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A key problem in making precise perturbative QCD predictions is to set the proper renormaliza-
tion scale of the running coupling. The extended renormalization group equations, which express
the invariance of physical observables under both the renormalization scale- and scheme-parameter
transformations, provide a convenient way for estimating the scale- and scheme-dependence of
the physical process. In this paper, we present a solution for the scale-equation of the extended
renormalization group equations at the four-loop level. Using the principle of maximum con-
formality (PMC) / Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal
{βi} terms in the perturbative expansion series can be summed into the running coupling, and
the resulting scale-fixed predictions are independent of the renormalization scheme. Different
schemes lead to different effective PMC/BLM scales, but the final results are scheme independent.
Conversely, from the requirement of scheme independence, one not only can obtain scheme-
independent commensurate scale relations among different observables, but also determine the
scale displacements among the PMC/BLM scales which are derived under different schemes. In
principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present
a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An
explicit application for determining the scale setting of Re+e− (Q) up to four loops is presented.

By using the world average αMS
s (MZ) = 0.1184 ± 0.0007, we obtain the asymptotic scale for the

’t Hooft associated with the MS scheme, Λ
′tH

MS
= 245+9

−10 MeV, and the asymptotic scale for the

conventional MS scheme, Λ
MS

= 213+19

−8 MeV.

PACS numbers: 12.38.Aw, 11.10.GH, 11.15.Bt

I. INTRODUCTION

All physical predictions in QCD should in principle be
invariant under any choice of renormalization scale and
scheme. However at any finite order, the use of differ-
ent scales and schemes may lead to different theoretical
predictions. The optimal procedure for obtaining precise
QCD predictions is to choose the renormalization scale
so that the result is scheme independent at any fixed or-
der of αs. Moreover, the result for a scale-setting strat-
egy should satisfy several self-consistent conditions: the
existence and uniqueness of the scale, reflexivity, sym-
metry and transitivity [1]. Perturbative QCD becomes
an Abelian theory at Nc → 0, so QCD scale setting
must also agree with that of QED in this limit [2]. We
shall show that the Brodsky-Lepage-Mackenzie method
(BLM) [3] and the Principle of Maximum Conformality
(PMC) [4] provide a solution to this problem 1.
The main idea of PMC/BLM is that after proper pro-

cedures, all non-conformal {βi} terms in the perturbative
expansion are summed into the running coupling and the
remaining terms in the perturbative series are identical to

∗ email:sjbth@slac.stanford.edu
† email:wuxg@cqu.edu.cn
1 PMC provides the principle underlying BLM scale setting, so if
not specially stated, we usually treat them on equal footing.

that of a conformal theory, i.e. the corresponding theory
with {βi} = {0}. The QCD predictions from PMC/BLM
are then independent of renormalization scheme. It has
been found that PMC/BLM satisfies all self-consistent
conditions [1]. After PMC/BLM scale setting, the di-
vergent “renormalon” series of order (n!βn

i α
n
s ) does not

appear in the conformal series; thus as in QED, the scale
can be unambiguously set by PMC/BLM.
One can use PMC/BLMmethod to relate perturbative

calculable observables in QCD, i.e. to derive commensu-
rate scale relations among different observables, whose
coefficients can be identified with those obtained in con-
formally invariant gauge theory exactly [5, 6]. More-
over, from the requirement of scheme-independence, one
can determine the displacements among the PMC/BLM
scales that are derived under different schemes or conven-
tions. We shall show how to fix the PMC/BLM scales
order-by-order. One way to set the leading order (LO)
and the next-to-leading order (NLO) PMC/BLM scales
has been suggested in the literature [3–5]. Concerning
the recent improvements on perturbative QCD calcula-
tions and the need to improve the theoretical predictions
to confront more and more accurate experimental data, it
shall be interesting to provide a systematic and scheme-
independent treatment of PMC/BLM up to next-to-next-
to-leading order (NNLO).
As an extension to the conventional renormalization

group (RG) equation, the extended RG equations ex-
press the invariance of physical observables under both
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the renormalization scale- and scheme-parameter trans-
formations [7, 8]. In this approach, a universal coupling
function which covers all possible choices of scale and
scheme is introduced, whose corresponding perturbative
series serves as an intermediate device for the identifica-
tion of scale and scheme parameters. It can be treated
as a transparent solution to the scale-scheme ambigu-
ity problem. A useful advantage is that the scheme de-
pendence can be reliably estimated through the scheme
equations. This approach also provides a platform for
a reliable scheme-error analysis and a precise definition
for the asymptotic scale under a possible renormalization
scheme R, i.e. the scale for the ’t Hooft associated with
R-scheme Λ

