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In layered ferromagnet-superconductor-ferromagnet �F1 /S /F2� structures, the critical temperature Tc of the
superconductors depends on the magnetic orientation of the ferromagnetic layers F1 and F2 relative to each
other. So far, the experimentally observed magnitude of change in Tc for structures utilizing weak ferromagnets
has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a
discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing
experiments on structures where F1 and F2 are independently varied. Our experimental results indicate that
asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed
magnitude of Tc changes, it may only be possible to detect in structures with thinner ferromagnetic layers.
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I. INTRODUCTION

Proximity between superconductors and ferromagnets
leads to a variety of interesting effects, one of which is the
dependence of the superconducting critical temperature Tc of
a ferromagnet-superconductor-ferromagnet �F/S/F� structure
on the magnetic configuration of the trilayer.1–6 A similar
effect was proposed in an F/F/S structure.7 One intriguing
technical application of such structures is a superconducting
spin switch wherein an external magnetic field manipulates
the structure’s magnetic configuration in a manner that alters
the superconducting Tc value, ideally switching the trilayer
between its normal and superconducting states. In general,
altering the magnetic configuration can be accomplished by
an external field much smaller than the Hc2 field required to
destroy superconductivity. The use of these spin switches as
a basis for a new superconducting memory device was
proposed.7

For thin films, the magnetization of the trilayers lies in the
film’s plane due to shape anisotropy so that the spin-switch
effect is not due to internal field suppression of the supercon-
ducting layer. Rather, it is the exchange field in the magnetic
layers that affects the critical temperature of the supercon-
ducting layer. In such a planar geometry, the critical tempera-
ture in trilayers turns out to be a function of the angle �
between the magnetizations of the F layers.3,8 The Tc���
function has a maximum for the antiparallel �AP� configura-
tion and a minimum for the parallel �P� configuration. The
difference �Tc=Tc�AP�−Tc�P� is the maximum change in the
critical temperature that can be obtained by rotating the mag-
netizations of the F layers with respect to each other. In
practice, the trilayer is most readily put into a parallel or an
antiparallel state, so the maximum difference is usually the
quantity measured in experiments.9 With this motivation, we
will focus here on the collinear geometry, without discussing
the full angular dependence Tc���.

Conceptually, the superconducting spin-switch effect is
produced by the unconventional spin-triplet superconducting
correlations emerging near the F/S interfaces of hybrid
structures.8,10–15 In general, the spin-triplet anomalous
Green’s function has three components. However, when
magnetizations of the F layers are collinear, only one com-
ponent is created, namely, the one with an m=0 spin projec-
tion on the magnetization axis. The presence of at least one
triplet component is crucial for the existence of the �Tc ef-
fect because the spin-singlet component by itself cannot
transmit information about the magnetization direction from
one side of the S layer to another. The other two components
of triplet superconductivity with m= �1 projections are gen-
erated only in some noncollinear geometries.11–14 These lat-
ter components are predicted to have anomalously long de-
cay lengths in ferromagnets and are responsible for the
intriguing phenomenon of long-range proximity.12–14,16 In the
problem of the Tc dependence on magnetic configuration, the
presence of long-range triplet components has to be taken
into account to accurately compute the Tc��� function, but
this does not change the maximum difference �Tc.

8

Experimentally, spin-switch effects have been investi-
gated in a number of different types of FSF systems, includ-
ing those with ferromagnets that are weak,9,10,17 strong,18–23

and half-metallic.24,25 Theoretically, treatment of these sys-
tems is most highly developed by using the quasiclasssical
Usadel26 equations. This approach is applicable to “dirty”
superconductors with electron mean free paths much smaller
than the superconducting coherence length and to weak fer-
romagnets, e.g., diluted ferromagnetic alloys such as
CuxNi1−x with Curie temperatures TC�100 K.9,27 As the
quasiclassical approach is used herein, we focus on the
experimental work done with weak ferromagnets. Critical
temperatures obtained from the Usadel equations show
agreement with experimental results on the overall sup-
pression of superconductivity by the adjacent ferromagnetic
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layers made of CuxNi1−x alloys.27 However, when �Tc was
calculated for the trilayers, the result was 2 orders of magni-
tude larger than the experimentally measured values of �Tc
�1–10 mK.9,10,17 The conclusion of Refs. 9 and 10 was that
by varying the only truly unknown parameter, the F/S inter-
face transparency, one could not simultaneously fit both the
average Tc and �Tc.

There may be several reasons for this discrepancy. For
example, the mean free path of electrons is not small enough
to ensure the validity of the diffusive approximation of the
Usadel theory. Another possibility is that the superconductor-
normal metal boundary conditions28 used in all calculations
have to be modified in the case of F/S boundaries.29 It may
be that the antiferromagnet layer often employed to pin one
of the ferromagnet layers plays a role in affecting Tc.

