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Abstract Atomic physics and hadron physics are both based on Yang Mills
gauge theory; in fact, quantum electrodynamics can be regarded as the zero-
color limit of quantum chromodynamics. I review a number of areas where
the techniques of atomic physics provide important insight into the theory of
hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts
the spectroscopy and structure of hydrogenic atoms, has an analog in hadron
physics in the form of light-front relativistic equations of motion which give a
remarkable first approximation to the spectroscopy, dynamics, and structure
of light hadrons. The renormalization scale for the running coupling, which
is unambiguously set in QED, leads to a method for setting the renormaliza-
tion scale in QCD. The production of atoms in flight provides a method for
computing the formation of hadrons at the amplitude level. Conversely, many
techniques which have been developed for hadron physics, such as scaling laws,
evolution equations, and light-front quantization have equal utility for atomic
physics, especially in the relativistic domain. I also present a new perspective
for understanding the contributions to the cosmological constant from QED
and QCD.

Keywords Quantum Electrodynamics - Atomic Physics - Hadron Physics -
Light-Front

1 Introduction
Quantum Electrodynamics, the fundamental theory of leptons and photons

which underlies all of atomic and molecular physics, and Quantum Chromo-
dynamics, the quark and gluon theory with three colors underlying hadronic
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and nuclear physics, are both derived from Yang-Mills gauge theory. The Yang-
Mills Lagrangian for SU(N¢) is invariant under arbitrary color rotations and
phases at each point of space and time. In fact, in the limit where the number
of colors N¢ vanishes, with a;Cr = « held fixed (Cr = (N2 —1)/2N¢), QCD
becomes equivalent to Abelian gauge theory [1]. This analytic connection as a
function of Ng between QCD and QED provides a valuable link between the
two fields; processes and analyses in QCD must connect at zero color to the
analogous reactions and procedures of QED.

In this paper, I will review a number of areas where the techniques of atomic
physics give important insight into the theory of hadrons, the color-singlet
bound states of quarks and gluons in QCD. For example, the Dirac-Coulomb
equation, which predicts the spectroscopy and structure of hydrogenic atoms
has an analog in hadron physics in the form of relativistic frame-independent
equations of motion derived from light-front holography [2] which give a re-
markable first approximation to the spectroscopy, dynamics, and structure of
light hadrons. The renormalization scale for the running coupling which is
unambiguously set in QED leads to a solution for setting the renormaliza-
tion scale in QCD. The production of atoms in flight provides a method for
computing the formation of hadrons at the amplitude level. Conversely, many
techniques and theorems developed for hadron physics, such as scaling laws,
evolution equations, and light-front quantization have equal utility for atomic
physics, especially in the relativistic domain.

2 Production of Exotic Atoms in Flight and Hadronization at the
Amplitude Level

Relativistic antihydrogen was first produced in 1995 at CERN-LEAR [3] and
at the Fermilab Antiproton Accumulator [4]. The production mechanism [5]
is illustrated in fig. 1 (a). The incident antiproton beam produces a Bethe-
Heitler electron-positron pair in the Coulomb field of a target nucleus pZ —
pete”Z — [pet]Z. The comoving off-shell p and e™ then coalesece into an-
tihydrogen atoms via the Schrédinger Coulomb wavefunction which connects
the off-shell state to the on-shell anti-atom. The atom is dominantly in its 1S
ground state. In principle, one can measure its “anti-Lamb-Shift” using the
Robiscoe level-crossing method [6].

The production of antihydrogen in flight provides important insight into
the dynamics of hadron production in QCD. For example, the A(sud) baryon
can be produced at high longitudinal momentum fraction zg in pp — AX
reactions by the coalescence of the ud valence quarks of the beam with a
comoving strangeness quark. This method can be generalized to produce heavy
hadrons such as A.(cud), Ay, double charmed baryons, etc., using the high x
intrinsic heavy quarks which exist in the higher Fock states of the proton
wavefunction [7].