′tH
R [8]. We shall present a general solution

for the extended RG equation and give some relations
between the universal coupling function and the conven-
tional adopted coupling function.
The remaining parts of the paper are organized as

follows: in Sec.II, we give the extended RG equations
and provide its solution up to four loops. In Sec.III, we
present a systematic procedure for setting PMC/BLM
scales up to NNLO. Discussions and an explicit appli-
cation are also presented in Sec.III. Sec.IV provides a
summary.

II. EXTENDED RENORMALIZATION GROUP
EQUATIONS

Under an arbitrary renormalization scheme, hereafter
refers to as R-scheme, the scale dependence of the cou-
pling constant is controlled by the RG equation

d

d lnµ2

(
αR
s (µ)

4π

)
= −

∞∑

i=0

βR
i

(
αR
s (µ)

4π

)i+2

. (1)

Various terms in β0, β1, · · ·, correspond to one loop, two
loop · · · contributions respectively. Generally {βi} de-
pend on quark mass mf through the variable m2

f/µ
2.

According to the decoupling theorem, quark with mass
mf ≫ µ can be ignored, and we can often neglect mf -
terms when mf ≪ µ. Then, for every µ we divide the
quarks into active ones with mf = 0 and the inactive
ones that can be simply ignored. Within this framework,
it is well-known that the first two coefficients β0 and β1

are universal, while all higher-order coefficients {βR
i }i≥2

are renormalization scheme dependent. Under the MS
scheme, {βi} up to four loops can be found in the litera-
ture [9].
With the help of the two universal coefficients β0

and β1, one can change the RG equation into a sim-
pler canonical form by rescaling the coupling constant
as aR = β1α

R
s /(4πβ0) and the scale parameter as τ =

(β2
0/β1) lnµ

2, i.e.

daR

dτ
= −(aR)2

[
1 + aR + cR2 (a

R)2 + cR3 (a
R)3 + · · ·

]
,

(2)

where cRi = βR
i β

i−1
0 /βi

1. Furthermore, one can define a
universal coupling constant a(τ, {ci}) to include the de-
pendence on the scheme parameters {ci}, which satisfies
the following extended RG equations [7, 8]

β(a, {ci}) =
∂a

∂τ
= −a2

[
1 + a+ c2a

2 + c3a
3 + · · ·

]
(3)

and

βn(a, {ci}) =
∂a

∂cn
= −β(a, {ci})

∫ a

0

xn+2dx

β2(x, {ci})
(4)

The scale-equation (3), similar to Eq.(2), can be used to
evolve the coupling function from one scale to another.
By comparing Eq.(2) with Eq.(3), there exists a value of
τ = τR for which,

aR(τR) = a(τR, {c
R
i }). (5)

This shows that any coupling constant aR(τ) can be ex-
pressed by a universal coupling constant a(τ, {ci}) un-
der proper correspondence. The scheme-equation (4) can
be used to relate the coupling functions under different
schemes by changing {ci}. It is noted that the universal
coupling function has a particularly simple form when all
the scheme parameters {ci} are set to zero, i.e. the cou-
pling function can be written as a function of the scale
in terms of the Lambert W function [10]. Such a special
case with {ci} ≡ {0} is usually called as the ’t Hooft
scheme [11]. In addition to simplifying the solution of
the RG equations, the ’t Hooft scheme also provides a
precise definition for the asymptotic scale Λ of QCD as
will be shown below 2.
Integrating Eq.(3) leads to

