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I Reichardt, 21 W Rhode, 11 M Ribó, 19 J Rico, 30,21 M Rissi, 8 A Robert, 12
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Abstract

Suzaku observations of the blazar OJ 287 were performed in 2007 April 10 – 13

and November 7 – 9. They correspond to a quiescent and a flaring state, respectively.

The X-ray spectra of the source can be well described with single power-law models

in both exposures. The derived X-ray photon index and the flux density at 1 keV

were found to be Γ = 1.65± 0.02 and S1keV = 215± 5 nJy, in the quiescent state.

In the flaring state, the source exhibited a harder X-ray spectrum (Γ = 1.50± 0.01)

with a nearly doubled X-ray flux density S1keV = 404+6
−5 nJy. Moreover, significant

hard X-ray signals were detected up to ∼ 27 keV. In cooperation with the Suzaku,

simultaneous radio, optical, and very-high-energy γ-ray observations of OJ 287 were

performed with the Nobeyama Millimeter Array, the KANATA telescope, and the

MAGIC telescope, respectively. The radio and optical fluxes in the flaring state

(3.04±0.46 Jy and 8.93±0.05 mJy at 86.75 Hz and in the V -band, respectively) were

found to be higher by a factor of 2 – 3 than those in the quiescent state (1.73±0.26 Jy

and 3.03±0.01 mJy at 86.75 Hz and in the V -band, respectively) . No notable γ-ray

events were detected in either observation. The spectral energy distribution of OJ 287

indicated that the X-ray spectrum was dominated by inverse Compton radiation in

both observations, while synchrotron radiation exhibited a spectral cutoff around the

optical frequency. Furthermore, no significant difference in the synchrotron cutoff

frequency was found between the quiescent and flaring states. According to a simple

synchrotron self-Compton model, the change of the spectral energy distribution is

due to an increase in the energy density of electrons with small changes of both the

magnetic field strength and the maximum Lorentz factor of electrons.

Key words: BL Lacertae objects: general — BL Lacertae objects: individual

(OJ 287) — radiation mechanisms: non-thermal — X-rays: galaxies

1. Introduction

At a redshift of z = 0.306 (Stickel et al. 1989), OJ 287 is one of the archetypal and

most studied blazars. An outstanding characteristic of the object is its recurrent optical out-

bursts with a period of 11.65 years, as revealed by optical data spanning more than 100 years

(Sillanpää et al. 1988). The outburst in 1994 motivated a worldwide multi-wavelength observa-
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tion campaign named “The OJ 94 project” (Sillanpää et al. 1996a). This project confirmed the

periodicity and revealed that the optical outbursts consist of two peaks corresponding to flares

with an interval of about one year (Sillanpää et al. 1996b). OJ 287 is suggested to be a binary

black hole system in which a secondary black hole pierces the accretion disk of the primary

black hole and produces two impact flushes per period (Valtonen et al. 2008a). Interestingly,

the first flare exhibited a low radio flux with decreasing radio polarization and a relatively

short duration (a few months), while the second one had a high radio flux with increasing radio

polarization, and lasted about half a year (Sillanpää et al. 1996b; Valtaoja et al. 2000; Pursimo

et al. 2000). The differences between the two flares may be interpreted as the first flare have

a thermal origin in the vicinity of the black hole and the accretion disk, while the second one

originate from synchrotron radiation from the jet (Valtaoja et al. 2000), although we have not

yet obtained any convincing evidence supporting this interpretation.

The multi-wavelength spectral energy distribution (SED) has the potential to resolve the

physical state of OJ 287 during the flares. In general, the SED of blazars is characterized by

two broad humps (e.g., Fossati et al. 1998); the low-energy component, with wavelengths in the

range between radio to ultraviolet and X-ray, is widely regarded as synchrotron radiation (SR)

from relativistic electrons within the jet. The high-energy component, with wavelengths in the

range between X-rays and γ-rays, is interpreted as inverse-Compton (IC) scattering. In one

of the simple emission models, named “synchrotron self-Compton (SSC) model”, relativistic

electrons scatter SR photons produced by the same population of electrons (e.g., Ghisellini et

al. 1998). For low-frequency peaked BL Lac objects (LBLs), a class of blazars to which OJ 287

belongs, the SR peak is located in the range between sub-mm and optical wavelengths (Padovani

& Giommi 1995). IC scattering in LBLs can emit radiation up to very-high-energy (VHE:

E>50 GeV) γ-rays during their optical high states; VHE γ-ray emission has been detected, for

example, from BL Lacertae (Albert et al. 2007) and S5 0716+714 (Teshima et al. 2008). These

two components usually intersect with each other in the X-ray band (e.g., Giommi et al. 1999).

Therefore, the X-ray spectrum of LBLs should be highly sensitive to the change of the magnetic

field (B) and/or the maximum Lorentz factor (γmax) of the electrons, since the SR peak scales

as ∝ Bγ2
max. In fact, the X-ray spectrum of the object, obtained in previous observations, can

be successfully interpreted on the basis of the interplay between the SR and the IC component

(Idesawa et al. 1997; Isobe et al. 2001). However, all of these X-ray observations were carried

out during the first flare, and there is no information regarding the X-ray spectrum of OJ 287

in the second flare.

