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Fundamental topological phenomena in condensed matter physics are associated with a quantized
electromagnetic response in units of fundamental constants. Recently, it has been predicted theoret-
ically that the time-reversal invariant topological insulator in three dimensions exhibits a topological
magnetoelectric effect quantized in units of the fine structure constant α = e2/~c. In this Letter,
we propose an optical experiment to directly measure this topological quantization phenomenon,
independent of material details. Our proposal also provides a way to measure the half-quantized
Hall conductances on the two surfaces of the topological insulator independently of each other.

PACS numbers: 73.43.-f, 78.20.Ls, 78.66.-w, 78.68.+m

Topological phenomena in condensed matter physics
are typically characterized by the exact quantization of
the electromagnetic response in units of fundamental con-
stants. In a superconductor (SC), the magnetic flux
is quantized in units of the flux quantum φ0 ≡ h

2e
; in

the quantum Hall effect (QHE), the Hall conductance is

quantized in units of the conductance quantum G0 ≡ e2

h
.

Not only are these fundamental physical phenomena,
they also provide the most precise metrological definition
of basic physical constants. For instance, the Josephson
effect in SC allows the most precise measurement of the
flux quantum which, combined with the measurement of
the quantized Hall conductance, provides the most accu-
rate determination of Planck’s constant h to date [1]. The
remarkable observation of such precise quantization phe-
nomena in these imprecise, macroscopic condensed mat-
ter systems can be understood from the fact that they
are described in the low-energy limit by topological field
theories (TFT) with quantized coefficients. For instance,
the QHE is described by the topological Chern-Simons
theory [2] in 2 + 1 dimensions, with coefficient given by
the quantized Hall conductance. SC can be described
by the topological BF theory [3] with coefficient corre-
sponding to the flux quantum.

More recently, a new topological state in condensed
matter physics, the time-reversal (T ) invariant topologi-
cal insulator (TI), has been investigated extensively [4–6].
The concept of TI can be defined most generally in terms
of the TFT [7] with effective Lagrangian

L =
1

8π

(

εE2 −
1

µ
B2

)

+
θ

2π

α

2π
E ·B, (1)

where E and B are the electromagnetic fields, ε and µ
are the dielectric constant and magnetic permeability, re-
spectively, and θ is an angular variable known in particle
physics as the axion angle [8]. Under periodic boundary

conditions, the partition function and all physical quan-
tities are invariant under shifts of θ by any multiple of
2π. Since E · B is odd under T , the only values of θ
allowed by T are 0 or π (modulo 2π). The second term
of Eq. (1) thus defines a TFT with coefficient quantized

in units of the fine structure constant α ≡ e2

~c
. The TFT

is generally valid for interacting systems, and describes
a quantized magnetoelectric response denoted topologi-
cal magnetoelectric effect (TME) [7]. The quantization
of the axion angle θ depends only on the T symmetry
and the bulk topology; it is therefore universal and in-
dependent of any material details. More recently, it has
been shown [9] that the TFT [7] reduces to the topo-
logical band theory (TBT) [10–12] in the noninteract-
ing limit. Interestingly, the TME is the first topological
quantization phenomenon in units of α. It can there-
fore be combined with the two other known topological
phenomena in condensed matter, the QHE and SC, to
provide a metrological definition of the three basic phys-
ical constants, e, h, and c.
The TME has not yet been observed experimentally.

An insight into why this is so can be gained by comparing
the 3 + 1 dimensional TFT (1) of TI to the 2 + 1 dimen-
sional Chern-Simons TFT of the QHE [2]. In 2 + 1 di-
mensions, the topological Chern-Simons term is the only
term which dominates the long-wavelength behavior of
the system, which leads to the universal quantization of
the Hall conductance. On the other hand, in 3+1 dimen-
sions the topological θ-term in Eq. (1) and the Maxwell
term are equally important in the long wavelength limit.
Therefore, one has to be careful when designing an ex-
periment to observe the topological quantization of the
TME, in which the dependence on the non-topological
materials constants ε and µ are removed.
In this Letter, we propose an optical experiment to ob-

serve the topological quantization of the TME in units
of α, independent of material properties of the TI such
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FIG. 1: (color online). Measurement of Kerr and Faraday
angles for a TI thick film of thickness ℓ and optical constants
ε2, µ2 on a topologically trivial insulating substrate with opti-
cal constants ε3, µ3, in a perpendicular magnetic field B. (We
consider normal incidence in the actual proposal but draw
light rays with a finite incidence angle in the figure for clar-
ity.) The external magnetic field can be replaced by a thin
magnetic coating on both TI surfaces, as suggested in Ref. [7].