L = C+
1

a
+lna+(c2 − 1) a+

c3 − 2c2 + 1

2
a2+O(a3), (6)

where L = (β2
0/β1) ln(µ

2/Λ2) and Λ is the asymptotic
scale parameter. The integration constant C is arbi-
trary, whose value depends on how we set the asymp-
totic scale Λ. Since the ’t Hooft scheme is free of high-
order corrections, it provides a precise definition for Λ,
i.e. the ’t Hooft scale Λ

′tH , which is defined to be the
pole of the coupling function in the ’t Hooft scheme,
a

′tH ≡ a(2β2
0/β1 ln(µ/Λ

′tH), {0}). Λ
′tH is not unique,

and there are infinite number of ’t Hooft schemes, dif-
fering only by the value of Λ

′tH . However under a
specific renormalization scheme (R-scheme), its asymp-
totic scale can be fixed to be the ’t Hooft scale associ-
ated with the R-scheme Λ

′tH
R [8], which enters into both

aR(µ) = a(2β2
0/β1 ln(µ/Λ

′tH
R ), {cRi }) and a

′tH−R(µ) =

2 Recently, it has been found that the ’t Hooft scheme fails to
reproduce the factorized form of the MS-scheme generalization
of the generalized Crewther relation [12]. This shows that one
cannot use it for studying special theoretical features of gauge
theories beyond the two-loop level.
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a(2β2
0/β1 ln(µ/Λ

′tH
R ), {0}). Here the word “associated”

means we are choosing the particular ’t Hooft scheme
that shares the same ’t Hooft scale with the R-scheme.
Eq.(6) can be solved iteratively, and its solution can be

expanded as a power series of 1/L, i.e. up to four loops,

a =
1

L
+

1

L2
(C − lnL) +

1

L3

[
C2 + C + c2 − (2C − lnL+ 1) lnL− 1

]
+

1

L4

{
C

(
C2 +

5

2
C + 3c2 − 2

)
−

1− c3
2

−

[
3C2 + 5C + 3c2 − 2−

(
3C − lnL+

5

2

)
lnL

]
lnL

}
+O

(
1

L5

)
. (7)

As a cross-check, the above solution agrees with Ref.[13]
after proper parameter transformations and by identify-
ing the integration constant C∗ used there to be C∗ =
β1

β2
0

(
C − ln 4β0

β1

)
. When setting {ci} = {0} and C = 0, we

recover the coupling constant under the ’t Hooft scheme.
One can also obtain a relation between Λ

′tH
R and ΛR, i.e.

Λ
′tH
R = exp

(
β1

2β2
0

CR

)
ΛR. (8)

As a special case, by choosing CMS = lnβ2
0/β1, we obtain

Λ
′tH
MS

=

(
β1

β2
0

)−β1/2β
2
0

ΛMS , (9)

which agrees with the observation in Ref.[8]. The present
definition of ΛMS is the conventional one suggested by
Ref.[14, 15]; there are other choices for CMS [16], which
might be helpful in certain cases.

III. BLM SCALE SETTING UP TO NNLO

Generally, perturbative QCD prediction for a physical
observable ρ can be written as

ρ = r0

[
ans (Q) + (A1 +A2nf )a

n+1
s (Q)

+(B1 +B2nf +B3n
2
f )a

n+2
s (Q)

+(C1 + C2nf + C3n
2
f + C4n

3
f )a

n+3
s (Q) + · · ·

]
(10)

where as(Q) =
(

αs(Q)
π

)
and the overall tree-level param-

eter r0 is scale-independent and is free of as(Q). Here nf

stands for the quark flavor number and n(≥ 1) stands for
the initial αs order at the tree level. After proper scale
setting, all nf -terms in the perturbative expansion can be
summed into the running coupling. Here, we shall con-
centrate on those processes in which all nf -terms are as-
sociated with the {βi}-terms. In higher-order processes,
there may be nf -terms coming from the light-by-light
quark loops which are irrelevant to the ultra-violet cut-
off; they have no relation to the {βi}-terms [3]. Those
terms should be identified and kept separately after the

BLM scale setting 3.
The BLM scales can be set up in a general scheme-

independent way, and the generalization of the BLM pro-
cedure to higher order assigns a different renormalization
scale for each other in the perturbative series, which can
be done order by order. We can shift the renormaliza-
tion scale Q into effective ones until we fully absorb those
higher-order terms with nf -dependence into the running
coupling 4.
More explicitly, the first step of the BLM method is to

set the effective scale Q∗ at LO

ρ = r0

[
ans (Q

∗) + Ã1a
n+1
s (Q∗) + (B̃1 + B̃2nf )a

n+2
s (Q∗)

