Measurement of the Semileptonic $\overline{B} \rightarrow D^{(*)} \tau \overline{\nu}_{\tau}$ Decays at **B**_A**B**_A**R**

David Lopes Pegna (on behalf of the BABAR Collaboration)

Princeton University, Princeton, NJ 08544

Abstract. Semileptonic *B* meson decays into final states containing the τ lepton are of interesting as they provide information on the Standard Model as well as a window on new physics effects. We present results on $\bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau}$ decays where the second *B* in the event is fully reconstructed.

Keywords: Semileptonic *B* decays **PACS:** 12.15.Hh, 13.20.-v, 13.20.He, 14.40.Nd, 14.80.Cp

INTRODUCTION

Semileptonic decays of *B* mesons to the τ lepton provide a new source of information on Standard Model (SM) processes [1-3], as well as a new window on physics beyond the SM [4-10]. In the SM, semileptonic decays occur at tree level and are mediated by the *W* boson, but the large mass of the τ lepton provides sensitivity to additional amplitudes, such as those mediated by a charged Higgs boson. Experimentally, $b \rightarrow c\tau^- \bar{\nu}_{\tau}$ decays are challenging to study because the final state contains not just one, but two or three neutrinos as a result of the τ decay.

Branching fractions for semileptonic *B* decays to τ leptons are predicted to be smaller than those to light leptons. Calculations based on the SM predict $\mathscr{B}(\bar{B}^0 \to D^+ \tau^- \bar{\nu}_\tau) =$ $(0.69 \pm 0.04)\%$ and $\mathscr{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau) = (1.41 \pm 0.07)\%$ [8-9]. In multi-Higgs doublet models [4-9], substantial departures, either positive or negative, from the SM decay rate could occur for $\bar{B} \to D\tau^- \bar{\nu}_\tau$, while smaller departures are expected for $\bar{B} \to D^* \tau^- \bar{\nu}_\tau$. The BABAR Collaboration has presented a measurement of the branching fractions for $\bar{B} \to D\tau^- \bar{\nu}_\tau$ and $\bar{B} \to D^* \tau^- \bar{\nu}_\tau$ for both charged and neutral *B* mesons, that is described in the following [11]. The BELLE Collaboration has also performed a similar measurement [12]. A preliminary averages of the different measurements available is also reported in this Proceeding.

EVENT RECONSTRUCTION

Semileptonic $\overline{B} \to D^{(*)} \tau^- \overline{v}_{\tau}$ decays are selected in $B\overline{B}$ events in which a hadronic decay of the second B meson (B_{tag}) is fully reconstructed. To reconstruct the τ , we use the decays $\tau^- \to e^- \overline{v}_e v_{\tau}$ and $\tau^- \to \mu^- \overline{v}_{\mu} v_{\tau}$, which are experimentally the most accessible. The main challenge of the measurement is to distinguish $\overline{B} \to D^{(*)} \tau^- \overline{v}_{\tau}$ decays, which have three neutrinos, from $\overline{B} \to D^{(*)} \ell^- \overline{v}_{\ell}$ decays (where $\ell = e, \mu$), which have the same observable final-state particles but only one neutrino. This goal is achieved by using the

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

missing four-momentum in the event, $p_{\text{miss}} = p_{e^+e^-} - p_{\text{tag}} - p_{D^{(*)}} - p_{\ell}$, of any particles recoiling against the observed $B_{\text{tag}} + D^{(*)}\ell$ system. A large peak at zero in $m_{\text{miss}}^2 = p_{\text{miss}}^2$ corresponds to semileptonic decays with one neutrino, whereas signal events produce a broad tail out to $m_{\text{miss}}^2 \simeq 8 (\text{GeV}/c^2)^2$.

We reconstruct B_{tag} decays in charmed hadronic modes $\overline{B} \to D^{(*)}Y$, where Y represents a collection of hadrons, composed of $n_1\pi^{\pm} + n_2K^{\pm} + n_3K_S^0 + n_4\pi^0$, where $n_1 + n_2 = 1, 3, 5, n_3 \leq 2$, and $n_4 \leq 2$, as described in [11]. For the *B* meson decaying semileptonically, we reconstruct $D^{(*)}$ candidates in several different decay modes [11]. We form whole-event candidates by combining B_{tag} candidates with $D^{(*)}\ell^-$ candidate systems.

