Measurements of the CKM angle γ at *BABAR*

G. Marchiori, on behalf of the *BABAR* Collaboration Università di Pisa, Dipartimento di Fisica, and INFN, Pisa, I-56127, Italy *E-mail:* giovanni.marchiori@pi.infn.it

We report on our recent measurements of the Cabibbo-Kobayashi-Maskawa CP-violating phase γ and of related CPasymmetries and branching fraction ratios. The measurements have been performed on samples of up to 465 million $B\overline{B}$ pairs collected by the BABAR detector at the SLAC PEP-II asymmetric-energy B factory in the years 1999-2007.

1. INTRODUCTION

Within the Standard Model CP violation arises from a single irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-flavor-mixing matrix V and manifests itself as a non-zero area of the Unitarity Triangle (UT). This triangle depicts, in the complex plane, the relation $1 + \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0$, that follows from the unitarity of V. The BABAR experiment has measured precisely, in $B \to (c\bar{c})X_s$ decays, the angle $\beta \equiv \arg - \frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}$ of the UT, finding a value that differs significantly from 0 and π . This clearly indicates that the area of the UT is non-vanishing, thus establishing CP-violation. In order to confirm that the CKM mechanism is the correct explanation for CP-violation, we need to overconstrain the UT by measuring precisely the other angles (α and γ) and the sides.

2. MEASURING γ WITH *B* MESON DECAYS IN *BABAR*

The angle $\gamma \equiv \arg - \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$ can be measured in a theoretically clean way in *CP*-violating *B* meson decays to opencharm final states, $D^{(*)}X_s$. In these decays the interference between the tree amplitudes $b \to c\bar{u}s$ and $b \to u\bar{c}s$ leads to observables that depend on the relative weak phase γ , the magnitude ratio $r_B \equiv \left|\frac{A(b\to u)}{A(b\to c)}\right|$ and the relative strong phase δ_B between the two amplitudes. r_B and δ_B depend on the *B* decay under investigation; they are difficult to estimate precisely from theory (QCD), but can be extracted directly from data together with γ .

In order to search for the interference between the $b \to c\bar{u}s$ and $b \to u\bar{c}s$ tree amplitudes, we have reconstructed the following decays, which lead to final states that can be produced both through $b \to c$ and $b \to u$ mediated processes: (i) charged $B \to D^{(*)0}/\overline{D}^{(*)0}K$ and $B \to D^0/\overline{D}^0K^*(K^* \to K^0_S\pi)$ decays and neutral $B^0 \to D^0/\overline{D}^0K^{*0}(K^{*0} \to K^+\pi^-)$ decays, followed by $D^{(*)0}$ meson decays to final states accessible also to $\overline{D}^{(*)0}$; (ii) neutral B^0/\overline{B}^0 decays to $D^{\pm}K^0\pi^{\mp}$. In the latter case, interference between the $b \to c$ and the $b \to u$ mediated processes is achieved through $B^0 - \overline{B}^0$ mixing.

The measurements presented here exploit, partially or in total, the large data sample $(465 \times 10^6 B\overline{B} \text{ pairs}, \text{ assumed}$ to be equally divided into B^+B^- and $B^0\overline{B}^0$) accumulated by *BABAR* in the years 1999-2007. Yet, they are still statistically limited, as the effects that are being searched for are tiny:

- The branching fractions of the *B* meson decays considered here are on the order of 5×10^{-4} ($B \to D^{(*)0}K$, D^0K^* and $DK^0\pi$) or 5×10^{-5} ($B^0 \to \overline{D}^0K^{*0}$). Branching fractions for $D^{(*)0}$ decays, including secondary decays, range between $O(10^{-2})$ and $O(10^{-4})$; D^- candidates are reconstructed in $K^-\pi^+\pi^+$ ($\mathcal{B} \approx 10\%$).
- The interference between the $b \to c$ and $b \to u$ mediated B decay amplitudes is predicted to be low, as the ratio r_B is expected to be around 40% for neutral $B^0 \to D^0 K^{*0}$ and $DK^0 \pi$ (due to CKM factors) and around 10% for charged $B \to D^{(*)0} K^{(*)}$ decays (due to CKM factors and the additional color-suppression of $A(b \to u)$).

