cluster

red-sequence, followed by some iterative process of outlier removal, and a determination of

cluster “member” galaxies which are then used to measure the slope and zeropoint of the

CMR.3 We apply the method described in previous sections to measure the color distribution

of individual clusters and to assign the memberships for every cluster by requiring the color

difference between the member galaxies and ridgeline within±2σ (σ is the convolved ridgeline

width, given by the best-fit ECGMM, and the measurement errors of individual member

galaxy’s color). The richness of the cluster measured by this way is denoted as N lens
200 . We

choose 2σ because this is roughly where the background component’s likelihood dominates

over the cluster component’s likelihood. Based on this identification of membership driven

by the ECGMM, we fit for the CMR of clusters galaxies with a straight line using weighted

least square fitting. The weights we used are the inverse square of the measurement errors

of g − r. We call the slope of the fitted line as the slope fo the ridgeline.

The distribution of ridgeline slopes for maxBCG clusters is shown in Fig.8 in bins of

∆z = 0.03. Despite the substantial scatter in slope among individual clusters, we can see

from Fig.8 and Fig.9 that the mean slope of the red sequence ridgelines for clusters deviates

from zero for 0.1 ≤ z ≤ 0.3. For any bin, the error on the mean places the measurement

many standard deviations from zero.

In Fig.9, it is apparent that the observed trend of the mean ridgeline slope with redshift

is statistically significant: the slope becomes steeper by a factor of 2.5 by z = 0.3. In Fig.10,

we plot the evolution of the slopes vs richness in each redshift slice, which shows that the

dependencies of the ridgeline slope with respect to richness is weak, as shown elsewhere (e.g.

3In Andreon (2006), a slightly different method was introduced by directly modeling the CMR and

measurement errors into the likelihood function without separating the red sequence galaxies first.
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Fig. 8.— The distributions of measured ridgeline slopes for clusters in steps of 0.03 in redshift.

µ and σ denote the mean and width of the distribution. The dashed line corresponds to

zero.
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Fig. 9.— Tracking the observed red-sequence slope vs redshift. The gray clouds represent

the slope measurements from individual clusters. The black solid circles and error bars

are weighted mean and the standard deviation to the weighted mean for each redshift bin

(∆ = 0.03). Note that the error bars in the plot are smaller than the symbols.

Hogg et al. 2004). Clearly, the observed slope of the red-sequence is not associated with

cluster richness, and is unsurprisingly a strong function of redshift (see Discussion).

5.2. Ridgeline slope from spectroscopic data

The above measurement is based only on a photometric determination of red sequence

galaxies. The level to which projection plays into this selection is as yet unknown. The true

red-sequence galaxy population in some physical volume, either in a cluster or in the field,

is contaminated by dusty foreground galaxies which can be rejected via spectroscopy, and

by the peculiar velocities of the galaxies themselves.
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To address the possibility of foreground contamination, it is interesting to see if the

above results are preserved in a spectroscopic sample of galaxies. To achieve this goal, we

use galaxies with spectra from DR6 of SDSS Value Added Galaxy Catalog (Blanton et al.

2005, VAGC) for a comparison. Due to the selection effects of the spectroscopic data, we

will choose only the galaxies in redshift from 0.1 to 0.2 and brighter than 0.4 L* magnitude

at their respective redshifts. By extension from the photometric sample and from previous

work (Hogg et al. 2004), we know that the slope does not vary with environment, so the

field sample represented by our spectroscopy should be a fair representation of the expected

slope in clusters.

Our procedures are as follows: we first bin the galaxies into bins of size ∆z = 0.003,

which corresponds to velocity slices of 900km/sec. The color distribution of the galaxies in

each bin shows clear bimodality (top panel of Fig. 11). Then, we separate the red sequence

galaxies in each bin using ECGMM. The red sequence galaxies correspond to the Gaussian

component with bigger g− r value and we choose ±2σ from the peak location as red galaxy

samples for each redshift slice, in a fashion similar to the one we used for cluster galaxies.