25 Grain
boundaries in the ferromagnetic layer may also affect these
devices.18

Here, we start with the observation that even within the
Usadel approach a substantial decrease in �Tc can occur due
to the asymmetry of the F/S/F structure. Since Tc can be
strongly suppressed by one F layer, while �Tc requires the
interaction of two layers, unequal interface transparencies of
the F/S and S/F allow for the independent tuning of Tc and
�Tc and may account for the observed low magnitude of
�Tc. In actual samples,9 two interfaces in the F/S/F structure
separate identical materials. However, we note that interface
asymmetry is not excluded since the interface quality can
depend on the distance from the substrate and may be con-
trolled by the lattice mismatch parameter in a way that de-
pends on the order of materials deposition. Furthermore, if
the surface free energy difference is favorable for the growth
of an S layer on an F layer, then it is unfavorable for the
growth of an F layer on an S layer. Our theoretical study
predicts that the asymmetry of the boundary properties can
be observed through different dependencies of �Tc on the
thicknesses of the left and right F layers. The method used
for our calculation is an adaptation of the approach suggested
by Fominov et al.30,31 A similar adaptation was indepen-
dently presented in Ref. 32.

Motivated by the theoretical scenario described above, we
experimentally investigate the presence of interface asymme-
try by fabricating F/S/F structures with unequal F-layer
thicknesses. While our measured samples do not indicate that
interface asymmetries are present, the thicknesses of F layers
used may be outside the region of very thin F layers where
the effects of boundary asymmetry can be most readily ob-
served. Further investigations into multilayers wherein the F
layers are thinned to a few nanometers are complicated by
the effects of the strong ferromagnet Permalloy �Ni80Fe20�
used as additional F layers in the devices.9,10,17 �Additional
outer layers are introduced to enable switching between the P
and the AP magnetic states.� Although the Permalloy layers
are not in direct contact with the S layer, they still appear to
appreciably influence �Tc. The importance of extra F layers
was recently discussed theoretically33 and experimentally25

in related systems.

II. THEORY OF ASYMMETRIC FERROMAGNET-
SUPERCONDUCTOR-FERROMAGNET STRUCTURES

As mentioned above, the Usadel26 equations are appli-
cable in the limit of dirty superconductors where the electron

mean free path is much smaller than the coherence length �S.
Another condition required for the applicability of the Us-
adel equations in ferromagnets is the smallness of the ex-
change splitting Eex. Namely, one has to require the preces-
sion length of a spin in the exchange field of the ferromagnet
to be larger than the mean free path l, which gives a condi-
tion Eex /EF�	F / l, where EF and 	F are the Fermi energy
and wavelength, respectively; this condition is satisfied in
diluted ferromagnetic alloys such as CuxNi1−x with TC
�100 K,9,27 which are discussed in this paper. The opposite
limit of strong ferromagnets was considered in Ref. 34.

As explained in Sec. I, the overall Tc suppression is well
described by the Usadel approach, but �Tc is grossly over-
estimated by calculations assuming the symmetry of the
structure. We note that the calculations in Refs. 9 and 10
used numerical procedures adapted from Refs. 30 and 31
and, hence, did not suffer from the errors associated with the
approximations used to obtain analytical solutions in Refs.
2–7. A numerical analysis was necessary because such ap-
proximations could not be justified for the actual values of
the experimental parameters. We also note that in Ref. 17, Tc
and �Tc were fitted with the expressions of Tagirov;4 how-
ever, a value of the band mismatch parameter was chosen to
be an order of magnitude larger than the one obtained from
the resistivity data in Ref. 30. A recent numeric analysis of
the asymmetric problem32 did not specifically focus on the
�Tc dependence arising from the asymmetry of the boundary
transparencies.

A. Critical temperature equations

The problem of finding the value of the critical tempera-
ture of an F/S/F structure in the dirty limit was discussed in
Refs. 8 and 10 in detail. In summary, near the critical tem-
perature, the anomalous Green’s function F�x ,
n�, where

n=�T�2n+1� are the Matsubara frequencies, satisfies the
linearized Usadel equations with different forms in the fer-
romagnetic and superconducting layers. In the left and right
F layers, which are indexed by �= �1,2�, we have

�F�
2 �Tcs

d2F

dx2 − ��
n� + iEex
��� sgn�
n��F = 0, �1�

where Df� is the diffusion coefficient in the corresponding F
layer, Tcs is the critical temperature of a stand-alone S layer,
�F�=	Df� / �2�Tcs�, and the band splitting parameters Eex

��� are
positive for the F layer with up-magnetization and negative
for the layer with down-magnetization.

In the S layer, the Usadel equations are

�S
2�Tcs

d2F

dx2 − �
n�F�x,
n� + ��x� = 0, �2�

with Ds being the diffusion coefficient in the S layer and
�S=	Ds / �2�Tcs�.

The order parameter ��x� is real and at ambient tempera-
ture T obeys the self-consistency condition in the S layer:



��x�log
Tcs

T
� = 2�T �


n0

��x�

n

− Re F�x,
n� . �3�

The real part of F�x ,
n� represents conventional spin-singlet
superconductivity, while its imaginary part describes the ad-
mixture of a spin-triplet component8,10,12,13 created by the
interaction of superconductivity and magnetism near the F/S
boundaries.