+(C̃1 + C̃2nf + C̃3n
2
f )a

n+3
s (Q∗) + · · ·

]
. (11)

The second step is to set the effective scale Q∗∗ at NLO

ρ = r0

[
ans (Q

∗) + Ã1a
n+1
s (Q∗∗) +

˜̃
B1a

n+2
s (Q∗∗)

+(
˜̃
C1 +

˜̃
C2nf)a

n+3
s (Q∗∗) + · · ·

]
, (12)

and the final step is to set the effective scale Q∗∗∗ at
NNLO

ρ=r0

[
ans (Q

∗) + Ã1a
n+1
s (Q∗∗) +

˜̃
B1a

n+2
s (Q∗∗∗)

+
˜̃̃
C1a

n+3
s (Q∗∗∗) + · · ·

]
. (13)

When performing the scale shifts Q → Q∗, Q∗ → Q∗∗

and Q∗∗ → Q∗∗∗, we eliminate the nf -terms associated
with the {βi}-terms completely, but at the same time we
also have to modify the coefficients. To set the effective
scale for an+3

s , one needs even higher order information
and here, a sensible choice is Q∗∗∗, since this is the renor-
malization scale after shifting the scales in the final step
of the BLM procedure up to NNLO. Note that the ef-
fective scales should be a perturbative series of as so as

3 Those nf -terms, coming from the light-quark loops connected to
at least four photon/gluon lines, are of higher twists and power
suppressed by hard scales, so they usually can be safely neglected.

4 Another way to set the BLM scale up to NNLO can be found
in Refs.[17, 18], where a unified effective scale Q∗ is used for all
orders.
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to absorb all nf -dependent terms properly, and up to
NNLO, three effective scales can be written as

ln
Q∗2

Q2
= ln

Q∗2
0

Q2
+

xβ0

4
ln

Q∗2
0

Q2
as(Q)

+
y

16

(
β2
0 ln

2 Q∗2
0

Q2
− β1 ln

Q∗2
0

Q2

)
a2s(Q) (14)

ln
Q∗∗2

Q∗2
= ln

Q∗∗2
0

Q∗2
+

zβ0

4
ln

Q∗∗2
0

Q∗2
as(Q

∗) (15)

ln
Q∗∗∗2

Q∗∗2
= ln

Q∗∗∗2
0

Q∗∗2
(16)

where the effective scales Q∗,∗∗,∗∗∗
0 are determined so as

to eliminate A2nf , B̃2nf and
˜̃
C2nf -terms completely, the

parameters x and z are used to eliminate the B3n
2
f and

the C̃3n
2
f terms respectively, and the parameter y is used

to eliminate the C4n
3
f -term. It is found that

ln
Q∗2

0

Q2
=

6A2

n
(17)

ln
Q∗∗2

0

Q∗2
=

6B̃2

(n+ 1)Ã1

(18)

ln
Q∗∗∗2

0

Q∗∗2
=

6
˜̃
C2

(n+ 2)
˜̃
B1

(19)

and

x =
3(n+ 1)A2

2 − 6nB3

nA2
(20)

y =
(n+ 1)(2n+ 1)A3

2 − 6n(n+ 1)A2B3 + 6n2C4

nA2
2

(21)

z =
3(n+ 2)B̃2

2 − 6(n+ 1)Ã1C̃3

(n+ 1)Ã1B̃2

(22)

The coefficientsAi, Bi, Ci and etc. are renormalization
scheme dependent, so different renormalization schemes

lead to different BLM scales Q∗,∗∗,∗∗∗; however the final
result for ρ should be scheme independent. Using the
argument, one can use BLM method to relate perturba-
tive calculable observables, i.e. to derive commensurate
scale relations among different observables. In fact, any
perturbatively-calculable physical observable can be used
to define an effective coupling constant by incorporating
the entire radiative correction into its definition [20]; for

example Re+e−(Q) ≡ R0
e+e−(Q)

[
1 +

αR
s (Q)
π

]
defines an

effective coupling constant αR
s (Q), where R0

e+e−(Q) is
the Born result. Any effective coupling constant can be
used as a reference running coupling constant in QCD
to define the renormalization procedure. More generally,
each effective running coupling constant or renormaliza-
tion scheme is a special case of the universal coupling
function as shown by Eq.(5).