In correctly reconstructed signal and normalization events, all of the stable final-state particles, with the exception of the neutrinos, are associated with either the B_{tag} , $D^{(*)}$ or ℓ^- candidate. Events with additional particles in the final state must therefore have been misreconstructed, and we suppress these backgrounds by requiring that all observed charged tracks be associated with either the B_{tag} , $D^{(*)}$ or ℓ candidate. We compute E_{extra} , the sum of the energies of all photon candidates not associated with the $B_{\text{tag}} + D^{(*)}\ell$ candidate system, and we require $E_{\text{extra}} < 150-300$ MeV, depending on the $D^{(*)}$ channel.

We suppress hadronic events and combinatorial backgrounds by requiring $|p_{\text{miss}}| > 200 \text{ MeV}/c$ to reject hadronic events such as $B \to D^{(*)}\pi^-$, where the π^- is misidentified as a μ^- . We further suppress background by requiring $q^2 > 4$ (GeV/ c^2)², where q^2 is calculated as $q^2 = [p_{e^+e^-} - p_{B_{\text{tag}}} - p_{D^{(*)}}]^2$. This requirement preferentially rejects combinatorial backgrounds from two-body *B* decays such as $B \to D^{(*)}D$, where one *D* meson decays semileptonically. If multiple candidate systems pass our selection in a given event, we select the one with the lowest value of E_{extra} .

We also select four control samples to constrain the poorly known $\overline{B} \to D^{**}\ell^- \overline{v}_\ell$ background. The selection is identical to that of the signal channels, but we require the presence of a π^0 meson, with momentum greater than 400 MeV/*c*, in addition to the $B_{\text{tag}} + D^{(*)}\ell$ system. The event must satisfy $E_{\text{extra}} < 500$ MeV, where the two photons from $\pi^0 \to \gamma\gamma$ are excluded from the calculation of E_{extra} .

SIGNAL YIELD EXTRACTION

To separate signal and background events, we perform an extended unbinned maximum likelihood fit to the joint distribution of m_{miss}^2 and the lepton momentum (p_{ℓ}^*) in the rest frame of the *B* meson. The fit is performed simultaneously in eight channels (the four $D^{(*)}\ell$ selected samples and the four $D^{**}\ell$ control samples), with a set of constraints relating the event yields between the channels.

Figure 1 shows the projections of the fit to data in m_{miss}^2 for the four signal channels, showing both the low m_{miss}^2 region, which is dominated by the normalization modes $\bar{B} \to D^{(*)} \ell^- \bar{v}_{\tau}$, and the high m_{miss}^2 region, which is dominated by the signal modes $\bar{B} \to D^{(*)} \tau^- \bar{v}_{\tau}$.

In order to minimize the systematic uncertainties due to the $B_{\rm tag}, D^{(*)}$ and ℓ

FIGURE 1. Left: distributions of events and fit projections in m_{miss}^2 for the four final states: $D^{*0}\ell^-$, $D^0\ell^-$, $D^{*+}\ell^-$ and $D^+\ell^-$. The normalization region $m_{miss}^2 \approx 0$ is shown with finer binning in the insets. The fit components are combinatorial background (white), the $\bar{B} \to D\ell^-\bar{\nu}_\ell$ normalization mode (yellow), the $\bar{B} \to D^*\ell^-\bar{\nu}_\ell$ normalization mode (light blue), $\bar{B} \to D^{**}\ell^-\bar{\nu}_\ell$ background (dark, or blue), the $\bar{B} \to D\tau^-\bar{\nu}_\tau$ signal (light grey, green), and the $\bar{B} \to D^*\tau^-\bar{\nu}_\tau$ signal (medium grey, magenta). Right: Distributions of events and fit projections in $|p_\ell^*|$ in the signal region, $m_{miss}^2 > 1 (\text{GeV}/c^2)^2$.

reconstruction, we measure the relative branching fractions $R(D^{(*)}) = \mathscr{B}(\overline{B} \to D^* \tau^- \overline{\nu}_{\tau})/\mathscr{B}(\overline{B} \to D^* \ell^- \overline{\nu}_{\ell})$, as reported in Table 1.

TABLE 1. Results from fits to data: the signal yield (N_{sig}) , the yield of normalization $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ events (N_{norm}) , the branching-fraction ratio (R), and the absolute branching fraction (\mathscr{B}) . The first two errors on R and \mathscr{B} are statistical and systematic, respectively; the third error on \mathscr{B} represents the uncertainty on the normalization mode. The last two rows show the results of the fit with the $B^- - \overline{B}^0$ constraint applied, where \mathscr{B} is expressed for the \overline{B}^0 .