as ε and µ. This experiment could be performed on any
of the available TI materials, such as the Bi2Se3, Bi2Te3,
Sb2Te3 family or the recently discovered thallium-based
compounds [13]. Consider a TI thick film of thickness ℓ
with optical constants ε2, µ2 and axion angle θ deposited
on a topologically trivial insulating substrate with opti-
cal constants ε3, µ3 (Fig. 1). The vacuum outside the TI
has ε = µ = 1 and trivial axion angle θvac = 0. The
substrate being also topologically trivial, both interfaces
at z = 0 and z = ℓ support a domain wall of θ giv-
ing rise to a surface QHE with half-quantized surface

Hall conductance σs
H = (n + 1

2
) e

2

h
with n ∈ Z [7]. The

factor of 1

2
is a topological property of the bulk and is

protected by the T symmetry. On the other hand, the
value of n depends on the details of the interface and
may thus be different for the two interfaces. To account
for this general case we assign θsubs = 2pπ with p ∈ Z

to the topologically trivial substrate, corresponding to

σs,0
H = θ

2π
e2

h
on the z = 0 interface and σs,ℓ

H = (p− θ
2π

) e
2

h

on the z = ℓ interface. The experiment consists in shining
normally incident monochromatic light with frequency ω
on the TI film, and measuring the Kerr angle θK of the
reflected light and Faraday angle θF of the transmitted
light. However, the effective theory (1) applies only in the
regime ω ≪ Eg/~ where Eg is the surface gap [7]. Such
a surface gap can be opened by a thin magnetic coating
on both surfaces of the TI, as first suggested in Ref. [7],
or by an applied perpendicular magnetic field B = Bẑ

(Fig. 1) through the surface Zeeman effect as well as
the exchange coupling between surface electrons and the
paramagnetic bulk. We discuss the experimentally sim-
pler case of the external magnetic field. For incident light
linearly polarized in the x direction Ein = Einx̂, the Kerr
and Faraday angles are defined by tan θK = Ey

r /E
x
r and

FIG. 2: (color online). (a) Reflectivity R as a function of
photon frequency ω in units of the characteristic frequency
ωℓ for a topological insulator Bi2Se3 thick film on a Si sub-
strate; universal function f(θ) for different values of (b) the
substrate dielectric constant ε3, (c) p, the total surface Hall

conductance in units of e
2

h
, and (d) the TI dielectric constant

ε2. The position of the zero crossing is universal and provides
an experimental demonstration of the quantized TME.

tan θF = Ey
t /E

x
t , respectively, with Er = Ex

r (−x̂) +Ey
r ŷ

and Et = Ex
t x̂+Ey

t ŷ the reflected and transmitted elec-
tric fields, respectively (Fig. 1). Furthermore, θK and θF
are to be measured as a function of B. The angles that we
discuss in the following are defined as the linear extrap-
olation of θK(B) and θF (B) as B → 0+, in which limit
the non-topological bulk contribution to optical rotation
is removed [7].

The problem of optical rotation at a TI/trivial insula-
tor interface has been studied before [7, 14, 15]. In gen-
eral, θK and θF depend on the optical constants ε2, µ2 of
the TI. In the thick film geometry considered here, they
will also depend in a complicated manner on the opti-
cal constants ε3, µ3 of the substrate, the film thickness
ℓ, and the photon frequency ω, due to multiple reflection
effects at the two interfaces. It seems therefore dubi-
ous that one could extract the exact quantization of the
TME from such a measurement. However, we find that
these multiple reflection effects can be used for a universal
measurement of the TME, with no explicit dependence
on ε2, µ2, ε3, µ3, ℓ, and ω.

In Fig. 2(a) we plot the reflectivity R ≡ |Er|
2/|Ein|

2 as
a function of photon frequency ω in units of a character-
istic frequency ωℓ ≡

c√
ε2µ2

π
ℓ
, for ε2 = 100, ε3 = 13, and

µ2 = µ3 = 1, appropriate for a topological Bi2Se3 [16]
thin film on a Si substrate [17–19]. We observe that min-
ima in R occur when ω/ωℓ is an integer, corresponding
to ℓ being an integer multiple of λ2