Then, in every bin, we fit the CMR of galaxies’ g − r colors and i-band magnitude with

a straight line using weighted least square fitting with the weights come from the inverse

sequare of the color measurement errors. The weights are the inverse square of the g − r

measurement errors. We record the corresponding slopes. In the bottom panel Fig.11, we

choose 6 redshift bins (∆z = 0.003) to illustrate the red/blue galaxy separation and the

ridgeline slope fitting in each bin. Finally, we fit the variation of slope with redshift with a

line to look for a trend, the results are shown in the left panel of Fig.12. As a comparison

to the cluster sample, we also plot the mean variation of the ridgeline slope from clusters in

the same redshift range [0.1, 0.2] in the right panel of Fig.12. When the redshift range is

changed, the slope of the fitted line for the cluster sample becomes steeper as compared to

Fig.9. The reason lies in that the linear fit to the trend is only the first order approximation.

But for our purpose here, we just need to require the cluster sample and spectroscopic sample

on the same redshift range so as to compare them fairly.

Comparing the two panels in Fig.12 shows that the two slopes from spectroscopic sample

and cluster sample are not different in a statistically significant way. This further confirms

our previous observation that the cluster environment will not affect the slope.

6. Discussion

To this point, the measurements have been presented in the observed frame. Photo-

metric cluster detection and the quantities derived (e.g. richness) operate in the frame of
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the observer, and predictions from galaxy formation models and mock galaxy catalogs can

be evaluated in light of these precision measurements. They have particular applicability to

calibration of optical cluster detection efforts, especially to those that rely on the properties

of the red sequence. The methodologies developed herein allow the “bootstrapping” of op-

tical algorithms: basic cluster finders locate the clusters, and precision measurements (such

as these) of said clusters lead to refinements in those algorithms. The extent to which each

of these agrees with previous measurements from spectroscopy, other cluster samples, and

simulations is left for future work. However, for illustrative purposes, we list the relevant

observational considerations to be made in understanding the context of these measure-

ments with respect to previous work in the literature, and then highlight a few of our more

interesting results.

In general, there are five places where the comparison to previous work must be treated

with caution, which can be summarized as follows: 1) redshifting of the galaxy spectra

through the bandpasses under consideration, which imparts trends in the observed colors,

2) selection effects imposed by the color selection (e.g. Franzetti et al. 2007), 3) aperture

effects, i.e. the aperture used to measure the color in different banspasses (e.g. Scodeggio

2001; Blakeslee et al. 2006), 4) projection effects. 5) actual evolution in the red sequence.

To some level, any of the aforementioned issues may play into our results: (i) at z ≃ 0.1,

the CMR of photometrically-selected galaxies is noticeably shallower than previous spectro-

scopic measurements of the color magnitude relation (Hogg et al. 2004; Cool et al. 2006), (ii)

the slopes are almost independent of cluster richness; (iii) the photometric error-corrected

scatter of the red-sequence broadens mildly with redshift; (iv) the observed mean slope of

the CMR is negative and it becomes more negative as redshift increases.

Naively, we expect that our measurement of the slope of the red-sequence, −0.013 ±

0.0003 mags mag−1 at z = 0.1, corresponds to the SDSS spectroscopic analysis of Hogg et al.

(2004), for which the slope is -0.022 mags mag−1 in 0.1(g − r). In addition to the fact that

the Hogg et al. (2004) measurements are k-corrected to the z = 0.1 rest-frame, one possible

difference comes from our definition of the red sequence: Hogg et al. (2004) use a 2σ clipping

algorithm to define the red sequence and to iteratively reject outliers. While they split

the sample by Sersic index, sigma-clipping may be more permissive of objects near the

“blue cloud” to be included in the red-sequence, while the method presented in this paper

automatically accounts for the presence of these objects. Our slope measurements at a given

redshift may also be biased shallow, as the initial 2 σ cut derived from the ECGMM fit does

not account for the slope in the red-sequence itself, i.e. the cut is applied in the same way

regardless of magnitude. Ideally, an iterative procedure would be employed to determine the

best-fit line for each cluster and the 2σ cut would be applied as a function of magnitude.
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Unfortunately, the small number statistics for low richness clusters do not permit this to be

implemented in a robust fashion.