In the period between 2005 and 2008, OJ 287 was predicted to move to the last active

phase, and was in fact reported to exhibit the first optical outburst in 2005 November (Valtonen

et al. 2008a; Valtonen et al. 2008b). Since the second flare of the source was expected to be in

the fall of 2007 (Valtonen et al. 2006; Kidger 2000), we organized two X-ray and simultaneous

multi-wavelength observations, in the quiescent state (MWL I) between the two outbursts
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and in the second flaring state (MWL II), with the objective to reveal the characteristics of

the second flare, in comparison with the quiescent state. Based on the results, we provide a

discussion regarding the differences between the first and the second flare. The Suzaku X-ray

observation in MWL I was conducted during 2007 April 10 – 13, when the source was optically

quiescent with an R-band magnitude of about 15. We triggered the MWL II Suzaku observation

in 2007 November 7, on condition that the object remained brighter than 14-th magnitude for

more than one week, as indicated by the optical monitoring data of the source taken at the

Tuorla Observatory and the KVA observatory 1. We also conducted monitoring observations

at radio, optical, and VHE γ-ray frequencies with the Nobeyama Millimeter Array (NMA), the

KANATA telescope, and the MAGIC telescope, respectively.

The X-ray observations and the spectral results are presented in section 2. section 3

shows the radio, optical, and VHE γ-ray results. These are followed by the discussion on the

physical state of the second flare in section 4 on the basis of SED obtained in these multi-

frequency observations.

2. X-ray Observations and Results

2.1. Observations and data reduction

The Suzaku pointing observation for MWL I was conducted between 19:47:00 UT 2007

April 10 and 11:10:19 UT April 13 (ObsID 702009010), and the pointing for MWL II was

conducted between 11:24:00 UT 2007 November 7 and 21:30:23 November 9 (ObsID 702008010).

The X-ray Imaging Spectrometer (XIS; Koyama et al. 2007) and the Hard X-ray Detector

(HXD; Takahashi et al. 2007; Kokubun et al. 2007) onboard Suzaku were operated in the

normal clocking mode with no window option, and in the normal mode, respectively.

We placed OJ 287 at the HXD-nominal position (Serlemitsos et al. 2007). We performed

data reduction by using the HEADAS 6.5.1 software package and referring to the calibration

data base (CALDB) of the XIS, the X-ray telescope (XRT; Serlemitsos et al. 2007), and the

HXD as of 2008 September 5, 2008 July 9, and 2008 August 11, respectively.

We reprocessed the XIS data in MWL I since the version of the standard processing

(Revision 2.0.6.13) was obsolete, whereas we utilized the pipeline cleaned events from the

Revision 2.1.6.16 processing for MWL II. The reprocessed/cleaned XIS data were filtered under

the following criteria; the spacecraft is outside the south Atlantic anomaly (SAA), the time

interval after an exit from the SAA is longer than 436 s, the geomagnetic cutoff rigidity (COR)

is higher than 6 GV, the source elevation above the rim of bright and night Earth (ELV) is

higher than 20◦ and 5◦, respectively, and the XIS data are free from telemetry saturation. These

procedures yielded 85.3 ks and 102.6 ks of good exposures, for MWL I and MWL II. In the

scientific analysis below, we utilize only the events with grades of 0, 2, 3, 4, or 6.

1 http://users.utu.fi/kani/1m/OJ 287 jy.html
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We reprocessed the HXD data in both observations by using the latest gain file in the

CALDB. The HXD data were screened under the following criteria; the time interval before

and after the SAA is longer than 180 s and 500 s, COR and ELV are higher than 6 GV and 5◦,

respectively. As a result, we obtained 93.6 ks and 102.9 ks of good exposures, for MWL I and

MWL II.

2.2. XIS Results

Figure 1 shows the 0.5 – 10 keV XIS images in MWL I and MWL II. OJ 287 was clearly

detected at the position of (α,δ) = (08h54m48.s87, 20◦06′30.′′6) in J2000.0 coordinates, with no

other apparent contaminating source within the XIS field of view. The image indicates that

the intensity of the source was higher in MWL II than in MWL I. We accumulated the source

signals within the solid circles with a radius of 3′ in figure 1. The background events were

integrated within the same radius (dashed circles) at symmetric positions around the optical

axis of the XRT.

In figure 2, we show the background-subtracted X-ray lightcurves of OJ 287 in MWL I

and MWL II. The data from the two front-illuminated (FI) CCD cameras (XIS 0 and 3; Koyama

et al. 2007) were co-added. In MWL I, the time-averaged count rates in the soft (0.5 – 2 keV)

and medium (2 – 10 keV) bands were measured to be 0.088± 0.001 cts s−1 and 0.071± 0.001

cts s−1, respectively, while they nearly doubled to 0.166± 0.001 cts s−1 and 0.164± 0.002 cts

s−1 in MWL II. With χ2 = 42.9 and 27.7 for 39 degrees of freedom (d.o.f.), the lightcurve

indicates no significant variation during MWL I in either energy band. On the other hand,

in MWL II, we found that the source flux gradually decreased by a factor of 1.3 in the first

half of the observation (∼ 1.5 days; χ2/d.o.f. = 58.5/37 and 71.3/37 in the soft and medium

bands). However, the hardness ratio, which was simply calculated by dividing the count rate of

the medium band by that of the soft band, indicates no significant spectral variation in either

observation. Therefore, we evaluated the averaged spectra as presented below.

Figure 3 shows the background-subtracted XIS spectra of OJ 287, without removing the

instrumental response. In this case, significant X-ray signals were detected in the range of 0.5

– 10 keV and 0.4 – 8 keV, with the FI CCDs and the backside-illuminated (BI) CCD (XIS 1).