The analog of intrinsic charm in hadrons is the u+ =~ content of positron-
ium. The |eTe~u™p~ > Fock state appears through the cut of the muon-loop
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Fig. 1 (a) Production of Relativistic Antihydrogen. (b) Hadronization at the Amplitude
Level in Electron-Positron Annihilation

light-by-light contribution to the self energy of the positronium eigenstate. In
this Fock state, the muons carry almost all of the momentum of the mov-
ing atom since the off-shell virtuality is minimal at equal velocity. In QED
the probability for intrinsic leptons LL exist in positronium scales as 1/m}
whereas in QCD the probability of intrinsic heavy quarks in the wavefunction
of a light hadron scales as 1/mg, because of its non-Abelian couplings [8,9].
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Fig. 2 Production of True Muonium

fig. 1(b) illustrates the production of a ¢7 meson in an ete™ annihilation
event. One first calculates the T matrix element for the production of off-shell
quarks and gluons at the amplitude level using light-front time-ordered pertur-
bation theory. The light-front wavefunction of the meson then converts the off-
shell comoving ¢g pair into the final-state meson. The confined colored quarks
thus never appear on-shell. This first-principle method for forming hadrons
in QCD [10] can replace phenomenological jet hadronization models such as
PYTHIA. The light-front wavefunction required for calculating “hadroniza-
tion at the amplitude level” [10,11]is the frame-independent analog of the
Schrédinger wavefunction of atomic physics. It is obtained from the eigenso-
lution of the QCD light-front Hamiltonian quantized at fixed light-front time
7 which can be determined by solving the Heisenberg matrix Hfg D|WH >=
M%|Wy > using a method such as discretized light-cone quantization (DLCQ) [12]
or using the AdS/QCD approach together with Light-Front Holography [2].

It is very interesting to produce “true muonium ”, the [u* 1 ~] bound state
Lebed and I [13] have discussed QED production and decay mechanisms, such
as electroproduction of relativistic true muonium below the p™p~ threshold
viaemZ — [ptpTle™Z or ete™ — [pTpT]y. See fig. 2. The APEX electro-
production experiment [14], which will search for dark matter candidates at
Jefferson Laboratory, could be the first to see this exotic atom. Studying the
precision spectroscopy of the [T 4 ~] atom is important in view of the anoma-
lies seen in the muon g — 2 [15] and the g~ p Lamb shift [16].



Atoms in Flight 5

“Atomic Alchemy "refers to the transition between a muonic atom into
an electronic atom: (u~Z) — (e~ Z)v.v, via the weak decay of the bound
muon and the subsequent capture of its decay electron. Greub, Wyler, Munger
and I [17] have shown that such processes provide a laboratory for studying
the relativistic high momentum tail of wavefunctions in atomic physics; in
addition, they provide a simple toy model for investigating analogous exclusive
heavy hadronic decays in quantum chromodynamics such as B — mev.

The QCD analog of a molecule in QCD is a bound state of heavy quarko-
nium with a nucleus such as [J/¢A] [18,19]. The binding occurs through two-
gluon exchange, the hadronic analog of the Van der Waals interaction. Since
the kinetic energy of the J/v and the nucleus are both small, one expects
to find produce these exotic hybrid states at threshold. Examples of nuclear-
bound quarkonium are the |uuduudss > and |uuduudcé > resonances which
apparently appear as intermediate states in pp — pp elastic exchange. These
resonances can account [20] for the large spin-spin Ayy correlations [21] ob-
served at the strangeness E.,, >~ 3 GeV and FE,,, >~ 5 GeV and charm thresh-
olds.

At high energies, Compton scattering on an atom YA — A is dominated
by the Thomson amplitude — the elastic scattering of the photon on the atomic
electrons. The analog in hadron physics is the scattering of photons on quarks
vq — q via a local seagull or instantaneous light-front term or which gives an
energy-independent contribution to the Compton amplitude proportional to
the charge squared of the struck quark — a contribution which has no analog
in hadron scattering reactions. Llanes-Estrada, Szczepaniak, and I [22] have
shown that this local contribution has a real phase and is universal, giving the
same contribution for real or virtual Compton scattering for any photon virtu-
ality and skewness at fixed momentum transfer squared t. The ¢t-dependence
of this J = 0 fixed Regge pole is parameterized by a yet unmeasured even
charge-conjugation form factor of the target nucleon. The ¢ = 0 limit gives
an important constraint on the dependence of the nucleon mass on the quark
mass through the Weisberger relation. The same J = 0 amplitude enters the
two-photon exchange contribution to muon-proton scattering, and thus also
could contribute an important contribution to the up Lamb Shift.