Insofar as richness and local density are similar indicators of environment, the second

observation (ii) that the slope is almost independent of environment is in basic agreement

with Hogg et al. (2004), who use SDSS spectroscopy at z ∼ 0.1 to compare galaxies with

high (n ≥ 2) Sersic indicies in different environments characterized by their local density.

After the photometric error correction performed by ECGMM, a trend in the scat-

ter with redshift remains (iii), such that the scatter increases with increasing redshift. At

high redshift z ≃ 1, the color-magnitude relation has been measured in a handful of clus-

ters (Mei et al. 2009; Koester et al. 2009; Santos et al. 2009, e.g.) with the general conclusion

that the restframe scatter in the CMR does not evolve with redshift. More locally, the SDSS

Luminous Red Galaxy (LRG) Sample has been used to measure various redshifted frames of

bright (L & 2.2L∗) red galaxies (Cool et al. 2006). Cool et al. (2006) find the intrinsic rest-

frame scatter 0.16(g− r) = 35.4± 3.7 and 0.37(g− r) = 43.5± 6.2 mmags, consistent with no

evolution. However, with increased cluster sample, our observed frame measurements reveal

an increase in the scatter, shown by a statistically significant non-zero slope (the bottom

right panel in Fig. 7).

Result (iv) is in qualitative agreement with the results in (Gladders et al. 1998) who

find a similar trend in the slope for a sample 44 Abell clusters at z ≤ 0.15 and 6 clusters at

0.2 ≤ z ≤ 0.75, the largest previous study of its kind. In their study of the scatter of the

CMR in LRGs, Cool et al. (2006) report no significant trend with redshift in the rest-frame

slope of LRGs over 0.16 < z < 0.37 in either the cluster or the field, but caution that the

sample is not-well suited to measuring the slope. The observed factor of 2.5 increase in the

magnitude in our measurement of the slope is likely due to a combination of the lack of k-

corrections and selection effects (e.g. Franzetti et al. 2007) derived from color cuts that may

preferentially include a larger and larger fraction of galaxies with significant star-formation

at increasing redshifts.

A further contribution to the inflated slope may come from the choice of the color

aperture. van Dokkum et al. (1998) and Scodeggio (2001) note the importance of the use

of adaptive apertures, which place the color measurements of large and small galaxies on

the same footing. This point motivates our choice of MODEL MAGS from the SDSS, which

are derived from the best-fit convolution of the local PSF with a deVaucoleurs model in the

r-band. This same best-fit model is then used to compute the flux in both the g and r-bands.

As our results indicated, the intrinsic ridgeline slope may decrease as redshift increase.

Though there are many factors that may complicate the interpretation of this results as we
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discussed in the preceding paragraphs, it is still worth to speculate what may lead to the

intrinsic evolution. In general, galaxies are more active at higher redshift (Cowie et al. 1996),

and their color distributon spreads wider and toward bluer end. Therefore, clusters at higher

redshift are more likely to have member galaxies with wider and bluer color distribution. As

a result, when we fit the CMR with a straightline, we tend to have more negative slopes at

higher redshift.

7. Summary

In this paper, we have presented the ECGMM, a new purely photometric method which

characterizes the red sequence ridgeline in cluster samples with large statistics. This provides

precise measures of the mean variation of the red sequence ridgeline location and scatter

(width) with respect to redshift, properly corrected for photometric errors. The measured

slopes, scatters, and zeropoints are directly applicable to improved cluster finding efforts and

to characterization of known galaxy clusters.