In the conventional picture, Eqs. �1�–�3� have to be
supplemented by the following boundary conditions:28

dFF

dx
= 0 �4�

on the outer boundaries of the F layers, and

���FdFF

dx


�

= �SdFS

dx


�

,

�− 1��+1�b��F�dFF

dx


�

= ��FS − FF��� �5�

on the two F/S boundaries. Here, FF and FS denote the val-
ues of the anomalous Green’s function on the F and S sides
of the F/S boundary, respectively. Parameters � and �b char-
acterize the band-structure mismatch and transparency of the
boundary, respectively, and can be expressed through the re-
sistivities �S and �F and the specific boundary resistance Rb
of the corresponding interfaces as �=�S�S / ��F�F� and �b
=Rb / ��F�F�.

Equations �1�–�3� with boundary conditions �4� and �5�
form a closed system. It has nonzero solutions only for T
�Tc. The Tc of the trilayer is a temperature at which the first
F�0 solution appears.

B. Effective boundary conditions

It was previously shown8,10 that the system of Eqs. �1�–�3�
defined on the whole span of the F/S/F structure can be re-
duced to a system of two equations, Eqs. �2� and �3�, in the S
layer with effective boundary conditions at the left and right
��=1,2� boundaries:

�SdF

dx


�

= L�F , �6�

with complex parameters L��
n� given by

L��
n� = �− 1��+1 �

�b + B�

,

B��
n� = ��F�kF� tanh�dF�kF���−1,

kF��
n� = 	2��
n� + iEex
��� sgn�
n��/Df�,

where dF� is the thickness of the corresponding F layer.
Since only the real part of F enters the self-consistency equa-
tion �3�, further simplification is possible by explicit separa-
tion into real and imaginary parts F=F++ iF−. Boundary con-
dition �6� can be rewritten as

�S
dF+/dx

dF−/dx
�

�

= Re L� − Im L�

Im L� Re L�


F+

F−
�

�

. �7�

Since the equation for F− is uniform,

�S
2�Tcs

d2F−

dx2 − �
n�F− = 0, �8�

its general solution can be expressed through any two inde-
pendent solutions v1,2�x� of Eq. �8� as F−�x ,
n�=C1v1�x�
+C2v2�x� with two as yet unknown real constants C1,2. It is
shown in Appendix A how this general solution can be used
to reduce the system of four boundary conditions, Eq. �7�, to
a system of two boundary conditions involving only the F+
function. This simplification comes at a price—the new con-
ditions are nonlocal, i.e., they connect the values of F+ at two
edges of the S layer:

�S
dF+1/dx

dF+2/dx
� =  U1 U3

− U3 U2

F+1

F+2
� , �9�

where

U1 = Re L1 −
�Im L1�2�kS�S coth�kSdS� − Re L2�

�
,

U2 = Re L2 +
�Im L2�2�kS�S coth�kSdS� + Re L1�

�
,

U3 =
Im L1 Im L2

sinh�kSdS��
,

� = Re L1 Re L2 + kS�S coth�kSdS��Re L2 − Re L1� − �kS�S�2,

kS�
n� =
1

�S

	 �
n�
�Tcs

, �10�

and dS is the thickness of the S layer.

C. Fundamental solution

We are now left with the unknown function F+, which
satisfies Eqs. �2� and �3� with boundary condition �9�. We
proceed by solving these equations by using a method of
fundamental solution, i.e., we look for a function G�x ,y ,
n�
such that

F+�x,
n� = �
0

dS

G�x,y,
n���y�dy , �11�

where we have chosen the boundaries of the S layer to be at
x1=0 and x2=dS.

In the case of a symmetric structure, L2=−L1 for parallel
and L2=−L1

� for antiparallel magnetic configurations, which
give U2=−U1 in both cases. The corresponding solution
F+�x� always turns out to be a symmetric function where
F+1=F+2, dF+1 /dx=−dF+2 /dx, and dF+�dS /2� /dx=0. It sat-
isfies



�S
dF+�

dx
= �− 1��+1�U1 + U3�F+� = �− 1��+1WF+�

at the boundaries. These properties allow one to map the
symmetric problem onto an F/S bilayer problem.8,10

When asymmetry is present, the problem cannot be
mapped onto a bilayer, and a simple ansatz for G from Ref.
31cannot be used. Instead, we search for the fundamental
solution in the form:

G = �
ij

vi�x�Xijv j�y� −
1

�Tcs�S
2C
�v1�x�v2�y� �x � y�

v2�x�v1�y� �x  y� �
�12�

where Xij are as yet unknown coefficients and C
=v1��x�v2�x�−v1�x�v2��x� is a constant �Vronskian� of Eq. �8�.
The constancy of C can be directly checked by calculating
dC /dx and using the fact that v1,2 satisfy Eq. �8�. Expression
�12� for G automatically satisfies

�S
2�Tcs

�2G

�x2 − �
n�G�x,y,
n� = − ��x − y� .

However, to ensure that F obtained from the integral �11�
satisfies the boundary condition �9�, the coefficients Xij have
to be chosen so that they satisfy the following:

�S
Gx��x1,y�
Gx��x2,y�

� =  U1 U3

− U3 U2

G�x1,y�

G�x2,y� � , �13�

where Gx�=�G�x ,y� /�x. The explicit formula for Xij�
n�,
along with the specific choice of functions v1,2�x ,
n�, is
given in Appendix B. The expression is cumbersome, but
that does not present a problem when the formula is used in
a numeric calculation.