The NLO commensurate scale relations between differ-
ent effective coupling constants can be found in Ref.[5].
Replacing the observable ρ by its corresponding effective
coupling constant and changing as to be another effective
coupling constant, starting form Eq.(10) and following
the same procedures, one can naturally obtain the com-
mensurate scale relations up to NNLO. Moreover, with
the relations between Q∗,∗∗,∗∗∗ and Q, one can find the
needed scale displacement among the effective scales that
are derived under different schemes or conventions so as
to ensure the scheme-independence of the observables.
For example, from the relation between Q∗ and Q, one
can easily obtain the well-known one-loop relation for

the coupling constant [3], αMS
s (e−5/3Q2) = αGM−L

s (Q2),
where the scale displacement e−5/3 between the MS
scheme and the Gell-Mann-Low scheme [21] is a result
of the convention that is chosen to define the minimal
dimensional regularization scheme [14].

The step-by-step coefficients which are introduced in
Eqs.(11,12,13) are

Ã1 = A1 +
33

2
A2 ,

˜̃
B1 = B̃1 +

33

2
B̃2 ,

˜̃̃
C1 =

˜̃
C1 +

33

2
˜̃
C2 (23)

B̃1 =
1

4n

[
1089(n+ 1)A2

2 + 153nA2 + 66(n+ 1)A1A2 + (4B1 − 1089B3)n

]
(24)

B̃2 =
−1

4n

[
66(n+ 1)A2

2 + 19nA2 + 4(n+ 1)A1A2 − 4n(B2 + 33B3)

]
(25)

C̃1 =
1

64A2n2

[
− 40392C4n

3 + 143748A2
4(3 + 5n+ 2n2) + 8A2n

2(8C1 + 35937C4 +

5049B3n)− 13464A2
3n(n2 − 3n− 7) + 72A1A2(1 + n)(34A2n− 242B3n+

121A2
2(3 + 2n)) + 3A2

2n(2857n+ 352B1(2 + n)− 95832B3(3 + 2n))

]
(26)
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C̃2 =
1

192A2n2

[
22392C4n

3 − 52272A2
4(3 + 5n+ 2n2)(3 + 2n)− 24A2n

2(−8C2 +

6534C4 + 933B3n)− 48A1A2(1 + n)(19A2n− 132B3n+ 66A2
2(3 + 2n)) +

A2
2n(−5033n− 192B1(2 + n) + 3168B2(2 + n) + 52272B3(8 + 5n)) +

24A2
3n(−1871 + n(−627 + 311n))

]
(27)

C̃3 =
1

576A2n2

[
− 2736C4n

3 + 4752A2
4(3 + 5n+ 2n2) + 144A2n

2(4C3 + 198C4 +

19B3n)− 912A2
3(n3 − 4n) + 288A1A2(1 + n)(−2B3n+A2

2(3 + 2n))

−A2
2n(−325n+ 576B2(2 + n) + 9504B3(5 + 3n))

]
(28)

˜̃
C1 =

1

4(n+ 1)Ã1

[
33(n+ 2)B̃2(2B̃1 + 33B̃2) + (n+ 1)(153B̃2 + 4C̃1 − 1089C̃3)Ã1

]
(29)

˜̃
C2 =

−1

4(n+ 1)Ã1

[
2(n+ 2)B̃2(2B̃1 + 33B̃2) + (n+ 1)(19B̃2 − 4(C̃2 + 33C̃3))Ã1

]
(30)

(31)

In deriving the above formulae, the following equation is implicitly adopted, i.e. the running of as at any scale Q∗

can be obtained from its value at an initial scale Q,

as(Q
∗) = as(Q)

[
1 +

β0

4
ln

(
Q∗2

Q2

)
as(Q) +

β1

42
ln

(
Q∗2

Q2

)
a2s(Q) +

β2

43
ln

(
Q∗2

Q2

)
a3s(Q) + · · ·

]−1

(32)