The spectra appear to be featureless, without any absorption or emission lines.

We fitted the spectra with a single power-law (PL) model modified for photoelectric

absorption and subsequently calculated the response matrix function and the auxiliary response

file by using xisrmfgen and xissimarfgen (Ishisaki et al. 2007), respectively. The effects of

absorption caused by the presence of contaminants on the surface of the optical blocking filter

of the CCD is taken into account in xissimarfgen. The FI and BI spectra were jointly fitted

by allowing deviations between their respective model normalizations. Because we found that

the fluxes from the BI and FI spectra were in good agreement within 7 %, we adopt the FI

value in the present paper. We fixed the absorption column density at the Galactic value
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(NH = 2.56× 1020 cm−2; Kalberla et al. 2005). The PL model became acceptable, yielding the

best-fit photon index of Γ=1.65±0.02 and Γ=1.50±0.01 for MWL I and MWL II, respectively.

Thus, we found that OJ 287 showed a harder X-ray spectrum in MWL II. As indicated in the

lightcurve (figure 2), the flux density of the source in MWL II (404+6
−5 nJy) was higher than

that in MWL I (215± 5 nJy) by a factor of 2.

2.3. HXD-PIN Results

It is crucial to evaluate the non-X-ray background (NXB), before examining the hard

X-ray spectrum observed with the HXD-PIN (Takahashi et al. 2007; Kokubun et al. 2007).

Although the NXB varies under various cosmic ray environments in the orbit, the HXD team

revealed a set of control parameters for reproducing the NXB and supplied simulated NXB

event files for each observation. The latest version of the NXB model, named “tuned”-NXB

(LCFITDT in Fukazawa et al. 2009), was reported to have a systematic reproducibility error

of 2.31 % and of 0.99 % with 10 ks and 40 ks exposures, respectively, in the 15 – 40 keV band.

First, we analyzed the HXD-PIN data in MWL I. Since the data during Earth occultation

is essentially dominated by the NXB events, these data allow for the reproducibility of the NXB

model to be evaluated. The data were obtained with the same criteria as in the case of the

on-source observation (section 2.1), with the exception that ELV < −5◦ instead of ELV >

5◦. The exposure of 44.1 ks was attained under these conditions. Figure 4 (a) compares the

observed Earth-occultated (black), the NXB model (red), and the NXB-subtracted (green)

spectra. Table 2 summarizes the statistics of the data and the NXB model in MWL I. We

found a data excess of 3.8± 1.0 % over the NXB model below 20 keV. The apparent excess

below 20 keV is within a 3 σ level of the current uncertainty of the NXB model (Fukazawa et

al. 2009). Therefore, we consider that the excess is an artifact produced by fluctuations in the

NXB model. In other words, the NXB model underestimates the real NXB data with ∼ 4 %

in this observation. It is necessary to take this into account for the on-source data.

In a similar manner, we compared the on-source and NXB model spectra, and the results

are shown in figure 4 (b). We found a significant data excess over the NXB model, in the 12

– 40 keV range. This excess includes not only the source signals, but also those of the cosmic

X-ray background (CXB). In order to evaluate the CXB component, we introduced the CXB

spectrum within the HXD field of view as

F (E) = (9.412× 10−3)
(

E

1keV

)

−1.29

exp
[

−E

40keV

]

photons s−1cm−2keV−1,

in accordance to Boldt (1987). We folded this spectrum with the HXD-PIN response of

ae hxd pinhxnome3 20080129.rsp which was appropriate to the observation phase (Epoch

3), and show it in figure 4 (b). We also summarized the statistics of the data, the NXB, and

the CXB in table 3. The NXB count rate for on-source is higher than that for the Earth

occultation, due to different orbit conditions of the satellite, as can be seen in tables 2 and
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3. Therefore, it is of no use to perform a direct comparison of the count rates between the

Earth occultation and on-source periods, and therefore we examined the ratio of the combined

NXB and CXB to the NXB. After subtracting the CXB and NXB models, the on-source data

corresponded to 4.2 ± 0.3 % and −0.9± 0.2 % of the NXB, in 12 – 20 keV and 20 – 40 keV,

respectively. By using the Earth occultation data, we ascribed the apparent excess in 12 – 20

keV due to the uncertainly of the NXB model instead of the source signals since we confirmed

that the NXB model underestimates the real NXB spectrum by ∼ 4 %.

Next, in (a) in figure 5, we show the HXD-PIN spectra of MWL II during the Earth

occultation with an exposure of 28.7 ks. Table 3 summarizes the statistics of the data and

the NXB model during the Earth occultation. They are consistent with each other within

1.4 ± 1.2% and 1.2 ± 1.6% in 12 – 20 keV and 20 – 40 keV. Thus, we confirmed that the

NXB model adequately reproduced the observed NXB spectrum in MWL II within its reported

uncertainty.

Figure 5 (b) shows the on-source spectra in MWL II. In order to fold the CXB spectra,

we used the HXD-PIN response function (Epoch 4), ae hxd pinhxnome4 20080129.rsp. The

HXD-PIN spectrum revealed a significant excess over the combined CXB and NXB in the 12

– 27 keV range. The count rates for the data, the NXB and the CXB in this range, are shown

in table 3. Thus, the excess has a count rate of 0.011±0.002 cts s−1 (2.9±0.6 % of the NXB),

which corresponds to statistical significance of 5.0σ. Since this is well above the NXB errors,

we concluded that the HXD-PIN detected signals from OJ 287 in MWL II.