After the fundamental solution satisfying boundary condi-
tion �9� is found, systems �2�, �3�, and �9� are reduced to a
single operator equation by substituting Eq. �11� into Eq. �3�
and obtaining

��x�log
Tcs

T
� = 2�T�

x1

x2

Q�x,y���y�dy , �14�

Q�x,y,T� = �

n0

���x − y�

n

− G�x,y,
n�� . �15�

As always in the BCS theory, the sum defining Q converges
because at large 
n the first �divergent� term is compensated
by the second. Indeed, it is shown in Appendix B 3 that

G �
��x − y�


n
�
n → �� . �16�

From Eq. �14�, the critical temperature of the trilayer Tc is
obtained from the condition that the lowest eigenvalue of Q,
which is denoted by �1�T�, satisfies 2�Tc�1�Tc�
=log Tcs /Tc and the first nonzero solution of Eq. �14�
emerges.

D. Discretization of the fundamental solution

The numeric procedure for finding the eigenvalues of Q
consists of discretization of the integrand in Eq. �14� and
transforming the integrals into finite sums. The interval
�x1 ,x2� was partitioned into increments dx and the functions
were evaluated at points xm. While discretization of the delta
functions is obvious, ��x−y�→�mq, the representation of G
requires more consideration. Naive discretization G�x ,y�
→Gmq=G�xm ,yq� leads to the following problem: As 
n in-
creases, G assumes a shape of a high and narrow peak
around x=y, in accord with Eq. �16�. At some point, the
width of the peak becomes smaller than the increment dx,
and after that the naive discretization cannot be accurate. In
particular, it provides spurious values 
nG�xm ,xm ,
n�→�
on the diagonal. Consequently, if naive discretization is used,
the expected cancellation of the divergent terms in the sum
�15� does not happen. Note that Ref. 32 circumvented this
discretization problem by going to a Fourier representation.
Here, we avoid this problem by modifying the numeric value
of Gmm to reflect the integral properties of G. We set Gmq
=G�xm ,yq� for m�q and obtain Gmm from the condition:

dx�Gmm + �
q�m

Gmq� = �
0

dS

G�xm,y�dy . �17�

The usage of this formula is discussed in Appendix B 4.
With modification �17�, the sum for each element of the

discretized matrix Qmq numerically converges. It was found
that to accurately get the lowest eigenvalue �1, it is enough
to keep several hundred terms in sum �15�. This observation
is in accord with the basic BCS understanding that sum �15�
has to converge for 
n not exceeding the Debye temperature.
Other eigenvalues of Q require more terms for convergence
but have no physical significance.

E. Numeric results and discussion

The results of our numeric calculations are presented in
Figs. 1 and 2. Figure 1 shows a fit to experimental data. We
find that small �Tc can be reproduced if the transparency of
one of the boundaries ��=2 in our case� is made small, i.e., if
�b2 is increased from �b2�0.3 to �b2�10. To obtain the fit,
we also had to slightly increase the value of �S, as compared
to the value used in Ref. 9.

The physics of the �Tc sensitivity to �b2 can be explained
as follows: Since the existence of �Tc requires the presence
of two interfaces, disconnecting one of the F layers by set-
ting �b2→� would drive �Tc→0. Comparing Fig. 1 to the
results of Refs. 8–10, we see that a 30-fold increase in the
value of �b2 translates into an � 100-fold decrease of �Tc.
At the same time, suppression of the average Tc can be con-
trolled by a single high-transparency interface. Disconnec-
tion of either magnetic layer does not eliminate the critical
temperature suppression Tcs−Tc but only reduces it.

One of the ways to experimentally check the presence of
transparency asymmetry is to measure the ratio of interface
resistances Rb1 /Rb2=�b1 /�b2. However, that transport mea-
surement can be quite involved.35 Here, we propose another
check based on the different sensitivities of �Tc to a change



in the thickness of one of the two F layers. Figure 2 shows
the �Tc�dF�� dependencies for �=1,2. The dependence on
the thickness dF1 of the F layer on the side of the transparent
interface shows a maximum, similar to the one observed be-
fore. However, the dependence on dF2 is just a decreasing
function �formally, �Tc�dF2� dependence does have a maxi-
mum, but it is located at the value of dF2, which is smaller
than the thickness of one monolayer�.

III. EXPERIMENTS

A. Experimental fabrication and measurement

To investigate the possibility of interface asymmetry, we
fabricate a series of F/S/F multilayers similar to those previ-
ously investigated9,17 but with ferromagnetic layers of differ-
ing thickness. The samples fabricated, which are schemati-

cally shown in Fig. 3�a�, consist of a Nb superconducting
layer sandwiched between CuNi ferromagnetic layers. As
discussed in the earlier experiments, layers of the soft ferro-
magnetic alloy Permalloy �Py� are added behind the CuNi
layers to improve the switching characteristics of the devices
between the parallel and antiparallel configurations of the
ferromagnetic layers. This switching is enabled by exchange
biasing the top ferromagnetic layers using the antiferromag-
net FeMn. Figure 3�b� shows the magnetization of one of
these devices as a function of an in-plane external field. For
the small field sweep shown in the inset of Fig. 3�b�, the AP
and P configurations are clearly defined.