3 Renormalization Scale setting

A key difficulty in making precise perturbative predictions for QCD is the
uncertainty in determining the renormalization scale p of the running coupling
as(p?). In the standard Gell-Mann-Low scheme for QED, the renormalization
scale is simply the virtuality of the virtual photon [23]. Although the initial
choice of renormalization scale t( is arbitrary, the final scale t which sums the
vacuum polarization corrections is unique and unambiguous. The resulting
perturbative series is identical to the conformal series with zero (-function.
In the case of muonic atoms, the modified muon-nucleus Coulomb potential is
precisely —Za(—q 2?)/q ?; i.e., u? = —q?. Again, the renormalization scale is
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unique. The same principle underlying renormalization scale-setting in QED
for No = 0 must also hold in QCD since the ng terms in the QCD [ function
have the same role as the lepton Ny, vacuum polarization contributions in QED.
Thus the same scale-setting procedure must be applicable to all renormalizable
gauge theories.

The purpose of the running coupling in any gauge theory is to sum all
terms involving the 8 function; in fact, when the renormalization scale p is set
properly, all non-conformal 3 # 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining
terms in the perturbative series are then identical to that of a conformal theory;
i.e., the theory with § = 0. The divergent “renormalon” series of order o} 3™n!
does not appear in the conformal series. Thus as in quantum electrodynamics,
the renormalization scale p is determined unambiguously by the “Principle
of Maximal Conformality (PMC)” [24]. This is also the principle underlying
BLM scale setting [25] An important feature of the PMC is that its QCD
predictions are independent of the choice of renormalization scheme. The PMC
procedure also agrees with QED scale-setting in the No — 0 limit.

4 Light-Front Quantization

The distributions of electrons within an atom are determined in QED using
the Schrodinger wavefunction, the eigenfunction of the QED Hamiltonian.
In principle, one could calculate hadronic spectroscopy and wavefunctions by
solving for the eigenstates of the QCD Hamiltonian: H|?) = E|¥) at fixed time
t. However, this traditional method — called the “instant” form” by Dirac, [26]
is plagued by complex vacuum and relativistic effects, as well as by the fact that
the boost of such fixed-t wavefunctions away from the hadron’s rest frame is an
intractable dynamical problem. However, there is an extraordinarily powerful
non-perturbative alternative — quantization at fixed light-front (LF) time 7 =
t+z/c=axT = 2°+23 - the “front-form” of Dirac. [26] In this framework each
hadron H is identified as an eigenstate of the QCD Hamiltonian H &(3 b W) =
MZ|Wg), where HEEP = p,Pr = P~P+ — P2 is derived directly from the
QCD Lagrangian or action. The eigenvalues of this Heisenberg equation give
the complete mass spectrum of hadrons. The eigensolution [Wg) projected on
the free Fock basis provides the set of valence and non-valence light-front Fock
state wavefunctions ¥,, / u (i, ki:,A;), which describe the hadron’s momentum
and spin distributions and the direct measures of its structure at the quark and
gluon level. If one quantizes the gluon field in light-cone gauge AT = A%+ A3 =
0, the gluons have physical polarization S* = +1, there are no ghosts, so that
one has a physical interpretation of the quark and gluon constituents. The
constituents of a bound state in a light-front wavefunction are measured at
the same light-front time 7 — along the front of a light-wave, as in a flash
picture. In contrast, the constituents of a bound state in an instant form
wavefunction must be measured at the same instant time ¢ - - this requires
the exact synchrony in time of many simultaneous probes.
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A remarkable feature of LFWFs is the fact that they are frame independent;
i.e., the form of the LFWF is independent of the hadron’s total momentum
Pt = PY+ P? and P, . The boost invariance of LFWFs contrasts dramatically
with the complexity of boosting the wavefunctions defined at fixed time ¢. [27]
Light-front quantization is thus the ideal framework to describe the structure
of hadrons in terms of their quark and gluon degrees of freedom. The con-
stituent spin and orbital angular momentum properties of the hadrons are
also encoded in the LFWFs. The total angular momentum projection [28]
JE=35"  SE+ Z?:_ll L? is conserved Fock-state by Fock-state and by every
interaction in the LF Hamiltonian. The constituent spin and orbital angular
momentum properties of the hadrons are thus encoded in their LEFEWFs. The
empirical observation that quarks carry only a small fraction of the nucleon
angular momentum highlights the importance of quark orbital angular mo-
mentum. In fact the nucleon anomalous moment and the Pauli form factor are
zero unless the quarks carry nonzero L?.