A. PMC and BLM correspondence principle

A systematic procedure for setting PMC scale at LO
has been suggested in Ref.[4]. The main procedure is
to distinguish the nonconformal terms from the confor-
mal terms by the variation of the cross section with re-
spect to (lnµ2

0) (µ0 stands for some initial scale of the
process). Since at LO, there is only one {βi}-term (i.e.
β0) and the identified nonconformal terms always have
the form (β0 lnµ

2
0), one can determine the nonconfor-

mal terms exactly. However, at higher orders, the lnµ2
0-

terms are usually in power series as β0 lnµ
2
0, β1 lnµ

2
0,

β2
0(lnµ

2
0)

2 and etc.. So this method is no longer adapt-
able to deal with higher order corrections, because the
derivative with respect to a single

(
lnµ2

0

)
cannot dis-

tinguish all the emerged {βi}-terms. Some alternative
should be introduced.

The purpose of the running coupling in any gauge
theory is to sum up all the terms involving the {βi}-
functions, conversely, one can find all the needed {βi}-
terms at any concerned order from the expansion of the

running coupling (32) 5. Using this fact and also the
relation between {βi} and nf , one can obtain the PMC
scales from the BLM scale-setting method up to NNLO.
We call this the PMC and BLM correspondence princi-
ple. Note that {βi} (i ≥ 2) are scheme-dependent, so the
PMC and BLM correspondence depends on the scheme
beyond the two-loop level.
More explicitly, up to NNLO, the physical observable

can be expanded in the {βi}-series as,

ρ = r0

[
ans (Q) + (A0

1 +A0
2β0)a

n+1
s (Q)

+(B0
1 +B0

2β1 +B0
3β

2
0)a

n+2
s (Q)

+(C0
1 + C0

2β2 + C0
3β0β1 + C0

4β
3
0)a

n+3
s (Q)

]
. (33)

The results for the PMC can be naturally obtained from
the BLM scale setting through proper parameter corre-

5 It is noted that such an expansion is different from that of
Refs.[18, 19], where all the {βi}-terms which may contribute at
the same order have been introduced to deal with the Adler D-
function.
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spondence, i.e.

A1 = A0
1 + 11A0

2 (34)

A2 = −
2

3
A0

2 (35)

B1 = B0
1 + 102B0

2 + 121B0
3 (36)

B2 = −
2

3
(19B0

2 + 22B0
3) (37)

B3 =
4

9
B0

3 (38)

C1 = C0
1 +

2857

2
C0

2 + 1122C0
3 + 1331C0

4 (39)

C2 = −
1

18
(5033C0

2 − 3732C0
3 − 4356C0

4) (40)

C3 =
1

54
(325C0

2 + 456C0
3 + 792C0

4) (41)

C4 = −
8

27
C0

4 (42)

which are obtained with the help of Eqs.(10,33) and the
four-loop {βi}-terms under the MS scheme [9].

B. An application of PMC/BLM scale setting up
to NNLO

We present an application of PMC/BLM scale setting
up to NNLO by dealing with the total hadronic cross
section in e+e− annihilation Re+e−(Q) = R(e+e− →
hadrons). Explicit expression for Re+e−(Q) up to order
α4
s under the MS-scheme can be found in Ref.[22]. One

finds

Re+e−(Q) = 3
∑

q

e2q

[
1 +

(
aMS(Q)

)
+ (1.9857− 0.1152nf)

(
aMS(Q)

)2

+

(
−6.63694− 1.20013nf − 0.00518n2

f − 1.240
(
∑

q eq)
2

3
∑

q e
2
q

)(
aMS(Q)

)3

+

(
−156.61+ 18.77nf − 0.7974n2

f + 0.0215n3
f + C

(
∑

q eq)
2

3
∑

q e
2
q

)(
aMS(Q)

)4
]
, (43)

where the coefficient C in α4
s is yet to be determined.