The multilayers are fabricated by dc magnetron sputtering
�rf for the FeMn layer� of the metals on a Si substrate in a
high vacuum chamber with a base pressure of 6
�10−8 Torr. To vary the thickness of the CuNi layers while
preserving the same F/S interface quality, a mechanical shut-
ter is moved across the sample during the CuNi deposition,

FIG. 1. �Color online� �a� Average critical temperature Tc of an
F/S/F structure with equal F-layer thicknesses. �b� Critical tempera-
ture difference �Tc between the antiparallel and parallel magnetic
configurations. The dots are experimental data from Ref. 9, and the
solid lines are theoretical fits with parameters Tcs=7.1 K, �Eex

�1��
= �Eex

�2��=130 K, �F�=8 nm, �S=11 nm, �1=�2=0.135, �b1=0.3,
�b2=10, and dS=19 nm.

FIG. 2. �Color online� Temperature difference �Tc as a function
of the thicknesses of two F layers. Dependencies on the thickness of
the layer separated by transparent interface �a� and on the thickness
of the layer separated by the opaque interface �b� are qualitatively
different. Observation of such difference can confirm the presence
of interface asymmetry in the samples.



as shown in Fig. 3�c�. The substrate is subsequently cut into
mm2-sized sections that differ only in the thickness of the
CuNi layers. Thickness measurements are made during depo-
sition with a quartz crystal thickness monitor that is cross-
checked by small angle x-ray reflection. The CuNi target
used for deposition is nominally a 1:1 composition; however,
repeated measurements of a T=125 K Curie temperature for
sputtered CuNi films indicate a Cu45Ni55 composition of the
films.36 The 17 nm thickness of the Nb film is chosen to be
as thin as possible while maintaining a Tc above the 1.7 K
limit of our measurement apparatus.

The magnetization and resistance of these samples are
measured by using Quantum Design MPMS and PPMS sys-
tems, respectively. The exchange biasing of the sample dem-
onstrated in Fig. 3�b� is prepared by field cooling the samples
from 400 K. �Tc is measured by biasing the temperature at
successive points through the superconducting transition and

sweeping the external field to switch the ferromagnetic lay-
ers between P and AP states �Fig. 4�a��. From these traces,
resistance vs temperature curves can be constructed to reveal
the �Tc between the two magnetization states �Fig. 4�c��.

While the measured Tc and �Tc values of the fabricated
samples are comparable to those in Ref. 9, the slightly thin-
ner Nb layer used here accounts for the facts that the ob-

FIG. 3. �Color online� �a� Schematic of the fabricated devices.
The sputtered multilayer consists of a central superconductor �Nb�
sandwiched between weak ferromagnetic layers �Cu45Ni55� whose
thicknesses can be independently varied in situ. The weak ferro-
magnets are reinforced by layers of Permalloy �Py=Ni80Fe20�,
which ensures sharp switching between states where the moments
of the ferromagnetic layers are parallel �P� and antiparallel �AP�.
This switching is accomplished by using an in-plane external field
and exchange biasing of the top ferromagnetic layers using an an-
tiferromagnetic layer �FeMn�. A capping layer �Au� is added on top
to prevent degradation of the sample. �b� Magnetization of a Py�4
nm�/CuNi�5�/Nb�17�/CuNi�5�/Py�4�/FeMn�6�/Au�4� multilayer as a
function of external field at 5 K. Both top and bottom magnetic
layers will saturate in the direction of the field for H= + /−3 kOe,
while for small negative fields the exchanged bias layer pins the top
layers in the positive direction resulting in a small net magnetiza-
tion of the entire device. The inset shows a small field sweep, which
avoids the hysteresis of the large field sweep. Here, the P and AP
configurations are sharply defined. �c� Diagram of the in situ
method for varying the CuNi layer thickness. A movable shutter is
passed in front of the substrate during sputtered deposition to create
CuNi steps within the multilayer. The substrate is then cut into
smaller sections, each with different CuNi layer thicknesses.

FIG. 4. �Color online� �a� Resistance vs field measure-
ments of a Py�4 nm�/CuNi�5�/Nb�17�/CuNi�5�/Py�4�/FeMn�6�/
Au�4� multilayer for selected temperature measurements along the
superconducting transition. �b� Close-up of the 2.79 K curve of �a�.
Note the resistance shift around zero field as the sample is switched
between the P and AP states. The resistance displays a parabolic
background due to the suppression of the superconductivity by the
external field. The two H=−300 points do not coincide due to the
small temperature drift of the sample during the duration of the
trace. �c� Resistance vs temperature measurement for the P and AP
states, constructed from the traces in �a� and others by using the
resistance at H= + /−30 Oe. �Tc is taken as the temperature differ-
ence between the two curves at the midpoint of the transition.



served Tc values are lower �less robust superconductivity�
and that the �Tc values are higher �greater coupling between
the ferromagnetic layers�. These effects of superconductor
thickness variation in F/S/F samples were examined for sys-
tems using only hard ferromagnets by Moraru et al.21,22 in
some detail. For the samples considered herein, we find that
a 1 nm change in the Nb thickness leads to changes in Tc and
�Tc on the orders of 1 K and 1 mK, respectively.