Decay Mode	N_{sig}	Nnorm	R[%]	$\mathscr{B}[\%]$
$B^- ightarrow D^0 au^- ar u_ au$	35.6 ± 19.4	347.9 ± 23.1	$31.4 \pm 17.0 \pm 4.9$	$0.67 \pm 0.37 \pm 0.11 \pm 0.07$
$B^- ightarrow D^{*0} au^- ar u_ au$	92.2 ± 19.6	1629.9 ± 63.6	$34.6 \pm 7.3 \pm 3.4$	$2.25 \pm 0.48 \pm 0.22 \pm 0.17$
$ar{B}^0 o D^+ au^- ar{ u}_ au$	23.3 ± 7.8	150.2 ± 13.3	$48.9 \pm 16.5 \pm 6.9$	$1.04 \pm 0.35 \pm 0.15 \pm 0.10$
$ar{B}^0 o D^{*+} au^- ar{ u}_ au$	15.5 ± 7.2	482.3 ± 15.5	$20.7 \pm 9.5 \pm 0.8$	$1.11\pm0.51\pm0.04\pm0.04$
$ar{B} ightarrow D au^- ar{ u}_ au$	66.9 ± 18.9	497.8 ± 26.4	$41.6 \pm 11.7 \pm 5.2$	$0.86 \pm 0.24 \pm 0.11 \pm 0.06$
$ar{B} ightarrow D^* au^- ar{ u}_ au$	101.4 ± 19.1	2111.5 ± 68.1	$29.7 \pm 5.6 \pm 1.8$	$1.62\pm 0.31\pm 0.10\pm 0.05$

The main sources of systematic uncertainty are due to the parameterization of the probability density functions used in the 2-d fit, and the background modeling, in addition to the $\mathscr{B}(\bar{B} \to D^* \ell^- \bar{\nu}_\ell)$ for the branching fraction measurement.

FIGURE 2. Left: 2-d exclusion region in the $m_H - \tan\beta$ space for the R(D) BABAR measurement. Right: 2-d exclusion region in the $m_H - \tan\beta$ space for the R(D) average from the BABAR and BELLE measurements.

NEW PHYSICS CONSTRAINTS

The branching ratios R(D) and $R(D^*)$ can be calculated as function of m_H and $\tan\beta$ type-II 2HDM models involving charged Higgs doublets [5]. The measured R(D) and $R(D^*)$ values can therefore be used to compute the probability that a given point in the m_H – tan β space is allowed or excluded.

The BABAR results for R(D) and $R(D^*)$ can also be averaged with recent results on the same branching fractions by BELLE [12]. The author's personal averages for R(D)and $R(D^*)$ give $R(D) = (49.8 \pm 10.2)\%$ and $R(D^*) = (34.8 \pm 4.8)\%$. The 2-d exclusion regions in the m_H – tan β space for the BABAR and the combined BABAR + BELLE averages are shown in Fig. 2.

ACKNOWLEDGMENTS

The author would like to thank Dr. M. Mazur and Prof. J. Richman for the interesting discussion on the results presented here.

REFERENCES

- 1. J.G. Körner and G.A. Schuler, Phys. Lett. B 231, 306 (1989); Z. Phys. C 46, 93 (1990).
- 2. A.F. Falk et al., Phys. Lett. B 326, 145 (1994).
- 3. D. S. Hwang, and D.-W. Kim, Eur. Phys. Jour. C 14, 271 (2000).
- 4. B. Grzcadkowski and W.-S. Hou, Phys. Lett. B 283, 427 (1992).
- 5. M. Tanaka, Z. Phys. C 67, 321 (1995).
- 6. K. Kiers and A. Soni, Phys. Rev. D 56, 5786 (1997).
- 7. H. Itoh, S. Komine, and Y. Okada, Prog. Theor. Phys. 114, 179 (2005).
- 8. C.-H. Chen and C.-Q. Geng, JHEP 0610, 053 (2006).
- 9. U. Nierste, S. Trine, and S. Westhoff, Phys. Rev. D78, 015006 (2008).
- 10. J.F. Kamenik and F. Mescia, Phys. Rev. D 78, 014003 (2008).
- 11. B. Aubert *et al.* (BABAR Collaboration), Phys. Rev. Lett. **100**, 021801 (2008). B. Aubert *et al.* (BABAR Collaboration), Phys. Rev. D**79**, 092002 (2009).
- 12. A. Matyja *et al.* (BELLE Collaboration), Phys. Rev. Lett. **99**, 191807 (2007). K. Hara (BELLE Collaboration), SUSY 2009 Proceedings.