Applying the method to maxBCG clusters approximately recovers known properties of

the red sequence, namely its slope and the variation of the slope with redshift, and the in-

sensitivity of the slope to environment. It also suggests that the scatter of the red-sequence

increases mildly with redshift, and that the slope of the red-sequence grows substantially by

z ≃ 0.3, but we caution that these observed trends may be attributable to a host of obser-

vational effects that we have made no attempt to correct. Color selection effects, the lack

of k-corrections, and the details of the measurement of the individual cluster CMRs require

proper attention before applying these results to models of galaxy formation. Nonetheless,

these measurements can serve as an important observational check on simulation and mock

galaxy catalogs.
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A. The recursive relation for the error corrected Gaussian Mixture Model

In this appendix, we show the derivation of the likelihood function Eq. 2 and the EM

recursive relations for the error corrected GMM. To begin with, we introduce the following

notations in Table.1. For brevity, we denote the parameters (µi, σi and wi) collectively by θ

and (t) represents the tth iteration. M represents number of data points and N represents

the number of mixtures.

Since we assume the true color distribution can be approximated by mixture of Gaussian

distributions, we have the following probability density function for p(ȳj|θ):

p(ȳj|θ) =

N
∑

i=1

1
√

2πσ2
i

exp
[

−
(ȳj − µi)

2

2σ2
i

]

(A1)

Though the true colors are not directly observable, we know that its distribution given the

observed colors and measurement errors is approximately Gaussian:

Notations Meaning

y1,..., yj , ..., ym: Observed colors of BCGs and member galaxies.

ȳ1,..., ȳj , ..., ȳm: True colors of BCGs and member galaxies.

z1,..., zj , ..., zm: Hidden variables that tell which Gaussian component the ȳj is sampled from.

δ1,..., δj ,..., δm: Measurement errors for every yj .

µ1, ..., µi, ..., µn: Mean of each Gaussian component.

σ1, ..., σi, ..., σn: Width of each Gaussian component.

w1, ..., wi, ..., wn: Weights of corresponding Gaussian components.

Table 1: The notations used in our derivation of ECGMM algorithm

http://www.sdss.org/
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p(ȳj|yj) =
1

√

2πδ2j

exp
[

−
(ȳj − yj)

2

2δ2j

]

(A2)

then, the likelihood function (under the flat priors for θ)

L(θ|yj) =

∫

p(ȳj|θ)p(ȳj|yj)dȳj (A3)

After integrating over ȳj and extending to all data points (
∏M

j=1), we arrive at Eq.2. The

optimal parameters could be obtained by maximizing the above likelihood. However, if we

introduce hidden variables, z, that tell us which Gaussian component the yj is sampled from,

then the whole maximization process could be significantly simplified. The corresponding

pdf of data given z and θ is

p(y|zj = i, θ(t)) =

M
∏

j=1

p(yj|zj = i, θ
(t)
i ) =

M
∏

j=1

1
√

2π(σ
(t)2
i + δ2j )

exp
[

−
(yj − µ

(t)
i )2

2(σ
(t)2
i + δ2j )

]

(A4)

We use wi denote the weight of each Gaussian Component in the mixture and is given by

wi = p(zj = i|θ). The estimation of hidden variable could be related to Eq.A4 by Bayes’

Theorem as following:

p(zj = i|yj, θ
(t)) =

p(zj = i, yj|θ
(t))

p(yj|θ(t))
=

p(yj|zj = i, θ(t))p(zj = i|θ(t))
∑N

i=1 p(yj|zj = i, θ(t))p(zj = i|θ(t))
(A5)

The EM algorithm iteratively update the parameters θ by maximizing the expected log

likelihood

Q(θ) =

N
∑

i=1

M
∑

j=1

p(zj = i|yj, θ
(t))

[

−
1

2
ln(2π)−

1

2
ln(σ2

i + δ2j )−
(yj − µi)

2

2(σ2
i + δ2j )

+ ln p(zj = i|θ(t))
]

(A6)

under the constraint
∑N

i=1 p(zj = i|θ(t)) = 1. Using the Lagrange Multiplier approach, we

redefine

Q̃(θ) = Q(θ)− λ
[

N
∑

i=1

p(zj = i|θ(t))− 1
]

(A7)
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with λ as the multiplier.

