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Abstract. SLAC performs large-scale simulations for the next-generation accelerator design
using higher-order finite elements. This method requires using valid curved meshes and
adaptive mesh refinement in complex 3D curved domains to achieve its fast rate of convergence.
ITAPS has developed a procedure to address those mesh requirements to enable petascale
electromagnetic accelerator simulations by SLAC. The results demonstrate that those correct
valid curvilinear meshes can not only make the simulation more reliable but also improve
computational efficiency up to 30%.

1. Introduction
SLAC has been successfully taking advantage of higher-order finite elements [1] to perform
analyses for the design of next-generation accelerators which are regarded as critical to basic
energy research [2, 3, 4]. The short-range wakefield calculations in electromagnetic analysis
using the higher-order elements requires the meshes must be properly curved to the 3D complex
geometric domains and adaptively control refinement around the particles beams that need
sufficiently smaller mesh size than the rest of the domain. The common straight-sided mesh
generation procedures [5, 6] can not automatically generate valid curvilinear meshes to meet
those requirements. The invalid curved meshes or overrefined meshes lead to infeasibly large
problem sizes, inaccurate results, or possible failure of the simulations. The DOE SciDAC center
ITAPS has been working with SLAC to develop a procedure that applies Bezier mesh curving
and size-driven technologies to address these mesh requirements. SLAC has successfully applied
this procedure to generate meshes used in accelerator simulations. The results yield stable and
reliable time-domain simulations and improve computational efficiency up to 30%.

2. Curved mesh correction and mesh adaptation dontrol tool
This section discusses the two key technical components – curved mesh correction and adaptive
mesh refinement control – to generate valid curvilinear meshes that improve COMPASS
electromagnetic analyses.
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Figure 1. Bezier control points for
a quadratic tetrahedral region.
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2.1. Curved mesh correction
The common approach to the construction of curved meshes is to apply a straight-sided mesh
generation procedure [5, 6] and then curve the mesh edges and faces on the curved domain
boundaries to the proper orders. This approach takes advantage of the conventional unstructured
mesh generators to deal with the complexity of model geometry. However, the resulting meshes
may become invalid because the curving of the mesh entities to model boundaries can lead to
negative determinants of the Jacobian in the closures of curved elements. The curved mesh
correction tool we developed applies Bezier polynomial representations [9] to define hierarchic
higher-order shapes for topological mesh entities in their parametric coordinates. Figure 1 shows
the Bezier control points for a quadratic tetrahedral region; bq

|i| are the control points used to
define the shapes of the Bezier mesh edges, faces, and regions, and |i| = i + j + k + l is the
control point net index of a higher-order tetrahedral region in its parametric coordinates ξ =
(ξi, ξj , ξk, ξl), ξi + ξj + ξk + ξl = 1.

The Bezier higher-order shapes provide an effective means to form a general validity check
algorithm for curved elements. The algorithm takes advantage of the convex hull property
to ensure that a valid curved element always has positive determinants of the Jacobian in its
closures [7]. Given a qth-order Bezier tetrahedron mesh region, the determinant of the Jacobian
J can be represented as

det(J) =
∑
|i|=r

Cr
|i|c

r
|i|ξ

|i|, (1)

where r = 3(q − 1). Cr
|i| and cr

|i| are the coefficients computed by the control points bq
|i|.

The convex hull property of Bezier polynomial indicates [9],

min(cr
|i|) ≤ det(J) ≤ max(cr

|i|). (2)

Therefore, a curved tetrahedral region is valid in its closure as long as min(cr
|i|) > 0.

The Bezier curved mesh correction tool processes invalid curved elements one at a time by
applying a set of local mesh modification operations on the key mesh entities. The computation
of the determinants of the Jacobian can provide useful information to determine the key mesh
entities and appropriate operations to correct the invalidity. As an example, figure 2 shows an
invalid quadratic tetrahedral region, which has a negative determine of Jacobian at control point
b2000. Since the control points b2000, b1100, b1010, and b1001 affect the computation of det(J), the
mesh entities M0

0 ,M1
0 ,M1

1 , and M1
2 associated with those control points are key mesh entities,
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Figure 3. Before (left) and after (right) refinement of a quadratic curved mesh edge M1
0
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0. New mesh edges M1
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boundaries.

and applying local mesh modifications on any of them can effectively make the curved element
valid. Curved meshes for more complex domains used by SLAC for electromagnetic linear
accelerator analysis are shown in Section 3.