The final states of these *B* meson decays are completely reconstructed, with efficiencies that range between 40% (for low-multiplicity, low-background decay modes) and 5% (for high-multiplicity decays). The selection is optimized in order to maximise the statistical sensitivity $S/\sqrt{S+B}$, where the number of expected signal (*S*) and background (*B*) events is estimated from simulated samples and data control samples.

3. MEASUREMENTS OF γ WITH CHARGED B MESON DECAYS

3.1. Dalitz-plot method

On a sample of $383 \times 10^6 \ B\overline{B}$ pairs we have selected $B \to D^0 K$, $D^{*0} K \ (D^{*0} \to D^0 \gamma \text{ and } D^0 \pi^0)$, and $D^0 K^* (K^* \to K_S^0 \pi)$ decays, followed by D^0 decays to the 3-body self-conjugate final states $K_S^0 h^+ h^ (h = \pi, K)$. [1] We have reconstructed 163 *B* candidates with $D^0 \to K_S^0 K K$ and 979 *B* candidates with $D^0 \to K_S^0 \pi \pi$. The channel $B \to D^0 K^*, D^0 \to K_S^0 K^+ K^-$ has not been reconstructed due to lack of statistics. Following the approach proposed in [2], from a fit to the Dalitz-plot distribution of the D^0 daughters we have determined 2D confidence regions for the variables (x_{\pm}, y_{\pm}) , which are related to γ by $x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma)$ and $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma)$. In the fit we have used a model for the D^0 and \overline{D}^0 decay amplitudes to $K_S^0 h^+ h^-$ described as the coherent sum of a non-resonant part and several intermediate two-body decays that proceed through known $K_S^0 h$ or h^+h^- resonances. The model has been determined from large $(\approx 5.6 \times 10^5)$ and very pure $(\approx 98\%)$ control samples of *D* mesons produced in $D^* \to D\pi$ decays.

The results for x and y are summarized in Table I. They are consistent with and have similar precision to those obtained by the Belle experiment. [3] From the (x_{\pm}, y_{\pm}) confidence regions we determine, using a frequentist

parameter	$B \to D^0 K$	$B \to D^{*0} K$	$B \to D^0 K^*$
x_+ (Dalitz)	$-0.067 \pm 0.043 \pm 0.014 \pm 0.011$	$0.137 \pm 0.068 \pm 0.014 \pm 0.005$	$-0.113 \pm 0.107 \pm 0.028 \pm 0.018$
x_+ (GLW)	$-0.09 \pm 0.05 \pm 0.02$	$0.09 \ \pm 0.07 \ \pm 0.02$	-
y_+ (Dalitz)	$-0.015 \pm 0.055 \pm 0.006 \pm 0.008$	$0.080 \pm 0.102 \pm 0.010 \pm 0.012$	$0.125 \pm 0.139 \pm 0.051 \pm 0.010$
x_{-} (Dalitz)	$0.090 \pm 0.043 \pm 0.015 \pm 0.011$	$-0.111 \pm 0.069 \pm 0.014 \pm 0.004$	$0.115 \pm 0.138 \pm 0.039 \pm 0.014$
x_{-} (GLW)	$0.10 \ \pm 0.05 \ \pm 0.03$	$-0.02 \pm 0.06 \pm 0.02$	-
y_{-} (Dalitz)	$0.053 \pm 0.056 \pm 0.007 \pm 0.015$	$-0.051 \pm 0.080 \pm 0.009 \pm 0.010$	$0.226 \pm 0.142 \pm 0.058 \pm 0.011$