∂Q̃(θ)

∂µi
=

M
∑

j=1

[

p(zj = i|yj, θ
(t))

( yj − µi

σ2
i + δ2j

)]

= 0 (A8)

From Eq.A8, we can arrive at the following recursive relation for µ:

µ
(t+1)
i =

∑M
j=1 yjp(zj = i|yj, θ

(t)
i )/(1 + δ2j/σ

(t)2
i )

∑M
j=1 p(zj = i|yj, θ

(t)
i )/(1 + δ2j/σ

(t)2
i )

(A9)

Similarly, we have

∂Q̃(θ)

∂σi

=
M
∑

j=1

p(zj = i|yj, θ
(t))

[σ2
i (1 + δ2j/σ

2
i )− (yj − µi)

2

σ4
i (1 + δ2j/σ

2
i )

2

]

= 0 (A10)

Note that since σi and δj are entangled within the summation, there would not be an simple

analytic solution for σi. However, since the algorithm is iterative in nature and the major

contribution for the update of σi is from (yj − µi)
2, we could approximate σi in δ2j/σ

2
i with

its value in tth iteration. Then we can solve for the (t+ 1)th iteration relation for σi as:

σ
(t+1)
i =

[

∑M
j=1(yj − µi)

2p(zj = i|yj, θ
(t)
i )/(1 + δ2j /σ

(t)2
i )2

∑M
j=1 p(zj = i|yj, θ

(t)
i )/(1 + δ2j /σ

(t)2
i )

]1/2

(A11)

Our numerical test shows that such an approximation works fine in practice. For wi = p(zj =

i|θ), we have

∂Q̃(θ)

∂wi
=

M
∑

j=1

p(zj = i|yj, θ
(t))/wi − λ = 0 (A12)

which leads to

wi = p(zj = i|θ) =
1

λ

M
∑

j=1

p(zj = i|yj, θ
(t)) (A13)

Using the condition
∑

wi = 1, we have λ = M . Substitute λ back to Eq. A13, we arrive at:



– 27 –

w
(t+1)
i =

1

M

M
∑

j=1

p(zj = i|yj, θ
(t)
i ) (A14)

In the above iteration relations Eq.A9, Eq.A11 and Eq.A14, t and t + 1 denote the

round of iterations. When we ignore the measurement errors δj , the above recursive relation

reduces to the standard EM recursive relation for Gaussian Mixture Model. The above

relations could be easily generalized to multiviate case by simply substituting the data with

data matrix, mean with mean vector and variance with covariance matrix, which we will

not repeat the formula here. A C++ class that implements the above algorithm is available

upon request.
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Fig. 10.— The evolution of mean ridgeline slope vs richness at different redshift slices. The

richness bins brackets are chosen as N lens
200 =[10,20,30,40,60,80,161]. The light dark points

are from individual clusters. The black solid dots and error bars are weighted mean and

standard deviation of the slopes in each Ngals bin for every redshift slice. From the plot, we

did not see strong trends of the slope evolution w.r.t richness.
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Fig. 11.— Evaluating the ECGMM-derived red sequence slopes in SDSS spectroscopy of

field galaxies. The normalized color histograms (top panel) for ∆z = 0.003 slices in spectro-

scopic redshift clearly show the presence of the red and blue components in the field galaxy

distribution. ECGMM is used to separate the two components, the redder of which is to

measure the CMR (bottom panel).
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Fig. 12.— The comparison of the evolution of the slopes of CMR for spectroscopic sample

and cluster sample. Since the spectroscopic sample is biased due to selection effects at

z ≥ 0.2, we choose both sample in the redshift range from 0.1 to 0.2 and then bin the

slopes in redshift bin of 0.02. We then fit straight line to the mean slopes in each bin for

spectroscopic sample and cluster sample respectively.
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