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Abstract. Recent results from τ physics studies at BABAR are presented with an emphasis on
Lepton Flavour Violation measurements.

1. Introduction
Lepton flavour conservation differs from other conservation laws in the Standard Model (SM)
because it is not associated with an underlying conserved current symmetry. Lepton Flavour
Violation (LFV) has been observed in the neutrino sector but combining the information on
neutrino mixing and masses with the Standard Model can only produce LFV of the order of
10−54, an undetectable amount. However, many extensions to the SM predict enhanced LFV in
tau decays with respect to muon decays with branching fractions up to the current experimental
limits [2]. Observation of LFV in tau decays would be a clear signature of physics beyond
the SM, while non-observation would provide further constraints on theoretical models. While
stringent limits exist on the branching fractions B(µ → eγ) < 1.2 × 10−11 [1], these do not
exclude B(τ → µγ) at the sensitivities of the current B-meson Factories.

The BABAR B-meson Factory produces almost as many τ pairs as B pairs. The BABAR

detector (described in detail in Ref. [3]) operates at the Stanford Linear Accelerator Center
the PEP-II asymmetric-energy e+e− storage ring. The luminosity is recorded at centre-of-mass
(CM) energies (

√
s) of 10.58GeV and 10.54GeV.

The analyses follow a similar strategy. Each analysis looks for the production of τ pairs
where one of the τ decays to either a 1-prong (τ− → l−ντνµ, π

−ντ , ρ
−ντ ) or 3-prong (τ− →

2h−h+(nπ0)ντ ) final state which covers roughly 99% of the τ branching fraction. The event is
divided into two hemispheres in the CM frame based on the plane perpendicular to the thrust
axis from the tracks in the event. Each hemisphere is assumed to contain the decay products of a
single τ lepton. The analysis procedure selects events with 1-prong or 3-prong in one hemisphere
(tag hemisphere) and tracks from the other τ in the other hemisphere (signal hemisphere). A
cut on the event thrust is applied to reject light quark production e+e− → qq̄ (q = {u, d, s, c, b})
and bb backgrounds. Particle identification is applied to the tracks and the total event charge
is required to be zero. The τ is reconstructed from tracks and neutral deposits not in the tag
hemisphere according to the analysis under consideration. Charged particles are required to have
a minimum momentum and come from the beam spot. Tracks coming from photon conversions
are rejected. Neutral energy deposits must be consistent with the pion and criteria are applied
to reject photons where necessary.

The backgrounds come from a number of sources. Other τ decays where a particle is missed
or added can be eliminated by careful construction of the signal mode. Bhabhas and di-muon
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events can be removed through criteria based on the event thrust, co-linearity of the tracks in
the CM frame, the momentum of the two leptons in the CM frame and the reconstructed τ
mass. Hadronic events from qq production can be suppressed through the event thrust, the
topology of the decay and an excess of neutral energy. Two photon events have large missing
energy and small transverse momentum that can be used to reject them.

Monte Carlo (MC) simulation is used to evaluate the background contamination and selection
efficiency. The methods for extracting the signal yield vary depending on the analysis. Some
analyses use a cut-based approach while others use a Maximum Likelihood (ML) technique.
A signal box with a width of 2 to 3 σ is defined in terms of two independent variables:
∆E = Eτ −

√
s/2 and either the mass difference between the reconstructed tau and the true

tau mass, ∆M = Mrec − Mτ , or the energy-constrained tau mass, mEC, extracted from a
kinematic fit with Eτ constrained to

√
s/2. The expected number of events is calculated by

fitting the background event distributions outside the signal region and extrapolating into the
signal box. The resolution on ∆E andmEC or ∆M is around 45MeV and 10MeV/c2, respectively.
The systematic errors on the signal efficiencies include contributions from uncertainties in the
reconstruction efficiency of charged tracks and neutral deposits; the uncertainty associated with
the particle identification on the signal and tag side; the luminosity measurement and the τ pair
cross-section determination; and the uncertainty on decay branching ratios.

2. τ± → e±γ [4]
The data sample consists of 210.6 fb−1 recorded at

√
s = 10.58GeV and 21.6 fb−1 at

√
s =

10.54GeV. Events with two or four well-reconstructed tracks inconsistent with coming from a
photon conversion are selected. The signal-side hemisphere is required to contain at least one γ
with a CM energy greater than 500MeV, and one track identified as an electron. Backgrounds
arising from radiation are reduced by requiring that the total CM energy of all non-signal γ
candidates in the signal-side hemisphere be less than 200MeV. To suppress non-τ backgrounds
with significant radiation along the beam directions, the polar angle (θmiss) of the missing
momentum associated with the neutrino(s) in the event is required to lie within the detector
acceptance (−0.76 < cos θmiss < 0.92). A correlation between the missing mass (m2