2
with λ2 = 2πc

ω
√
ε2µ2

the photon wavelength inside the TI. For radiation in the
terahertz range this corresponds to ℓ ∼ 100 µm. When
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ω is tuned to any of these minima, we find

tan θ′K =
4αp

Y 2
3 − 1 + 4α2p2

, tan θ′F =
2αp

Y3 + 1
, (2)

where Yi ≡
√

εi/µi is the admittance of region i, and the
prime indicates rotation angles measured at a reflectiv-
ity minimum, i.e. for ω/ωℓ ∈ Z. We see that θ′K and θ′F
are independent of the TI optical constants ε2, µ2. Equa-
tion (2) corresponds simply to the results of Ref. [7, 14]
for a unique interface with axion domain wall ∆θ = 2pπ.
Moreover, the two angles can be combined [20] to ob-
tain a universal result independent of both TI ε2, µ2 and
substrate ε3, µ3 properties,

cot θ′F + cot θ′K
1 + cot2 θ′F

= αp, p ∈ Z. (3)

Since the rotation angles are measured at a reflectivity
minimum, Eq. (3) has no explicit dependence on ℓ or
ω either. Equation (3) clearly expresses the topological
quantization in units of α solely in terms of experimen-
tally measurable quantities, and is the first important
result of this work.
However, neither Eq. (2) nor Eq. (3) depend explic-

itly on the TI axion angle θ, and one may ask whether
Eq. (3) is at all an indication of nontrivial bulk topol-
ogy. In fact, Eq. (3) describes the topological quan-
tization of the total Hall conductance of both surfaces
σs,tot
H = σs,0

H + σs,ℓ
H = p e2

h
, which holds independently of

possible T breaking in the bulk. In the special case that
the two surfaces have the same surface Hall conductance,
we have p = 2σs,0

H = θ
π
and Eq. (3) is sufficient to deter-

mine the bulk axion angle θ. However, for a TI film on
a substrate the two surfaces are generically different and
can have different Hall conductance. To obtain the axion
angle θ in the more general case of different surfaces, we
propose another optical measurement performed at re-
flectivity maxima ω = (n + 1

2
)ωl, n ∈ Z [Fig. 2(a)]. We

denote by θ′′K and θ′′F the Kerr and Faraday angles mea-
sured at an arbitrary reflectivity maximum. In contrast
to θ′K and θ′F [Eq. (2)], these depend on ε2, µ2 as well as
on ε3, µ3,

tan θ′′K =
4α

[

Y 2
2

(

p− θ
2π

)

− Ỹ 2
3

θ
2π

]

Ỹ 2
3 − Y 4

2 + 4α2

[

2Y 2
2

θ
2π

(

p− θ
2π

)

− Ỹ 2
3

(

θ
2π

)2
] ,

tan θ′′F =
2α

(

p− θ
2π

+ Y3
θ
2π

)

Y3 + Y 2
2 − 4α2 θ

2π

(

p− θ
2π

) , (4)

where we define Ỹ 2
3 = Y 2

3 + 4α2
(

p− θ
2π

)2
. More impor-

tantly, θ′′K and θ′′F depend explicitly on the TI axion angle
θ. It is readily checked that Eq. (4) reduces to Eq. (2)
in the single-interface limit θ = 2pπ, Y2 = Y3 or θ = 0,
Y2 = 1. In general however, from the knowledge of p
[Eq. (3)] and either θ′K or θ′F we can extract Y3 by using

FIG. 3: (color online). (a) Kerr-only measurement setup,
with material parameters the same as indicated in Fig. 1; (b),
(c) and (d): universal function fK(θ) for different material
parameters [same as in Fig. 2(b), (c), (d)]. As in Fig. 2,
the position of the zero crossing is universal and provides an
experimental demonstration of the quantized TME.

Eq. (2) without performing any separate measurement.
Moreover, θ′′K and θ′′F can be combined to cancel the ex-
plicit dependence on the TI properties ε2, µ2. We solve
for Y 2

2 in Eq. (4) in terms of θ′′F , say, and substitute the
resulting expression Y 2

2 = Y 2
2 (θ) into the equation for

θ′′K in Eq. (4). The result can be expressed in the form
f(θ′K , θ′F , θ

′′
K , θ′′F ; p, θ) = 0 where f is ‘universal’ in the

sense that it does not depend explicitly on any material
parameter εi, µi. Substituting the experimental values
of θ′K , θ′F , θ

′′
K , θ′′F and p into this expression, we obtain

a function of a single variable f(θ). If we plot f as a
function of θ, the zero crossing f(θ) = 0 gives the value
of the bulk axion angle θ with no 2π ambiguity. Plots
of the universal function f are given in Fig. 2(b), (c),
and (d) for different values of the material parameters
ε2, ε3, p (setting µ2 = µ3 = 1 without loss of generality)
and for a bulk axion angle θ = π. The zero crossing point
is independent of material parameters and, together with
Eq. (3), can provide a universal experimental demonstra-
tion of the quantization of the TME in the TI bulk. In
a thin film geometry ℓ ≪ λ2

2
corresponding to ω ≪ ωℓ,

the optical response is always given by the sum of the
Hall conductivities of the two surfaces. Therefore, thick
films ℓ ≥ λ2

4
to allow destructive interference and reflec-

tivity maxima are essential to the measurement of the
bulk TME.