Table I: Measurements of x_{\pm} and y_{\pm} obtained with the Dalitz and GLW analyses of $B \to D^{(*)0} K^{(*)}$

procedure, 1σ confidence intervals for γ , r_B and δ_B (Fig. 1). We obtain $\gamma \mod 180^\circ = (76^{+23}_{-24})^\circ$. The total error is dominated by the statistical contribution: the experimental and Dalitz-model-related systematic uncertainties amount to 5° each. We find values of r_B around 0.1, confirming that interference is low in these channels: $r_B^{D^0K} = 0.086 \pm 0.035$; $r_B^{D^*0K} = 0.135 \pm 0.051$; $kr_B^{D^0K^*} = 0.163^{+0.088}_{-0.105}$ ($k=0.9\pm0.1$ takes into account the K^* finite width). The small values of r_B favored by our data are responsible - since $\sigma_{\gamma} \approx \sigma_{x,y}/r_B$ - for the larger uncertainty on γ when compared to the analogous Belle measurement, which favours values of r_B about twice higher than ours. We also measure the strong phases (modulo 180°): $\delta_B^{D^0K} = (109^{+28}_{-31})^\circ$; $\delta_B^{D^{*0}K} = (-63^{+28}_{-30})^\circ$; $\delta_B^{D^0K^*} = (104^{+43}_{-41})^\circ$. A 3σ evidence of direct *CP* violation is found when comparing (x_+, y_+) to (x_-, y_-) (they are equal in absence of CPV) in the three *B* decay channels.

Figure 1: Two left-most plots: 1-CL as a function of γ and r_B for $B \to D^0 K$, $D^{*0} K$ and $D^0 K^*$ as obtained with the Dalitz analysis of $D^0 \to K_S^0 h^+ h^-$. Two right-most plots: GLW observables measured by BABAR and other experiments.

3.2. Gronau-London-Wyler ("GLW") method

We have reconstructed, on a sample of $383 \times 10^6 \ B\overline{B}$ pairs, $B \to D^0 K$ and $D^{*0} K$ $(D^{*0} \to D^0 \gamma$ and $D^0 \pi^0)$ decays with neutral D mesons decaying to CP-even $(K^+K^-, \pi^+\pi^-)$ and CP-odd $(K_S^0\pi^0, K_S^0\phi$ and $K_S^0\omega)$ eigenstates. We have also reconstructed $B \to D^{(*)0} K$, $D^0 \to K^-\pi^+$ and $B \to D^{(*)0} \pi$ decays as normalization channels. We have identified almost 500 $B \to D_{CP}^0 K$ [4] and 500 $B \to D_{CP}^{*0} K$ [5] decays. From the observed B^{\pm} yields we have determined the "GLW" observables [6], $R_{CP\pm}^{(*)} \equiv \frac{\Gamma(B^- \to D_{CP}^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^+)}{(\Gamma(B^- \to D^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^+))/2} = 1 + r_B^{(*)^2} \pm 2r_B^{(*)} \cos \gamma \cos \delta_B^{(*)}$ and $A_{CP\pm}^{(*)} \equiv \frac{\Gamma(B^- \to D_{CP}^{(*)0} K^-) - \Gamma(B^+ \to D_{CP}^{(*)0} K^+)}{(\Gamma(B^- \to D_{CP}^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^+))/2} = 1 + r_B^{(*)^2} \pm 2r_B^{(*)} \cos \gamma \cos \delta_B^{(*)}$ and $A_{CP\pm}^{(*)} \equiv \frac{\Gamma(B^- \to D_{CP}^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^+)}{(\Gamma(B^- \to D_{CP}^{(*)0} K^-) + \Gamma(B^+ \to D_{CP}^{(*)0} K^+)} = \pm 2r_B^{(*)} \sin \gamma \sin \delta_B^{(*)} / R_{CP\pm}^{(*)}$. Here we use the notation $r_B^{(*)} \equiv r_B^{D^{(*)0} K}$ and $\delta_B^{(*)} \equiv \delta_B^{D^{(*)0} K}$. The results, summarized in Table II and Fig. 1, constitute the most precise measurements of the CP asymmetries and branching fraction ratios in these decay channels. A 2.8σ hint of direct CPV is seen in $B \to D_{CP+}^0 K$ decays, consistent with the results from the $B \to D^0 K$, $D^0 \to K_S^0 h^{+}h^{-}$ Dalitz analysis and with recent results of the GLW analysis of $B \to D_{CP+}^0 K$ decays performed by CDF. From the relation $r_B^{(*)^2} = \frac{R_{CP+}^{(*)} + R_{CP-}^{(*)} - 2}{2}$ we have obtained loose determinations of $r_B^{(*)}$: $(r_B^{D^0 K})^2 = 0.05 \pm 0.07 \pm 0.03$, $(r_B^{D^0 K})^2 = 0.22 \pm 0.09 \pm 0.03$. We have also determined the variables x_{\pm} by exploiting the relations $x_{\pm} = \frac{R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-})}{4}$: the results, consistent with and similar in accuracy to those from t