ν) and the
scaled missing transverse momentum (pTmiss/

√
s) in the non-τ backgrounds is used to suppress

them.
The resolution of the eγ mass is improved by assigning the point of closest approach of the

e track to the e+e− collision axis as the origin of the γ candidate and by using a kinematic
fit with Eeγ constrained to

√
s/2. mEC and ∆E are independent variables apart from small

correlations arising from initial and final state radiation. We optimise the selection to obtain
the smallest expected upper limit at 90% CL in a background-only hypothesis for observing
events inside a ±2σ rectangular box signal box defined by: |∆E − 〈∆E〉| < 2σ(∆E) and
|mEC − mτ | < 2σ(mEC). For the final background estimate, we use the mEC distribution of
data events inside the ±2σ(∆E) band. The signal efficiency is (4.7 ± 0.3)% and we find one
event in the signal box for an expected background of 1.9±0.4 events. We set an upper limit
employing the same technique used in our search for τ± → `±`+`− [5] where the background
levels were also small. This procedure gives an upper limit of B(τ± → µ±γ) < 6.0 × 10−8 at
90% CL.

3. τ± → µ±γ [6]
The data sample consists of 210.6 fb−1 recorded at

√
s = 10.58GeV and 21.6 fb−1 at

√
s =

10.54GeV. The analysis follows the broad lines of the τ± → e±γ analysis with the difference
that it separates the tag-side decays into six categories according to the number of tracks, lepton
identification and photon energy. A neural net is constructed to reduce backgrounds in each
category with five observables used as input: the missing mass of the event, the highest CM
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Table 1. Summary of efficiency estimates, the number of background events (Nbgd), the number
of observed events (Nobs), and the 90% CL upper limit on the branching fraction (B) for each
decay mode. The results are preliminary for τ− → l+l−l+.

Mode Efficiency [%] Nbgd Nobs UL Mode Efficiency [%] Nobs UL
e−e+e− 8.9± 0.2 1.33± 0.25 1 4.3 · 10−8 τ± → e±π0 (π0 → γγ) 2.83±0.25 0 1.4 · 10−7

µ−e+e− 8.3± 0.6 0.89± 0.27 2 8.0 · 10−8 τ± → µ±π0 (π0 → γγ) 4.75±0.37 1 1.1 · 10−7

µ+e−e− 12.4± 0.8 0.30± 0.55 2 5.8 · 10−8 τ± → e±η (η → γγ) 3.59±0.24 0 2.8 · 10−7

e+µ−µ− 8.8± 0.8 0.54± 0.21 1 5.6 · 10−8 τ± → e±η (η → π+π−π0) 3.17±0.32 0 5.5 · 10−7

e−µ+µ− 6.2± 0.5 0.81± 0.31 0 3.7 · 10−8 τ± → e±η Bε = 2.12±0.20 0 1.9 · 10−7

µ−µ+µ− 5.5± 0.7 0.33± 0.19 0 5.3 · 10−8 τ± → µ±η (η → γγ) 7.03±0.53 1 1.6 · 10−7

e−K+K− 3.77± 0.16 0.22± 0.06 0 1.4 · 10−7 τ± → µ±η (η → π+π−π0) 3.67±0.32 0 4.8 · 10−7

e−K+π− 3.08± 0.13 0.32± 0.08 0 1.7 · 10−7 τ± → µ±η Bε = 3.59±0.41 1 1.3 · 10−7

e−π+K− 3.10± 0.13 0.14± 0.06 1 3.2 · 10−7 τ± → e±η′ (η′ → π+π−η) 3.75±0.27 0 5.9 · 10−7

e−π+π− 3.30± 0.15 0.81± 0.13 0 1.2 · 10−7 τ± → e±η′ (η′ → ρ0γ) 2.98±0.28 0 4.5 · 10−7

µ−K+K− 2.16± 0.12 0.24± 0.07 0 2.5 · 10−7 τ± → e±η′ Bε = 1.53±0.16 0 2.6 · 10−7

µ−K+π− 2.97± 0.16 1.67± 0.29 2 3.2 · 10−7 τ± → µ±η′ (η′ → π+π−η) 5.87±0.46 0 3.8 · 10−7

µ−π+K− 2.87± 0.16 1.04± 0.18 1 2.6 · 10−7 τ± → µ±η′ (η′ → ρ0γ) 3.90±0.46 0 3.7 · 10−7

µ−π+π− 3.40± 0.19 2.99± 0.41 3 2.9 · 10−7 τ± → µ±η′ Bε = 2.18±0.26 0 2.0 · 10−7

e+K−K− 3.85± 0.16 0.04± 0.04 0 1.5 · 10−7

e+K−π− 3.19± 0.14 0.16± 0.06 0 1.8 · 10−7

e+π−π− 3.40± 0.15 0.41± 0.10 1 2.7 · 10−7

µ+K−K− 2.06± 0.11 0.07± 0.10 1 4.8 · 10−7

µ+K−π− 2.85± 0.16 1.54± 0.25 1 2.2 · 10−7

µ+π−π− 3.30± 0.18 1.46± 0.27 0 0.7 · 10−7

momentum of the tag-side track(s), µ helicity angle, missing transverse momentum and the
invariant mass squared of the missing neutrino.