B. Asymmetric multilayers

Table I shows the Tc and �Tc for four simultaneously
fabricated Py�4 nm�/CuNi/Nb�17�/CuNi/Py�4�/FeMn�6�/
Au�4� multilayers with varying bottom CuNi layers and top
CuNi layers fixed at 5 nm. The transition temperature ap-
pears constant for all four samples �down from 7 K for a
plain 17 nm Nb film�, while the shift in transition tempera-
ture between P and AP states decreases with increasing thick-
ness of the bottom CuNi layer. The behavior of both Tc and
�Tc as one CuNi layer is increased is consistent with trends
observed earlier9 for symmetric multilayers with increasing
CuNi layer thickness.

Tc and �Tc for a set of simultaneously fabricated Py�4
nm�/CuNi/Nb�17�/CuNi/Py�4�/FeMn�6�/Au�4� multilayers
with varying top CuNi layers and bottom CuNi layers fixed
at 5 nm are shown in Table II. While there is a greater Tc
variation for this set of samples, this is likely due to varia-
tions in the thickness of the Nb layer. Although the samples
were simultaneously fabricated, there is a thickness variation
of �5% over the deposition area spanned by the samples.
Attempts were made to place the simultaneously fabricated
substrates in positions in the sputtering chamber that mini-
mized this variation for the samples shown in Tables I and II,
but small ��1 nm� differences in Nb thickness, which affect
the sample-to-sample Tc, are difficult to avoid. The hypoth-
esis of slight variations in Nb thickness in the second set of
samples is reinforced by the observation that in addition to a
trend of decreasing �Tc with increasing CuNi thickness,

there is an inverse correlation between swings in the Tc and
�Tc consistent with a Nb thickness variation.

Taking the presumed Nb thickness variation into account,
the varying top CuNi layer samples demonstrate a behavior
similar to that of the varying bottom CuNi layer samples.
The �Tc’s for equivalent CuNi thicknesses are slightly
higher for the samples in Table II than for those in Table I,
which is to be expected as the transition temperatures are
slightly lower; indeed, for the only case wherein correspond-
ing samples have identical Tc values �CuNi=7 nm�, the �Tc
values are identical.

Overall, the asymmetric samples show a quite similar be-
havior when the top and bottom CuNi layers are varied, in-
dicating that the reduced �Tc values observed may not be
due to widely asymmetrical S/F interfaces. However, it
should be noted that the CuNi thicknesses examined may be
thicker than the regime where large effects due to interface
asymmetry are predicted to occur. For the samples simulated
in Fig. 2, only CuNi thicknesses of 2 nm exhibit dramatically
different behavior for top and bottom layers when the other
layer is fixed at 5 nm. As the samples measured are com-
posed of two ferromagnets on each side of the supercon-
ductor, a difficulty arises in trying to compare the experimen-
tal samples to theory as to what should be taken as the
ferromagnet thicknesses of the samples. To empirically ex-
amine this problem, we have fabricated two sets of samples
wherein first the CuNi layers and then the Py layers are
thinned down to 1 nm.

C. Symmetric multilayers with thin ferromagnetic layers

Table III shows simultaneously fabricated Py�4 nm�/
CuNi/Nb�17�/CuNi/Py�4�/FeMn�6�/Au�4� multilayers
wherein the CuNi layers are symmetrically varied. While the
�Tc values of these samples remain robust, it is surprising
that the transition temperature of the multilayers decreases
with decreasing thickness, falling just below our base tem-
perature for the CuNi=1 nm sample. Theoretically, as seen
in Fig. 1, one would expect an increase in the Tc value as the
ferromagnetic layers disappear, an expectation experimen-
tally borne out for CuNi/Nb/CuNi trilayers studied by Po-
tenza and Marrows.17 The decrease observed here can be
explained by noting that while the weakly ferromagnetic
CuNi layers are thinned, the strongly ferromagnetic Py lay-
ers, with more robust pair breaking, come in closer proximity
to the superconducting layer. In addition, it is possible that
CuNi at this thickness becomes paramagnetic, which leads to
spin fluctuations that enhance the pair-breaking properties of
this layer.

TABLE I. Different bottom CuNi thicknesses.

Bottom CuNi
�nm�

Top CuNi
�nm�

Tc

�K�
�Tc

�mK�

5 5 2.79 3.9

7 5 2.71 2.3

10 5 2.76 2.0

12 5 2.81 1.0

TABLE II. Different top CuNi thicknesses.

Bottom CuNi
�nm�

Top CuNi
�nm�

Tc

�K�
�Tc

�mK�

5 5 2.47 4.1

5 7 2.71 2.3

5 10 1.99 3.3

5 12 2.11 2.1

TABLE III. Thinning both CuNi layers.