				0
B decay	$A_{CP+}^{(*)}$	$R_{CP+}^{(*)}$	$A_{CP-}^{(*)}$	$R_{CP-}^{(*)}$
$D^0 K$	$0.27 \pm 0.09 \pm 0.04$	$1.06 \pm 0.10 \pm 0.05$	$-0.09 \pm 0.09 \pm 0.02$	$1.03 \pm 0.10 \pm 0.05$
$D^{*0}K$	$-0.11 \pm 0.09 \pm 0.01$	$1.31 \pm 0.13 \pm 0.04$	$0.06 \pm 0.10 \pm 0.02$	$1.10 \pm 0.12 \pm 0.04$

Table II: Results of the $B \to D^0 K$ and $B \to D^{*0} K$ GLW analyses

4. MEASUREMENTS OF γ WITH NEUTRAL *B* MESON DECAYS

4.1. $B^0 \rightarrow D^0 K^{*0}$: Atwood-Dunietz-Soni ("ADS") and Dalitz-plot methods

In the "ADS" analysis [8] we reconstruct D^0 decays to doubly-Cabibbo-suppressed final states: $K^+\pi^-$, $K^+\pi^-\pi^0$ and $K^+\pi^-\pi^-\pi^+$. The Cabibbo-allowed charge-conjugate final states are used as normalization and control sample. In principle γ could be determined from the branching fraction ratios (R_{ADS}) and the charge asymmetries (A_{ADS}) of these decays. [7] In practice we do not have enough statistics to measure A_{ADS} and put useful constraints on γ ; on the other hand by measuring R_{ADS} we can infer a significant constraint on $r_S \equiv r_B^{D^0 K^{*0}}$. We have selected, on a sample of $465 \times 10^6 B\bar{B}$ pairs, 24 signal candidates summed over the 3 D^0 decay channels, and put 95% probability bayesian limits on R_{ADS} : $R_{ADS}^{K\pi} < 0.244$; $R_{ADS}^{K\pi\pi^0} < 0.181$; $R_{ADS}^{K\pi\pi\pi\pi} < 0.391$. We have then combined those 3 results and determined bayesian probability regions for r_S by adding external information (from *c*- and *B*-factories) on the \overline{D}^0 decay amplitudes. At 95% probability r_S lies between 7 and 41% (Fig. 2).

In the Dalitz analysis [9] we reconstruct D^0 decays to $K_S^0 \pi^+ \pi^-$. Using $371 \times 10^6 B\overline{B}$ pairs we have selected 39 signal candidates. From the fit to the Dalitz-plot distribution of the D^0 daughters, using the same model for the $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decay amplitudes as in Sec. 3.1, we have determined 2D bayesian probability regions for (r_S, γ) (Fig. 2). After combination with the r_S likelihood from the ADS method we obtain, at 68% probability, $\gamma \mod 180^\circ = (162\pm56)^\circ$.

4.2. $2\beta + \gamma$ from a time-dependent Dalitz-plot analysis of $B^0/\overline{B}^0 \to D^{\pm}K^0\pi^{\mp}$

On a sample of $347 \times 10^6 \ B\overline{B}$ pairs we have searched for neutral B meson decays to $D^{\pm}K_S^0\pi^{\mp}$. [10] We retain only those events where the other B meson (B_{tag}) decays to a final state which allows to determine its flavor

Figure 2: Left: likelihood function for r_S from the ADS analysis of $B^0 \rightarrow D^0 K^{*0}$, including 68% (dark-shaded) and 95% (light-shaded) probability regions. Center: γ vs r_S 68% and 95% probability regions obtained from the $B^0 \rightarrow D^0 K^{*0}$ Dalitz analysis. Right: distribution of the fitted values of $2\beta + \gamma$ from selected $B^0 \rightarrow DK^0\pi$ decays for different hypotheses on the value of r.