To obtain the branching ratio, we perform an extended unbinned ML fit to the mEC data
distribution after all requirements but that on mEC have been applied. The signal efficiency is
(9.4 ± 0.6)%. The fit gives B(τ± → µ±γ) = (−5.6+8.3

−6.3) × 10−8, which corresponds to −2.2+3.2
−2.4

signal and 143±12 background events. In keeping with established τ± → µ±γ studies, we derive
a frequentist upper limit at 90% CL of B(τ± → µ±γ) < 6.8× 10−8.

4. τ− → l+l−l+ [7]
The data sample consists of 339.2 fb−1 recorded at

√
s = 10.58GeV and 36.7 fb−1 at

√
s =

10.54GeV. Candidate signal events consist of one tau decay yielding three charged particles,
while the second tau decay yields one charged particle. All possible lepton combinations
consistent with charge conservation are considered, leading to six distinct decay modes. Signal
events are required to have an invariant mass and total energy in the 3-prong hemisphere
consistent with a parent tau lepton. These quantities are calculated from the observed track
momenta assuming the corresponding lepton masses for each decay mode.

The expected background rates for each decay mode are determined by fitting a set
of probability density functions (PDFs) to the observed data in the (∆M,∆E) plane in
a grand sideband (GSB) region which is defined as the rectangle bounded by the points
(−600MeV/c2,−700MeV) and (400MeV/c2, 400MeV), excluding the signal region. The number
of events observed and the preliminary 90% CL upper limits are shown in Table 1.

5. τ− → l∓h±h
′− [8]

The data sample consists of 221.4 fb−1 recorded at a luminosity-weighted centre-of-mass energy
of
√
s = 10.58GeV. Candidate signal events are required to have a 1-3 topology, where one

tau decay yields one charged particle (1-prong), while the other tau decay yields three charged
particles (3-prong). One of the charged particles found in the 3-prong hemisphere must be
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identified as either an electron or muon candidate. The (∆M,∆E) quantities and the expected
background rates are calculated as for the τ− → l+l−l+ [7] (see above). Rectangular signal
regions are defined separately for each decay mode in the (∆M,∆E) plane. The number of
events observed and the 90% CL upper limits are shown in Table 1.

6. τ− → l∓π0, l∓η, l∓η′ [9]
The data sample consists of 339 fb−1 recorded at a centre-of-mass energy near

√
s ∼ 10.58GeV.

The signature of the signal process is the presence of an `P 0 pair having an invariant mass
consistent with mτ = 1.777GeV/c2 and a total energy equal to

√
s/2 in the CM frame, along

with other particles in e+e− → τ+τ− events having properties consistent with a τ lepton decay.
Two neutral decay modes (π0 → γγ and η → γγ) and three charged decay modes [η → π+π−π0

(π0 → γγ), η′ → π+π−η (η → γγ), and η′ → ρ0γ ] are reconstructed. Events with two or
four well reconstructed tracks and zero total charge are selected. The signal-side hemisphere is
required to contain one or three tracks and two photon candidates with energy Eγ > 50MeV for
the π0 → γγ, η → π+π−π0 (π0 → γγ) and η′ → π+π−η (η → γγ) channels, and Eγ > 100MeV
for the η → γγ channel. For the η′ → ρ0γ channel, the single photon candidate is required to
have Eγ > 100MeV. Events with additional photon candidates in the signal hemisphere with
Eγ > 100MeV are rejected. To reduce combinatorial backgrounds, a minimum P 0 momentum
is required and a criteria is placed on the P 0 mass; both criteria are mode-dependent. The track
unassociated with any of the P 0 daughters is required to have a momentum > 0.5GeV/c and is
identified as an electron or muon, but not as a kaon. The origin of the photon(s) is assigned to
the point of closest approach of the lepton track to the e+e− collision axis for neutral P 0 decays,
or to the common vertex in the signal-side hemisphere for the charged P 0 decays. Rectangular
signal regions are defined separately for each decay mode in the (mEC,∆E) plane. The number
of events observed and the 90% CL upper limits are given in Table 1.

7. Conclusion and Acknowledgements
The results from the current generation of B-meson Factories are already beginning to constrain
the parameter space of models that go beyond the Standard Model. By the end of their data-
taking, the current generation of B-meson factories will have produced nearly 2 billion τ pair
decays. The physics potential of this legacy has only just begun to be exploited.
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