CuNi thickness
�nm�

Tc

�K�
�Tc

�mK�

1 �1.70 ?

2 1.84 4.4

3 1.98 3.4

5 2.47 4.1



Table III indicates that the Py layers may play a role in
determining the properties of these devices beyond fortifying
the magnetic switching. Several symmetric multilayers of
Py/CuNi�5 nm�/Nb�17�/CuNi�5�/Py/FeMn�6�/Au�4� with
various Py layer thicknesses were fabricated to examine the
effect of thinning Py on Tc and �Tc. Unlike the previous sets
of samples, these were made successively rather than simul-
taneously. As can be seen in Table IV, these samples exhibit
a stable Tc, but the spin-switching effect disappears as the Py
is thinned down. It should be emphasized that magnetization
measurements of these samples still exhibit well-defined P
and AP configurations down to 1 nm. Figure 5 shows the
resistance vs field curves for these samples taken in the
middle of the superconducting transition where the disap-
pearance of the spin-switch effect can be seen. This disap-
pearance reinforces the hypothesis that the Py layer plays an
important role in these devices and demonstrates the diffi-
culty of comparing the multilayers considered here and
elsewhere,9,17 where both strong and weak ferromagnets are
employed, with Usadel models of F/S/F systems in the small
exchange field limit.

IV. CONCLUSION

In summary, this paper investigates the effects of the
asymmetry of F/S/F trilayers on the critical temperature dif-
ference between the parallel and antiparallel magnetic con-
figurations of the devices. The possibility to separately regu-
late �Tc from Tc by the degree of asymmetry comes from an

intuitively clear picture: In strongly asymmetric trilayers, the
average Tc is determined by the F layer with the largest in-
fluence on the superconductor, while �Tc is determined by
the layer with the smallest impact.

This argument was quantified by solving Usadel equations
for the superconducting critical temperature. Since known
approximate solutions of Usadel equations are not applicable
in the parameter range corresponding to experiments, we re-
sorted to numerical methods and generalized the fundamen-
tal solution approach developed earlier for F/S and symmet-
ric F/S/F structures to the asymmetric case. Our calculation
has shown that it is possible to reproduce earlier experimen-
tal results obtained on all-metallic structures9,17 by assuming
substantial asymmetry of the F/S interface properties. In ad-
dition, our model has also shown how this asymmetry can be
revealed by examining F/S/F structures with different F-layer
thicknesses.

To check this prediction, asymmetric devices with differ-
ent thicknesses of F layers �and otherwise similar to those
previously examined� were fabricated. The measurements of
�Tc did not indicate interface asymmetry, but instead have
shown that the strong ferromagnet Py, heretofore assumed to
only effect the magnetic switching of the devices, plays a
critical role in affecting both Tc and �Tc. The effects of the
Py layers in real F/S/F devices and the additional degrees of
freedom they add to the parameter space of possible devices
considerably complicate both theoretical analysis and em-
pirical exploration. While the asymmetric devices examined
here do not indicate interface asymmetry, this possibility has
not been ruled out due to these difficulties.

A harmonious match between the theory and experiments
on F/S/F spin switches remains elusive. The Usadel formu-
lation, which is so natural for modeling the superconducting
layer, cannot be easily extended to the ferromagnetic layers
without assuming them to be weak. Experimentally, the use
of weak ferromagnets does not produce sharp switching be-
tween the P and AP configurations without the reinforcement
of strong ferromagnetic layers. However, our experiments
show that the additional ferromagnetic layers cannot be ig-
nored when modeling the behavior of our devices. It is ap-
parent that a more accurate test of our interface hypothesis
may be provided only in future investigations wherein the F
layers can each be composed of a single, weak ferromagnet
that enables clear P and AP states without additional mag-
netic fortification. At present, the only single ferromagnet
F/S/F devices to be examined have used strong
ferromagnets.19,21,22
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APPENDIX A: NONLOCAL BOUNDARY CONDITIONS

Boundary condition �7� does not depend on the choice of
the coordinate origin. In this appendix, it is convenient to
choose the boundaries of the S layer to be at x1,2= �dS /2.
The independent solutions of Eq. �8� are chosen as

v1�x� = sinh�kSx�, v2�x� = cosh�kSx� .

This gives


F1−

F2−
� = − s c

s c

C1

C2
� , �A1�


F1−�

F2−�
� = kSc − s

c s

C1

C2
� , �A2�

where s=sinh�kSdS /2� and c=cosh�kSdS /2�. Expressing C�

through F�− from Eq. �A1� and substituting into Eq. �A2�,
one gets


F1−�

F2−�
� = �kS/sinh kSdS�− cosh�kSdS� 1

− 1 cosh�kSdS�

F1−

F2−
� .

�A3�

However, using the second equation of system �7� for �
=1,2, one gets

�S
F1−�

F2−�
� = m1 0

0 m2

F1+

F2+
� + l1 0

0 l2

F1−

F2−
� ,

where we denote Re L�= l� and Im L�=m�. Combining this
equation with Eq. �A3�, a connection between F�− and F�+ is
established:


F1−

F2−
� =

1

�
m1�� − l2� − �m2

�m1 − m2�� + l2�

F1+

F2+
� , �A4�

where

� = �SkS coth�kSdS�, � =
�SkS

sinh�kSdS�
,

� = l1l2 + ��l2 − l1� − �kS�S�2.