Due to the rather low signal statistics of the HXD-PIN in comparison to the XIS, instead

of joint fitting of XIS and HXD-PIN spectra, we compared the flux of the HXD-PIN signal to

the fitting result of the XIS spectrum. The simple extrapolation of the best-fit single PL model

to the XIS spectrum (section 2.2) has a count rate of 0.016 cts s−1 in 12 – 27 keV, after the

correction of the relative normalization of the HXD to the XIS (1.14: Ishida et al. 2007). The

detected HXD-PIN count rate is only 0.65 times this value, which suggests the presence of a

spectral break between the XIS and the HXD-PIN range, although it is statistically insignificant

(2.6 σ).

3. Multi-wavelength Observations and Results

3.1. Radio Observations

Eleven radio observations of OJ 287 with the NMA at the Nobeyama Radio Observatory

were carried out between January 2007 and January 2008. The NMA consists of six 10-m

antennas equipped with cooled DSB SIS receivers. An Ultra-Wide-Band Correlator (Okumura

et al. 2000) was employed as the spectrocorrelator. We performed simultaneous observations

of a radio continuum emission from OJ 287 at 86.75 GHz and 98.75 GHz, with a 1 GHz

bandwidth for each band. The total on-source time of OJ 287 in each observation was between
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nine and twelve minutes. In each observation session, OJ 287 and the bright reference amplitude

calibrators (3C 84 or 3C 345) were observed alternately. The relative amplitude ratios between

OJ 287 and these reference calibrators were obtained from the visibility data. As absolute

flux-scale calibrations, Uranus or Neptune was used in order to calculate the final flux values

of OJ 287. The uncertainties in the absolute flux scale were estimated to be about 15 % for

each observation, taking into account statistical errors induced by noise and systematic errors

caused by flux fluctuations of the reference calibrators.

For MWL I, we observed the source on 11 and 12 April, overlapping with the Suzaku

pointing. The averaged flux of the two night observations was 1.73±0.26 Jy and 1.75±0.26 Jy

at 86.75 GHz and 98.75 GHz, respectively. During the period of MWL II, the observations on

November 7 and 8 were coincident with the Suzaku pointing. The averaged flux of the two day

observations was 3.04± 0.46 Jy and 2.98± 0.45 Jy at 86.75 GHz and 98.75 GHz, respectively

(see table 4). The measured radio flux for MWL II was 1.7 – 1.8 times higher than that for

MWL I.

3.2. Optical Observations

Optical and near-infrared (NIR) photometric observations were performed at the

Higashi-Hiroshima Observatory with the 1.5-m “KANATA” telescope. We obtained images

of the field of OJ 287 with V , J , and Ks filters by using TRISPEC attached to the telescope

(Watanabe et al. 2005). The V -band images were observed for 53 nights between 2006 October

and 2007 December. For each night, we obtained ∼ 20 images with an exposure time of 108 s

for each frame. The magnitude of OJ 287 was measured by differential photometry with a

neighbor comparison star located at (α,δ) = (08h54m52.s7, 20◦04′46′′). The V -magnitude of the

comparison star (V = 14.160) was quoted from Skiff (2007). After preparing dark-subtracted

and flat-fielded images, we measured the magnitudes of the objects by using the aperture pho-

tometry package in IRAF. We also checked the constancy of the comparison star by using a

neighbor star at (α,δ) = (08h54m59.s0, 20◦02′58′′). The differential magnitude of the comparison

star exhibited no significant fluctuation exceeding 0.003-th during our observations.

We also obtained NIR images, for MWL I on 2007 April 11, 12, and 13, as well as for

MWL II on November 7, 8, and 10, which overlapped with the Suzaku pointing. Simultaneous

V , J , and Ks-band images are available for these six nights. The exposure times of each frame

were 15 and 4 s for the J and Ks-band images, respectively. The reduction procedure was

similar to that in the V -band data mentioned above, and we used the same comparison stars

and target stars as those for the V -band data. The J and Ks magnitudes of the comparison

star were quoted from the 2MASS catalog (J = 12.664 and Ks = 12.090; Skrutskie et al. 2006).

We confirmed that the magnitude of the comparison star remained constant within 0.004 and

0.012-th for J and Ks-bands during our observations. In MWL I, the averaged flux of three

night observations was 3.03± 0.01 mJy, 8.81± 0.03 mJy, and 17.74± 0.33 mJy for V , J , Ks-
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band, respectively. In MWL II, these fluxes were 8.93 ± 0.05 mJy, 27.02 ± 0.21 mJy, and

55.95+7.96
−6.76 mJy, respectively. (see table 4). It can be seen that the source flux for MWL II is

higher by a factor 3 as compared to that for MWL I. The optical data show a monotonous

decrease in a time scale of ∼ 4 days during MWL II by a factor of 1.3.

In addition, we obtained R-band frames from the KVA Telescope simultaneously with

Suzaku pointings. The exposure time was 180 s for each frame. Photometric measurements

were conducted in differential mode, that is, by obtaining CCD images of the target and the

calibrated comparison stars in the same field of view (Fiorucci & Tosti 1996). The magnitudes

of the source and the comparison stars were measured using aperture photometry and the

(color-corrected) zero point of the image as determined from the magnitude of the comparison

star. Finally, the object magnitude was computed using the zero point and a filter-dependent

color correction. After this, magnitudes were transferred into linear fluxes by using the formula

F = F0 × 10(mag/−2.5), where mag is the magnitude of the object and F0 is a filter-dependent

zero point (the value F0 = 3080 Jy is used in the R-band, Bessell 1979).