At the present αs-order, those nf -terms that come from
the light-by-light quark loops and are irrelevant to the
ultra-violet cutoff do not emerge, so all nf -terms in the
above equation should be fully absorbed into αs. After
BLM scale setting up to NNLO, we obtain

Re+e−(Q) = 3
∑

q

e2q

[
1 +

(
aMS
s (Q∗)

)
+ Ã

(
aMS
s (Q∗∗)

)2

+
˜̃
B
(
aMS
s (Q∗∗∗)

)3
+
˜̃̃
C
(
aMS
s (Q∗∗∗)

)4
]
,(44)

where all the coefficients and effective scales can be cal-
culated with the help of the formulae listed in the last
sections. As for the unknown parameter C, its value
is small [13, 23–25] and its contribution will be further

suppressed by the factor
(∑

q eq)
2
)
/
(
3
∑

q e
2
q

)
, so we

directly set its value to zero at the present.
From the experimental value, re+e−(31.6GeV ) =

3
11Re+e−(31.6GeV ) = 1.0527± 0.0050 [26], we obtain

Λ
′tH
MS

= 412+206
−161MeV (45)

ΛMS = 359+181
−140MeV (46)

With the help of the four loop formula (7), we obtain

αMS
s (MZ) = 0.129+0.009

−0.010. This value is somewhat larger

than the present world average αMS
s (MZ) = 0.1184 ±

0.0007 [27], however it is consistent with those obtained

from e+e− colliders, i.e. αMS
s (MZ) = 0.13 ± 0.005 ±

0.03 by the CLEO Collaboration [28] and αMS
s (MZ) =

0.1224 ± 0.0039 from the jet shape analysis [29]. One
may observe that a smaller central value of the world

average for αMS
s (MZ) results from the measurements

of τ -decays, Υ-decays, the jet production in the deep-
inelastic-scattering processes, and from heavy quarkonia
based on unquenched QCD lattice calculations [30]. A

larger ΛMS leads to a larger αMS
s (MZ), and vice versa.

If we set αMS
s (MZ) to the present world average, we ob-

tain Λ
′tH
MS

|nf=5 = 245+9
−10 MeV and ΛMS |nf=5 = 213+19

−8

MeV 6.
As a final remark, one can estimate the error caused

by C with the help of the scheme-dependent equation
(4). Such an analysis has been done in Ref.[8] 7. It is

6 Ref.[30] obtained a slightly different value of Λ
MS

|nf=5 = 215±
9MeV , which is however obtained by taking a wrong sign of
(β3/2β0) in the four-loop terms, i.e. it should be negative other
than positive.

7 Note there is a typo in Eq.(48) of Ref.[8], which should be

changed to, a0 = a+/
(
1 + 3

2
cR
3
a3
+

)1/3
.
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found that even if we set its value that leads to the C-
term has a comparable magnitude with those without C
at the fourth order, we shall only achieve an additional
2% scheme error in addition to the above experimental
errors.

IV. SUMMARY

The extended renormalization group equations provide
a convenient way for estimating the scale- and scheme-
dependence of the QCD predictions for a physical pro-
cess. The scheme dependence of a process can be reli-
ably estimated by the scheme-equations for the extended
renormalization group. In the present paper, we have
presented a general solution to the scale equation of the
extended renormalization group equations at the four-
loop level. This formalism provides a platform for a reli-
able error analysis and also provides a precise definition
for the asymptotic scale under any renormalization R-
scheme, Λ

′tH
R , which is defined as the pole in the associ-

ated ’t Hooft scheme.
In this paper we have given a systematic and

renormalization scheme-independent method for setting

PMC/BLM scales up to NNLO. The PMC provides the
principle underlying BLM scale setting; they are equiva-
lent to each other through the PMC and BLM correspon-
dence principle. The scales can be set unambiguously
by PMC/BLM, which allows us to set the renormaliza-
tion scale at any required orders in obtaining a scheme-
independent result. Such a scheme-independence can be
adopted to derive commensurate scale relations among
different observables and to find the displacements among
the effective PMC/BLM scales that are derived under
different schemes or conventions. The elimination of the
renormalization scale ambiguity and the scheme depen-
dence using PMC/BLM will not only increase the preci-
sion of QCD tests, but it will also increase the sensitivity
of collider experiments to new physics beyond the Stan-
dard Model.
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