(either B^0 or \overline{B}^0) and the proper time difference Δt between the two B decays, inferred from the separation of the B decay vertices and momenta. The effective efficiency of the flavor-tagging algorithm is around 30%. A fit to the Dalitz-plot distribution of $DK_s^0\pi$ as a function of Δt yields $2\beta + \gamma$ through the relations: $\Gamma(\vec{x}, \Delta t, \xi, \eta) = \frac{A_c(\vec{x})^2 + A_u(\vec{x})^2}{2} \times \frac{e^{-\frac{|\Delta t|}{\tau_B}}}{4\tau_B} \times \{1 - \eta\xi C(\vec{x})\cos(\Delta m_d\Delta t) + \xi S_\eta(\vec{x})\sin(\Delta m_d\Delta t)\}, S_\eta(\vec{x}) = \frac{2\Im(A_c(\vec{x})A_u(\vec{x})e^{i(2\beta+\gamma)+\eta i(\phi_c(\vec{x})-\phi_u(\vec{x}))})}{A_c(\vec{x})^2 + A_u(\vec{x})^2}, C(\vec{x}) = \frac{A_c(\vec{x})^2 - A_u(\vec{x})^2}{A_c(\vec{x})^2 + A_u(\vec{x})^2}, \tau_B$ is the B^0 lifetime, Δm the $B^0 - \overline{B}^0$ mixing frequency, \vec{x} the position in the $DK\pi$ Dalitz plot; $\xi = -1(1)$ if the flavor of the B_{tag} is $B^0(\overline{B}^0)$, and $\eta = +1(-1)$ if the final state contains a $D^+(D^-)$.

We have selected 558 signal candidates and performed the time-dependent Dalitz-plot fit. For the direct *B* decay amplitude we use a model which incorporates all known intermediate resonances and float most of the magnitudes (*A*) and phases (ϕ) in the fit. The ratio *r* between the $b \rightarrow u$ (A_u) and $b \rightarrow c$ (A_c) amplitudes is fixed. A scan of $2\beta + \gamma$ as a function of *r* is shown in Fig. 2. For the final $2\beta + \gamma$ result we assume $r = 0.3 \pm 0.1$. Using the world average for β from *B* decays to charmonium we obtain $\gamma \mod 180^\circ = (40 \pm 57)^\circ$, in agreement with the other determinations.

5. CONCLUSION

Many new results on γ have been obtained by BABAR during 2008. They are in good agreement with each other and favor $\gamma \approx 72^{\circ}$, dominated by the $B \rightarrow D^{(*)0}K^*$, $D^0 \rightarrow K_S^0 h^+ h^-$ Dalitz analysis and consistent with expectations from CKM fits. Thanks to the combination of several strategies, the uncertainty σ_{γ} is approaching 20°, which was not an original goal of the *B* factories. σ_{γ} is limited by the available statistics; we expect a 20% improvement from the collected data that have not been analyzed yet. The interference effects are confirmed to be small both in charged and neutral *B* decays, thus a much larger statistics is needed to reach a precision of a few degrees on γ .

References

- [1] BABAR Collaboration, B. Aubert et al., Phys. Rev. D78, 034023 (2008).
- [2] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D68, 054018 (2003).
- [3] Belle Collaboration, K. Abe et al., arXiv:0803.3375 [hep-ex] (2008).
- [4] BABAR Collaboration, B. Aubert *et al.*, *Phys. Rev.* **D77**, 111102(R) (2008).
- [5] BABAR Collaboration, B. Aubert et al., arXiv:0807.2408 [hep-ex]. Submitted to Phys. Rev. D (2008).
- [6] M. Gronau and D. Wyler, Phys. Lett. B265, 172; M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
- [7] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).
- [8] BABAR Collaboration, B. Aubert et al., paper in preparation.
- [9] BABAR Collaboration, B. Aubert et al., arXiv:0805.2001 [hep-ex], submitted to Phys. Rev. D (2008)
- [10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D77, 071102(R) (2008).