3.3. VHE γ-ray Observations

We used the MAGIC telescope to search for VHE γ-rays emission from OJ 287 during the

MWL campaigns I and II. MAGIC is a single dish Imaging Atmospheric Cherenkov Telescope

(IACT) with a 17-m diameter main reflector. The telescope is located in the Canary Island of

La Palma, in regular operation since 2004 with a low energy threshold of 50 – 60 GeV (trigger

threshold at small zenith angles; Albert et al. 2008a).

In MWL I, MAGIC observed during 3 nights. The zenith angle of the observations

ranges from 8◦ to 29◦. The observations were performed in so-called ON-OFF observation

mode. The telescope was pointing directly to the source, recording ON-data. The background

was estimated from additional observations of regions where no γ-ray is expected, OFF-data,

which were taken with sky conditions similar to ON-data. Data runs with anomalous trigger

rates due to bad observation conditions were rejected from the analysis. The remaining data

correspond to 4.5 hours of ON and 6.5 hours of OFF data. In November and December 2007 for

MWL II, MAGIC observed in a zenith angle range from 8◦ to 31◦ in the “wobble mode” (Fomin

et al. 1994), where the object was observed at 0.4◦ offset from the camera center. With this

observation mode, an ON-data sample and OFF-data samples can be extracted from the same

observation run; in our case, we used 3 OFF regions to estimate the background. In total, the

data were taken during 22 nights, two of which coincide with the Suzaku pointing. 41.2 hours

of data from 19 nights passed the quality selection to be used for further analysis.

The VHE γ-ray data taken for MWLs I and II were analyzed using the MAGIC stan-

dard calibration and analysis software. Detailed information about the analysis chain is found

in Albert et al. (2008a). In February 2007, the signal digitization of MAGIC was upgraded to

2 GSamples s−1 FADCs, and timing information is used to suppress the contamination of light
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of the night sky and to obtain new shower image parameters (Aliu et al. 2009) in addition to

conventional Hillas image parameters (Hillas 1985).

These parameters were used for γ/hadron separation by means of the “Random Forest

(RF)” method (Albert et al. 2008b). The γ/hadron separation based on the RF method was

turned to give a γ-cut efficiency of 70 %. Finally, the γ-ray signal was determined by comparing

between ON and normalized-OFF data in the —ALPHA— parameter2 distribution, in which

the γ-ray signal should show up as an excess at small values. Our analysis requires a γ-cut

efficiency of 80 % for the final —ALPHA— selection. The energy of the γ-ray events are also

estimated using the RF method.

A search of VHE γ-rays from OJ 287 was performed with data taken for MWLs I and II

in three distinct energy bins. No significant excess was found in any data samples. Upper limits

with 95 % confidence level in the number of excess events were calculated using the method

of Rolke et al. (2005), taking into account a systematic error of 30 %. The number of excess

events was converted into flux upper limits assuming a photon index of −2.6, corresponding

to the value used in our Monte-Carlo samples of γ-rays. The derived upper limits in the three

energy bins for each period are summarized in table 5.

A search for VHE flares with a short-time scale was also performed with the data taken

for MWL II. Figure 6 shows the nightly count rate of the excess events after all cuts including a

SIZE cut above 200 photoelectrons, corresponding to an energy threshold of 150 GeV. Fitting

a constant rate to the observed flux yields χ2/d.o.f. = 25.55/18 (a probability of 11 %), and

thus indicates no evidence of a VHE flare during this period.

4. Discussion

We performed Suzaku X-ray observations of OJ 287 in the quiescent state (MWL I)

and the second flare (MWL II) in 2007 April and November, respectively, where the latter

was the first X-ray observation during the second flare of the source. In cooperation with

Suzaku, radio, optical, and VHE γ-ray observations were performed with NMA, KANATA, and

MAGIC, respectively. Figure 7 summarizes the multi-wavelength lightcurves obtained between

September 2006 and January 2008. While the optical flux of OJ 287 was below 3 mJy in the

V -band before MWL I, the brightness of the source started increasing after MWL I to become

the flaring state (>∼ 7 mJy) in September 2007. Although the radio flux gradually decreased

around the period of MWL I, it started increasing during the optical flare in MWL II, and it

also increased in other energy bands. We found that the brightness of the source increased by

a factor of 2 – 3, in the radio, optical, and X-ray bands between MWL I and MWL II, although

no significant VHE γ-ray signals were detected in either MWL I or MWL II.

2 the angle between the shower image principal axis and the line connecting the image center of gravity with

the camera center.
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As shown in figure 3, significant X-ray signals were detected with the XIS in the range 0.5

– 10 keV range. The HXD-PIN detected hard X-ray signals in 12 – 27 keV with a significance

of 5.0 σ in MWL II (figure 5), while those signals were not significant in MWL I (figure 4).

The XIS spectra in 0.5 – 10 keV were described with a single PL model modified with Galactic

absorption in MWL I and MWL II. The photon indices and the flux densities at 1 keV were

derived as 1.65± 0.02 and 215± 5 nJy in MWL I, and 1.50± 0.01 and 404+6
−5 nJy in MWL II.