Our proposal so far necessitates the measurement of
both Kerr and Faraday angles. We now show that it
is possible to extract p and θ from Kerr measurements
alone, if the Kerr angle is measured in both directions
[Fig. 3(a)]. Indeed, while the Faraday angle is generally
independent of the direction of propagation [21], the Kerr
angle depends on it. Here we exploit this asymmetry of
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the Kerr angle to extract p and θ. We denote by θ′13K and
θ′′13K the Kerr angles defined previously in Eq. (2) and (4),
respectively. Conversely, we denote by θ′31K and θ′′31K the
Kerr angles for light traveling in the opposite direction,
i.e. incident from the substrate [Fig. 3(a)]. As before, the
prime and double prime correspond to angles measured
at reflectivity minima and maxima, respectively. We find

tan θ′31K = −
4αpY3

Y 2
3 − 1 + 4α2p2

, (5)

tan θ′′31K =
4αY3

[

Y 2
2

θ
2π

− γ
(

p− θ
2π

)]

γY 2
3 + 4γα2

[

p2 −
(

θ
2π

)2
]

− Y 4
2 − 8α2Y 2

2

(

θ
2π

)2
,

where we define γ ≡ 1 + 4α2
(

θ
2π

)2
. As previously, θ′13K

and θ′31K can be combined to eliminate Y3 and provide a
universal measure of p ∈ Z,

cot θ′13K − sgn p
√

1 + cot2 θ′13K (1− tan2 θ′31K ) = 2αp, (6)

provided Y 2
3 ≡ ε3/µ3 > 1 + 4α2p2, which is satisfied in

practice for low p since α2 ∼ 10−4. Furthermore, com-
paring Eq. (5) for θ′31K to Eq. (2) for θ′13K we see that Y3

is easily obtained as Y3 = − cot θ′13K tan θ′31K . Finally, to
extract the bulk axion angle θ, we need to solve for Y 2

2

in Eq. (4) in terms of θ′′13K , and substitute the result-
ing expression Y 2

2 = Y 2
2 (θ) into the equation for θ′′31K in

Eq. (5). The result of this analysis can once again be
expressed in the form fK(θ′13K , θ′31K , θ′′13K , θ′′31K ; p, θ) = 0,
where fK is a ‘universal’ function which only depends on
the measured Kerr angles. As before, we substitute into
fK the experimental values of θ′13K , θ′31K , θ′′13K , θ′′31K and p
[obtained from Eq. (6)] and obtain a function of a sin-
gle variable fK(θ) which crosses zero at the value of the
bulk axion angle with no 2π ambiguity. In Fig. 3(b), (c)
and (d) we plot the universal function fK for different
values of the material parameters ε2, ε3, p and for a bulk
axion angle θ = π. The zero crossing point is indepen-
dent of material parameters and, together with Eq. (6),
provides another means to demonstrate experimentally
the universal quantization of the TME in the bulk of a
TI.
Recent work [22] has addressed the similar problem

of optical rotation on a TI film, and found interest-
ing and novel results for the rotation angles. However,
these results hold only in certain limits which are less
general than the ones discussed in this work. First,
Ref. [22] considers a free-standing TI film in vacuum.
Most films are grown on a substrate which can affect the
physics qualitatively. For instance, the giant Kerr ro-
tation θK = tan−1(1/α) ≃ π/2 found in Ref. [22] is a
special case of our Eq. (2) with p = 1 and ε3/µ3 = 1.
It is dramatically suppressed when ε3/µ3 − 1 is greater
than α2 ∼ 10−4, which is typically the case in prac-
tice. Second, in Ref. [22] a correction proportional to

∆/ǫc was introduced to the surface Hall conductance,
where ∆ is the T -breaking Dirac mass and ǫc is a non-
universal high-energy cutoff. According to the general
bulk TFT of the TI [7], the surface Hall conductance is
always quantized as long as the surface is gapped and
the bulk is T -invariant (in the B → 0 limit). Thus we
conclude that such a non-universal correction is absent
and the requirement ∆ ≪ ǫc is not necessary within the
TFT approach [7]. This difference clearly demonstrates
the power of the TFT approach [7] in predicting univer-
sally quantized topological effects in condensed matter
physics.
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