2.2. Moving mesh adaptation control in curved domains
The size=driven mesh adaptation procedure [8] has been successfully applied in cardiovascular
blood flow simulations [10], metal forming process [11], wave propagation simulations [12],
and the other studies, and the results have demonstrated that computational efficiency can
be substantially improved b using the isotropic or anisotropic adapted meshes to effectively
resolve solution fields. The procedure has been extended to deal with curved meshes for
higher-order finite elements to track the needed refinement around the particle beams for short-
range wakefield time-domain electromagnetic simulations. The extended procedure maintains
the existing functionalities developed for straight-sided meshes such as vertex-based size field
specifications and selective local mesh modification applications [8]. In addition, the following
two steps have been added in when the mesh is curved.

• The validity check algorithm described in equation 2 must be applied when the affecting
cavities for a local mesh modification operation have curved mesh entities. This step ensures
that resulting curved meshes are valid after applying the selected local mesh operation.

• Any newly created mesh entities on the curved domain boundaries must be properly curved
to the model boundaries to ensure that the geometric approximation of the resulting adapted
meshes is maintained. As an example, figure 3 shows the results of the procedure to split
a quadratic curved mesh edge M1

0 that is classified on the curved model edge G1
0. The two

new created mesh edges M1
1 and M1

2 are also curved to the model edge G1
0.

Moving adaptively refined meshes for SLAC to perform short-range wakefield electromagnetic
simulations is shown in Section 3.

3. Analysis results
3.1. Curvilinear meshes for FETD electromagnetic simulation
The wakefield effects of an 8-cavity cryomodule for the proposed International Linear Collider
(ILC) are studied by using the FETD method. Figure 4 shows a snapshot of the electric
field distribution excited by a beam in the ILC cryomodule. A curved mesh with 2.97 million
quadratic isoparametric tetrahedral elements is used in this FETD simulation, resulting in about
20 million degrees of freedom. The simulation used 256 multistream processors on the Cray-
X1E, a leadership-class facility at Oak Ridge National Laboratory. It took a total runtime of
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300 wall-hours through multiple jobs with checkpointing for a complete run. Half a terabtye of
data was generated.

From the initial given curvilinear mesh 1, 583 invalid curved elements have been corrected by
using the procedure discussed in Section 2.1. Figure 5 shows the curved mesh for one cavity of
the model and the closeup mesh before and after curving.

The corrected curvilinear mesh not only leads to a stable time-domain simulation but also
reduced computational cost by 30%.

Figure 4. Snapshot of the electric field
distribution excited by a beam in an 8-cavity
cryomodule for the proposed International
Linear Collider.

Figure 5. Curved mesh for one cavity, close-
up mesh before and after curving, and local
mesh cavity before and after applying edge
swap to correct the invalid element.

3.2. Moving adaptive refined meshes for short-range wakefield calculations
A series of moving adapted meshes in a curved domain was generated by using the procedure
described in Section 2.2 for short-range wakefield calculations by SLAC. Figure 6(a) shows the
geometric model, which has some complex components in the middle of the domain. The initial
location of the beam is at the left end of the domain, the desired mesh size inside the particle
dense mesh is 1 and the size for the rest of the domains is 10. Figure 6 shows the moving
adapted meshes up to step 5 to track the moving particle beams. The adaptively refined meshes
have around 1 ∼ 1.15 million elements comparing to the uniform refined mesh with 6.5 million
elements if the mesh size inside the particle beam domains is applied in the entire domain. The
increase of the number of elements in the middle of domain is due to the complex geometries
as shown in Figure 6(a). The computation effort of short-range wakefield calculations using
the moving adaptive refined meshes can reduce by one order of magnitude compared to the
uniformly refined mesh.

4. Conclusion
This paper has presented a procedure to track moving adaptive mesh refinement in curved
domains. The procedure is capable of generating suitable curvilinear meshes to enable large-
scale accelerator simulations. The procedure can generate valid curved meshes with substantially
fewer elements to improve the computational efficiency and reliability of the COMPASS
electromagnetic analyses. Future work will focus on the scalable parallelization of all steps
for petascale simulations.
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Figure 6. Moving adapted meshes in curved domain for short-range wakefield simulation.
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