In the previous observations of the first flares and quiescent states, the X-ray flux densi-

ties at 1 keV and photon indices of OJ 287 were estimated as 0.15 – 0.31 µJy and 1.45 – 1.63,

respectively, in 1997 – 2001 with BeppoSAX (Massaro et al. 2003), 0.22 – 0.25 µJy and 1.51 –

1.57 in 1997 with ASCA (Isobe et al. 2001), 0.76 +0.03
−0.06 µJy and 1.67 ± 0.02 in 1994 with ASCA

(Idesawa et al. 1997), 2.08 – 2.24 µJy and 2.16 – 2.37 in 1983 – 1984 with EXOSAT (Sambruna

et al. 1994), and 0.94 – 2.70 µJy and 1.5 – 2.3 in 1979 – 1980 with Einstein satellite (Madejski

& Schwartz 1988). These results suggest that the X-ray spectrum became softer as the source

became brighter (Idesawa et al. 1997; Isobe et al. 2001). This trend was interpreted in the

following way: during the quiescent state, the IC component dominates the X-ray spectrum

(Isobe et al. 2001). However, once the X-ray flux increases, the high-frequency end of the SR

component extends to the X-ray band and exhibits a softer spectrum. In fact, Isobe et al.

(2001) have successfully decomposed the X-ray spectrum obtained with ASCA at the first flare

in 1994 into soft and hard PL components representing the SR and the IC components, respec-

tively. Moreover, in the XMM-Newton observation of the recent first flare in 2005, the source

exhibited a concave broken-PL-like X-ray spectrum (Ciprini et al. 2008) which also supports

the idea that there is a contribution from the soft component. On the other hand, the spectral

behavior in the second flare of OJ 287 observed with Suzaku was completely the opposite to

the previous X-ray trend in the first flares.

In order to perform a quantitative evaluation of the possible soft excess component in

the Suzaku X-ray spectrum obtained in MWL II, we employed an additional steep PL model

modified with the Galactic absorption. The photon index of the additional steep PL component

was fixed at 2.62, which is the best fit value for the first flare in 1994 (Isobe et al. 2001), while

its normalization was left free. As a result of this two-component model fitting, the upper limit

on the flux density of the additional soft PL component was derived as 8.7 nJy at the 3σ level

(see table 1), while the hard component remained consistent with the best fit values for the

single PL model fitting (χ2/d.o.f. = 566.4/519). Thus, we obtained the upper limit on the ratio

of the soft to the hard components at 1 keV as 0.022, although the ratio was estimated to be

0.186± 0.034 in the first flare of 1994 (Isobe et al. 2001). Therefore, the contribution from the

soft component in MWL II was negligible in comparison to that of the first flare, and the hard

component fully dominated the XIS spectrum over the 0.5 – 10 keV range.

Figure 8 shows the overall SED of OJ 287 for the Suzaku pointing in MWL I and MWL II,

including the optical R-band data from the KVA Telescope, as well as some historical data.
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In the figure, we recognize two spectral components, which are typical of blazars. The low

frequency SR component, extending from radio to optical frequencies, has a spectral turnover

at around 5×1014 Hz. At the same time, the observed SR component is well above the extrap-

olation from the upper limit of the soft PL component in MWL II (∼ 1× 10−12erg s−1 cm−2

at 5×1014 Hz). Therefore, we naturally attribute the observed hard X-ray spectrum to the IC

component rising toward the higher frequency range. The SED indicates that both the SR and

IC intensities increased from MWL I to MWL II without any significant shift of the SR peak

frequency.

As a working hypothesis, here we assume simply that the variation of the SED was caused

by a change in electron energy density (or number density) and/or the maximum Lorentz factor

of the electrons, with stable magnetic field, volume of emission region, minimum Lorentz factor,

and break of electron energy distribution (e.g., Takahashi et al. 2000). In order to evaluate this

hypothesis, we applied a one-zone SSC model to the SED by using the numerical code developed

by Kataoka (2000). The electron number density spectrum was assumed to be a broken PL and

the index of the electron spectrum (p) below the break Lorentz factor was determined by the X-

ray photon index as p=2Γ−1=2.3 and 2.0, in MWL I and MWL II, respectively. We obtained

the following seven free parameters to describe the observed SED: the Doppler factor (δ), the

electron energy density (ue), the magnetic field (B), the blob radius (R), and the minimum,

break, and maximum Lorentz factor of the electrons (γmin, γbreak, and γmax, respectively).

Adopting the optical variability time scale (Tvar ∼ 4 days; section 3.2) in MWL II, the relation

between δ and R should be subjected to R < cTvarδ/(1+ z) = 1.2× 1017(Tvar/4days)(δ/15) cm

where c and z are the speed of light and the redshift of the source, respectively.

We derived the SSC model parameters as summarized in table 6. The resultant model

curves are shown with solid lines in figure 8. The both model predictions are well below

the upper limit on the VHE γ-ray spectra. The SED in MWL I was reproduced with δ = 15,

B =0.71 G, R=7.0×1016 cm, γmin =70, γbreak = 700, γmax =3300, and ue =1.5×10−3 erg cm−3.

The δ and R are typical values for LBL (Ghisellini et al. 1998). On the other hand, in the

SED in MWL II, the SSC model with ue = 2.1× 10−3 erg cm−3 and γmax = 4500 was found

to describe the SED successfully, while the other parameters remained unchanged. Thus, we

adopt the interpretation that the increase in the electron energy density produced the second

flare.

The SED spectra obtained in 1st and 2nd flare during 2005 – 2008 outburst are sug-

gested to have different features as we saw in the X-ray spectra obtained with XMM-Newton

and Suzaku. The difference in these SED spectra may require not only simple ‘disk impact’

(Valtonen et al. 2008a), but also a state transition of the disk - jet system (Valtaoja et al. 2000).