Hadron observables, e.g., hadronic structure functions, form factors, dis-
tribution amplitudes, GPDs, TMDs, and Wigner distributions can be com-
puted as simple convolutions of light-front wavefunctions (LFWFs). For ex-
ample, one can calculate the electromagnetic and gravitational form factors
< p+q|7*(0)]p > and < p+ q|t"(0)|p > of a hadron from the Drell-Yan-West
formula —i.e., the overlap of LEFWFs. The anomalous gravitomagnetic moment
B(0) defined from the spin-flip matrix element < p + ¢|t*”(0)|p > at ¢ — 0
vanishes — consistent with the equivalence theorem of gravity. In contrast, in
the instant form, the overlap of instant time wavefunctions is not sufficient.
One must also couple the photon probe to currents arising spontaneously from
the vacuum which are connected to the hadron’s constituents. The Light-Front
method is directly applicable for describing atomic bound states in both the
relativistic and nonrelativistic domains; it is particularly useful for atoms in
flight since the LFWF's are frame-independent. It also satisfies theorems such
as cluster decomposition.

One can solve the LF Hamiltonian problem for theories in one-space and
one-time by Heisenberg matrix diagonalization. For example, the complete set
of discrete and continuum eigensolutions of mesons and baryons in QCD(1+1)
can be obtained to any desired precision for general color, multiple flavors,
and general quark masses using the discretized light-cone quantized (DLCQ)
method. [29,30] The DLCQ approach can in principle be applied to QED(3+1)
and QCD(3+1); however, in practice, the huge matrix diagonalization problem
is computational challenging.

5 AdS/QCD Light-Front Holography

Recently a new nonperturbative QCD approach has been developed which
leads to an elegant analytical and phenomenologically compelling first approx-
imation to the full LF Hamiltonian method— “Light-Front Holography”. [2]
Light front holographic methods allow one to project the functional depen-
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dence of the wavefunction #(z) computed in the AdS fifth dimension to the
hadronic frame-independent light-front wavefunction v (z;,b,;) in 3+ 1 physi-
cal space-time. The variable z maps to a transverse LF variable {(z;,b, ;). The
result is a single-variable light-front Schrédinger equation which determines the
eigenspectrum and the LEFWF's of hadrons for general spin and orbital angu-
lar momentum. The transverse coordinate ( is closely related to the invariant
mass squared of the constituents in the LFWF and its off-shellness in the LF
kinetic energy, and it is thus the natural variable to characterize the hadronic
wavefunction. In fact ¢ is the only variable to appear in the relativistic light-
front Schrodinger equations predicted from holographic QCD in the limit of
zero quark masses. The coordinate z in AdS space is thus uniquely identified
with a Lorentz-invariant coordinate { which measures the separation of the
constituents within a hadron at equal light-front time.

The hadron eigenstates generally have components with different orbital
angular momentum; e.g., the proton eigenstate in LF holographic QCD with
massless quarks has L = 0 and L = 1 light-front Fock components with equal
probability. Higher Fock states with extra quark-anti quark pairs also arise.
The resulting LEFWFs then lead to a new range of hadron phenomenology,
including the possibility to compute the hadronization of quark and gluon
jets at the amplitude level. The soft-wall model also predicts the form of the
non-perturbative effective coupling and its S-function. [31]

6 Lensing and the Sivers Effect

A well-known phenomenon in QED rescattering via final-state Coulomb inter-
actions. Although the Coulomb phase for a given partial wave is infinite, the
interference of Coulomb phases arising from different partial waves leads to
observable effects.