The first equation of system �7� with �=1,2 states that

�S
F1+�

F2+�
� = l1 0

0 l2

F1+

F2+
� − m1 0

0 m2

F1−

F2−
� .

Expressing in this formula F�− through F�+ according to Eq.
�A4�, we get

�S
F1+�

F2+�
� = l1 −

m1
2��−l2�

�

�m1m2

�

−
�m1m2

� l2 +
m2

2��+l1�
�


F1+

F2+
� .

The result is independent of our choice of x1,2 and v1,2�x� and
proves formula �9�.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE
FUNDAMENTAL SOLUTION

In this appendix, we derive a formula for the coefficients
Xij compatible with condition �13�.

1. Analytic expression for Xij(�n)

Defining matrices Pij
���,

P�1� = �i1� j2 = 0 1

0 0
 ,

P�2� = �i2� j1 = 0 0

1 0
 , �B1�

and using expression �12�, one can write

G�x�,y� = �
ij

vi�x��Zij
���v j�y� ,

Gx��x�,y� = �
ij

vi��x��Zij
���v j�y� ,

Zij
��� = Xij +

1

�Tcs�S
2C

Pij
���,

with no summation over the repeating index �.
Condition �13� will be satisfied if we choose Xij, so that

for any j,

�S�
i

vi��x��Zij
� = �

�

U���
i

vi�x��Zij
�,

where

U =  U1 U3

− U3 U2
 .

This gives an equation for the unknown Xij:

�S�
i

�vi��x�� − �
�

U��vi�x���Xij

=
1

�Tcs�S
2C

�
i

���
�

U��vi�x��Pij
�� − �Svi��x��Pij

� � .

�B2�

Defining matrices V, Ṽ, VP, and ṼP through their compo-
nents:

V�i = vi�x�� = v1�x1� v2�x1�
v1�x2� v2�x2�

 ,

Ṽ�i = vi��x�� = v1��x1� v2��x1�
v1��x2� v2��x2�

 ,

V�i
P = �

i
vi�x��Pij

� =  0 v1�x1�
v2�x2� 0

 ,



Ṽ�i
P = �

i
vi��x��Pij

� =  0 v1��x1�
v2��x2� 0

 ,

one can rewrite Eq. �B2� in the matrix form:

��SṼ − UV�X =
UVP − �SṼP

�Tcs�S
2C

and get the explicit formula:

X =
��SṼ − UV�−1�UVP − �SṼP�

�Tcs�S
2C

. �B3�

2. Choice of the functions v1,2(x)

We choose the functions vi to be defined on the interval
�0,dS� as

v1 = cosh kSx, v2 = cosh kS�dS − x� . �B4�

This choice is more convenient for numeric calculations than
the choice of Appendix A, which is more suitable for the
derivation of nonlocal boundary condition �9�. Equation �B4�
gives C=kS sinh�kSdS� and the following expressions for the
matrices:

V =  1 cosh kSdS

cosh kSdS 1
 = cosh�kSdS�W ,

Ṽ = kS 0 − sinh kSdS

sinh kSdS 0
 = kS cosh�kSdS�W̃ ,

VP = 0 1

1 0
, ṼP = 0 0

0 0
 ,

where we define new matrices W and W̃. This is done for
numeric convenience with the aim of excluding all factors
diverging at 
n→� from the matrix operations. Using Eq.
�B3� and definition �10�, we obtain

X =
1


n�S

Y

sinh�kSdS�cosh�kSdS�
,

Y = �W̃ −
UW

kS�S
�−1

UVP,

where all elements of the new matrix Y have finite limits at

n→�. The fundamental solution can now be written in the
form G=G /
n with

G =
�ij

vi�x�Yijv j�y�

�S sinh kSdS cosh kSdS

+
kS

sinh kSdS
�v1�x�v2�y� �x � y�

v2�x�v1�y� �x  y� � . �B5�

3. Limiting form of Xij

We are now ready to prove Eq. �16�. In the limit of large

n, the first term in expression �B5� is of order 1 or smaller.
The second term has a peak at the diagonal x=y with a peak
height of order ks�	
n. The width of the peak is determined
by the decay of the cosh functions and is of the order 1 /kS.
To prove G���x−y� at 
n→�, we evaluate the integral:

�
0

dS

G�x,y�dy =
�ij

vi�x�Yij

kS�S cosh kSdS
+ 1. �B6�

The first term on the right hand side goes to zero at least as
fast as 1 /kS; thus, Eq. �B6� provides the desired asymptotic
estimate �16�.

4. Values of discretized G on the diagonal

The right hand side of expression �17� is evaluated from
Eq. �B6�. The sum over q�m on the left hand side of Eq.
�17� was numerically evaluated. The matrix corresponding to
the operator Q of Eqs. �14� and �15� is given by

Qmp�T� = dx �

n0

�mp − Gmp�
n�

n
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