In 2008, Fermi successfully detected a γ-ray spectrum from the quiescent state of OJ 287

during its first three months (Abdo et al. 2009), as shown in figure 8. The measured γ-ray flux

significantly exceeds our simple SSC model flux. This may indicate a contribution of external
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Compton (EC) radiation to the γ-ray emission from OJ 287. Assuming that the γ-ray spectrum

peaks around ∼1×1022 Hz with a flux of ∼2×10−11 erg s−1 cm−2, as is suggested from figure 8,

and using the electron spectrum determined from the SSC fitting to the radio-to-X-ray spectrum

derived for MWL II, the energy density and typical frequency of useed ∼ 10−5 erg cm−3 and

νseed ∼ 1014 Hz in the rest frame of the nucleus (not the jet frame) are required for the seed

photons of the EC process. These give the luminosity of the seed photon source as ∼ 1042

erg s−1. This luminosity is consistent with that evaluated for 3C 279 (Inoue & Takahara 1996),

a famous quasar-hosted blazar of which the γ-ray spectrum is thought to be dominated by the

EC emission, within an order of magnitude. However, for a precise identification of the seed

photon source, it is crucial to make a simultaneous multi-wavelength observation from radio to

γ-ray frequencies.

5. Summary

We performed X-ray observations of OJ 287 in the quiescent state (MWL I) in 2007

April and in the flaring state (MWL II) in 2007 November by using Suzaku, together with

radio, optical, and VHE γ-ray observations with NMA, KANATA, and MAGIC, respectively.

The obtained results can be summarized as follows.

• The brightness of OJ 287 increased by a factor of 2 from MWL I with a 1 keV flux density

of 215± 5 nJy to MWL II with 404+6
−5 nJy. The X-ray spectrum of OJ 287 was harder in

MWL II (a photon index of Γ = 1.50± 0.01) than in MWL I (Γ = 1.65± 0.02).

• In MWL II, hard X-ray signals from the object were detected with a significance of 5.0σ

in the 12 – 27 keV range, for the first time.

• The radio and optical fluxes doubled from MWL I to MWL II. No significant VHE γ-ray

signals were detected in either observation.

• In both observations, the object exhibited a typical blazar-like spectral energy distribution

consisting of synchrotron and inverse Compton components. The relative hard X-ray

spectrum appeared to be dominated by the inverse Compton components.

• No significant difference of the synchrotron cut-off or peak frequency was found between

the quiescent and flaring states. This spectral behavior is rather different from that in

past flares, in which it appeared that the synchrotron component contributed to the X-ray

spectrum.

• Based on the synchrotron self-Compton model, the change of the multi-wavelength spectral

energy distribution is interpreted as the increase of the electron energy density, without

any notable change in either the magnetic field or the electron Lorentz factor.
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Table 1. Summary of model fitting to the Suzaku XIS spectra.

obs Models NH
∗ Γ S1keV

† Γ‡ S1keV
†‡ χ2/d.o.f. F2−10keV

§

MWL I PL 2.56‖ 1.65 ± 0.02 215 ± 5 – – 215.0/243 1.44× 10−12

MWL II PL 2.56‖ 1.50 ± 0.01 404+6
−5 – – 566.3/520 3.42× 10−12

double PL 2.56‖ 1.50+0.01
−0.02 404+4

−9 2.62 (Fixed) < 8.7 566.4/519 3.42× 10−12

∗ in 1020 cm−2.
† X-ray flux density at 1 keV, in units of nJy.
‡ Soft PL component parameter.
§ 2 – 10 keV flux in erg cm−2 s−1.
‖ Fixed at the Galactic Value.

Table 2. Event statistics of the HXD data in MWL I.

Earth occulation On-source

12 – 20 keV 20 – 40 keV 12 – 20 keV 20 – 40 keV

Data (c s−1) 0.274 ± 0.003 0.149 ± 0.002 0.319 ± 0.002 0.173 ± 0.001

NXB (c s−1) 0.264 ± 0.001 0.150 ± 0.001 0.290 ± 0.001 0.167 ± 0.001

CXB (c s−1) – – 0.016 0.008

excess (c s−1)∗ 0.010 ± 0.003 −0.015±0.002 0.012 ± 0.002 −0.002± 0.001

excess∗ ratio† (%) 3.8 ± 1.0 −1.0 ± 1.3 4.2 ± 0.3 −0.9± 0.2
∗ Data excess over the NXB and the combined NXB and CXB for Earth occultation and on-source, respec-
tively.
† Ratio to the NXB model.

Table 3. The event statistics of the HXD data in MWL II.

Earth occultation On-source

12 – 20 keV 20 – 40 keV 12 – 27 keV

Data (c s−1) 0.286 ± 0.003 0.165 ± 0.002 0.399 ± 0.002

NXB (c s−1) 0.290 ± 0.001 0.167 ± 0.001 0.367 ± 0.001

CXB (c s−1) – – 0.022

excess (c s−1)∗ −0.004 ± 0.003 −0.002 ± 0.003 0.011 ± 0.002

excess∗ ratio† −1.4± 1.2 −1.2± 1.6 2.9 ± 0.6
∗ Data excess over the NXB and the combined NXB and CXB for Earth occultation and on-source, respec-
tively.
† Ratio to the NXB model.