The calculation of the Sivers single-spin asymmetry in deep inelastic lepton
scattering in QCD is illustrated in fig. 3. The analysis requires two different
orbital angular momentum components: S-wave with the quark-spin parallel to
the proton spin and P-wave for the quark with anti-parallel spin; the difference
between the final-state “Coulomb” phases leads to a S-q x p correlation of the
proton’s spin with the virtual photon-to-quark production plane [32]. Thus,
as it is clear from its QED analog, the final-state gluonic interactions of the
scattered quark lead to a T-odd non-zero spin correlation of the plane of the
lepton-quark scattering plane with the polarization of the target proton [32].
This leading-twist Bjorken-scaling “Sivers effect” is nonuniversal since QCD
predicts an opposite-sign correlation [33,34] in Drell-Yan reactions due to the
initial-state interactions of the annihilating antiquark. The S— and P-wave
proton wavefunctions also appear in the calculation of the Pauli form factor
quark-by-quark. Thus one can correlate the Sivers asymmetry for each struck
quark with the anomalous magnetic moment of the proton carried by that
quark [35], leading to the prediction that the Sivers effect is larger for positive
pions. The physics of the lensing dynamics involves nonperturbative quark-
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Fig. 3 Origin of the Sivers single-spin asymmetry in deep inelastic lepton scattering.

quark interactions at small momentum transfer, not the hard scale Q? of the
virtuality of the photon. It would interesting to see if the strength of the soft
initial- or final- state scattering can be predicted using the confining potential
of AdS/QCD.

7 Vacuum Condensates and the Cosmological Constant

It is important to distinguish two very different concepts of the vacuum in
quantum field theories such as QED and QCD. The vacuum is normally defined
as the lowest energy eigenstate of the instant-form Hamiltonian — the vacuum
defined by quantizing at fixed time ¢. In QED, the instant-time vacuum is sat-
urated with quantum loops of leptons and photons. In calculations of physical
processes one must normal-order the vacuum and divide the S-matrix elements
by the disconnected vacuum loops. In contrast, the front-form (light-front)
vacuum is defined as the lowest mass eigenstate of light-front Hamiltonian de-
fined by quantizing at fixed 7 = ¢t — z/c. The vacuum is remarkably simple in
light-front quantization because of the restriction k™ > 0. For example QED
vacuum graphs such as ete”v do not arise. The LF vacuum thus coincides
with the vacuum of the free LF Hamiltonian. The front-form vacuum and its
eigenstates are Lorentz invariant; whereas the instant form vacuum depends
on the observer’s Lorentz frame. The instant-form vacuum is a state defined at
the same time ¢ at all spatial points in the universe. In contrast, the front-from
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vacuum only senses phenomena which are causally connected; i.e., or within
the observer’s light-cone. Causality in quantum field theory follows the fact
that commutators vanish outside the light-cone. In fact in the LF analysis the
spatial support of QCD condensates is restricted to the interior of hadrons,
physics which arises due to the interactions of confined quarks and gluons.
The condensate physics is replaced by the dynamics of higher non-valence
Fock states as shown by Casher and Susskind. [36] In particular, chiral sym-
metry is broken in a limited domain of size 1/m,, in analogy to the limited
physical extent of superconductor phases. This novel description of chiral sym-
metry breaking in terms of “in-hadron condensates” has also been observed
in Bethe-Salpeter studies [37,38]. The usual argument for a quark vacuum
condensate is the Gell-Mann-Oakes-Renner formula: m2 = —2m,(0/gq|0)/ f2.
However, in the Bethe-Salpeter and light-front formalisms, where the pion is a
qq bound-state, the GMOR relation is replaced by m2 = —2m(0|gv5¢|7)/ fx,
where p, = —(0|Gvysq|m) represents a pion decay constant via an an elementary
pseudoscalar current.

The cosmological constant measures the matrix element of the energy mo-
mentum tensor 7" in the background universe. It corresponds to the mea-
surement of the gravitational interactions of a probe of finite mass; it only
senses the causally connected domain within the light-cone of the observer. If
the universe is empty, the appropriate vacuum state is thus the LF vacuum
since it is causal. One automatically obtains a vanishing cosmological constant
from the LF vacuum. Thus, as argued in Refs. [39-41] the 45 orders of magni-
tude conflict of QCD with the observed value of the cosmological condensate is
removed, and a new perspective on the nature of quark and gluon condensates
in QCD is thus obtained. [39-41].
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