Table 4. Summary of radio and optical fluxes obtained during the Suzaku pointing in MWL I and MWL II.

obs radio flux (Jy) optical flux (mJy)

86.95 GHz∗ 98.75 GHz∗ Ks

† J † R ‡ V †

MWL I 1.73± 0.26 1.75± 0.26 17.74± 0.33 8.82± 0.03 3.20± 0.05 3.03± 0.01

MWL II 3.04± 0.46 2.98± 0.46 55.95+7.69
−6.76 27.02± 0.21 8.70± 0.14 8.93± 0.05

∗ NMA data.
† KANATA data.
‡ KVA Telescope data.

17



Table 5. Results of the search for VHE γ-ray emissions from OJ 287.

MWL I

Threshed Energy (GeV)∗ 80 145 310

ON events† 40056 1219 42

OFF events‡ 40397± 226 1340± 38 39.5± 6.3

significance (σ)§ −1.13 −0.94 −0.47

U.L. of excess events‖ 394 75.1 21.9

Flux95%U.L.
(×10−12 cm−2 s−1)# 59.8 11.1 2.83

Crab Flux(%)∗∗ 8.5 3.3 2.4

MWL II

Threshed Energy (GeV)∗ 85 150 325

ON events† 281885 12582 578

OFF events‡ 282342± 493 12573± 65 576± 14

significance (σ)§ −0.75 0.07 0.07

U.L. of excess events‖ 1218 330 71.6

Flux95%U.L.
(×10−12 cm−2 s−1)# 22.1 5.64 1.18

Crab Flux(%)∗∗ 3.4 1.7 1.1
∗ Correspond to peak energies of γ-ray Monte Carlo samples after all cuts.
† Number of measured ON events.
‡ Normalized number of OFF events and related error.
§ Based on equation (17) in Li & Ma (1983),
‖ 95% upper limit of the number of excess events with 30% systematic error.
# Flux upper limit assuming a photon index of −2.6 for the calculation of the effective area.
∗∗ Corresponding Crab flux in each energy range based on measurements of the Crab pulsar
performed with the MAGIC telescope (Albert et al. 2008a)

Table 6. Physical parameters for the SSC model.

parameters∗ MWL I MWL II

δ 15

R (cm) 7.0× 1016

B (Gauss) 0.71

γmin 70

γbreak 700

γmax 3300 4500

p 2.3 2.0

um (erg cm−3) 2.0× 10−2 2.0× 10−2

ue (erg cm−3) 1.5× 10−3 2.1× 10−3

∗ Notations are described in the text.
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Fig. 1. The 0.5 – 10 keV XIS image of OJ 287 in MWL I (left) and MWL II (right). Data from all

XIS CCD chips (XIS 0, 1, and 3) were summed up. The region of the calibration sources was removed.

Background subtraction and exposure correction are not applied to the image. Both panels are drawn in

the same grayscale. The source and the background signals are integrated within the solid and dashed

circles, respectively.

Fig. 2. The XIS FI lightcurves of OJ 287 obtained in MWL I and MWL II. The time bin was set to

5760 s. Panels (a) and (d) show the soft energy band lightcurves (0.5 – 2 keV), while panels (b) and (e)

show the medium energy band lightcurves (2 – 10 keV) in each observation. The hardness, which is simply

calculated as the ratio of the hard band count rate to the soft band one, is shown in panels (c) and (f).

The dotted, the dashed, and the solid lines in panels (c) and (f) indicate the predictions provided by the

PL model with Γ=1.4, 1.6, and 1.8, respectively.
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Fig. 3. The XIS spectra of OJ 287 in MWL I and MWL II. The FI and BI data are shown with black

and red points, respectively. The data are binned into pixels with at least 100 events, and error bars

represent 1 σ statistical errors. Histograms in both panels indicate the best-fit PL models.
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Fig. 4. The HXD-PIN spectra of OJ 287 in MWL I, obtained in the Earth occultation (panel a) and the

on-source observations (panel b). The black, red, and green data points indicate the data, NXB model, and

NXB-subtracted spectra, respectively. The green histogram in panel (a) shows the CXB model spectrum

(see the text).
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Fig. 5. The HXD-PIN spectra of OJ 287 in MWL II, presented in the same manner as in figure 4.

Fig. 6. Excess event rate with SIZE above 200 photoelectrons (with a corresponding energy threshold of

150 GeV), observed with the MAGIC telescope in MWL II. The dotted line indicates the average count

rate.
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Fig. 7. The multi-wavelength lightcurves of OJ 287. The top panel shows the radio flux at 86.75 GHz

as observed with NMA, while the middle panel shows the optical flux in the V -band as observed with

KANATA. The radio and optical fluxes are averaged over each night. The bottom panel shows the X-ray

flux density at 1 keV. Arrows indicate the Suzaku pointings in MWL I and MWL II.

Fig. 8. The SED of OJ 287 during the Suzaku observations in MWL I (blue) and MWL II (red). The

radio and optical data are shown with squares and, the X-ray data are shown with bow ties. The upper

limit of the VHE γ-ray spectrum are measured values, shown with downward arrows. The light blue lines

and the purple lines indicate the simple one-zone SSC model for MWL I and MWL II, respectively. The

black data points show radio, optical, and γ-ray data from non-simultaneous observations. The X-ray

spectra with EXOSAT, ROSAT, and ASCA are drawn with dotted, dashed, and solid lines, respectively

(Idesawa et al. 1997; Isobe et al. 2001 and references therein). The γ-ray spectrum obtained with Fermi

during the first 3 month observation (August – October 2008) is shown with a bow tie (Abdo et al. 2009).
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