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Abstract

It has recently been shown that in single field slow-roll inflation the total volume cannot
grow by a factor larger than eSdS/2 without becoming infinite. The bound is saturated exactly
at the phase transition to eternal inflation where the probability to produce infinite volume
becomes non zero. We show that the bound holds sharply also in any space-time dimensions,
when arbitrary higher-dimensional operators are included and in the multi-field inflationary
case. The relation with the entropy of de Sitter and the universality of the bound strengthen
the case for a deeper holographic interpretation. As a spin-off we provide the formalism
to compute the probability distribution of the volume after inflation for generic multi-field
models, which might help to address questions about the population of vacua of the landscape
during slow-roll inflation.
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1 Introduction and Conclusions

The future evolution of our Universe appears to be dominated by a phase of accelerated expan-
sion [1, 2]. The data from the cosmic microwave background strongly suggest that also in the
distant past our Universe experienced a phase of slow-roll inflation [3, 4, 5]. Furthermore, in-
dependently from the actual observations, the study of the physics in a accelerating universe is
interesting in its own, as still several theoretical aspects are poorly understood.

A particularly interesting set-up is represented by slow-roll eternal inflation [6, 7, 8]. In this
case the scalar potential is so flat that quantum fluctuations dominate over the classical rolling
of the scalar field. In this limit the scalar field becomes free, so despite quantum fluctuations
dominate over the classical evolution the system becomes exactly solvable [9]. In this case there
is a finite probability to generate inflaton trajectories going uphill the scalar potential, which can
make inflation last forever. Quantum fluctuations are able to completely change the future causal
structure of space-time, similarly to what happens in false vacuum eternal inflation [10, 11] or in the
presence of a black-hole [12]. Indeed, these are the only three known solutions of general relativity
where quantum effects induce such a spectacular behaviour. In particular, in the eternal inflation
case, the result is even more dramatic because the background geometry becomes completely
stochastic.

The dependence of the future causal structure of space-time on the dynamics of the theory is
a delicate issue already at the semiclassical level. The problem is even more acute in full quantum
gravity, where local observables are not well defined and its proper formulation in known cases
(such as the string theory S-matrix and AdS/CFT) strongly relies on well defined asymptotic
boundaries. To make the problem even more involved, unitarity, and in this particular context,
holography also seem to suggest that space-time regions causally disconnected by an horizon are
redundant, complementary.

These problems are particularly relevant in the framework of the landscape. If, as suggested by
string theory, quantum gravity possesses a landscape of (meta-stable) vacua, our Universe may be
doomed to deal with eternal inflation. While vacuum tunnelling from meta-stable de Sitter vacua
seems the natural mechanism for generating eternal inflation in the landscape, slow-roll eternal
inflation represents a unique framework to reliably study the onset of the transition between the
non-eternal and the eternal inflating regime. In these type of models indeed, it exists a controllable
parameter (the flatness of the potential) that smoothly interpolates between the two phases. It
basically allows the study of the de Sitter phase with a tunable parameter.

In this context a bound was found in [13] for any model of inflation in the non-eternal phase:
the number of e-folding N is always bounded by the de Sitter entropy SdS at the end of inflation.
The relation with the entropy seems to suggest a connection with the holographic bounds. It is
indeed in close analogy with the bound on the validity of the effective field theory description
of the Hawking radiation quanta in the black-hole evaporation process: after a time of order the
black-hole entropy in units of the curvature scale the EFT predictions for the Hawking entropy
start deviating by order one from what expected from the unitary evolution—information starts
coming out and complementarity emerges. A similar time-scale shows up in slow-roll inflation
exactly when the eternal inflation phase is approached.
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It was found later in [9] that in single field slow-roll inflation the phase transition to eternal
inflation is sharp: at the critical value of the parameter

Ω ≡ 2π2

3

φ̇2

H4
= 1 ,

a finite probability of creating an infinite volume after inflation develops. This suggested the
existence of a sharp bound also for the number of e-foldings. Because of quantum fluctuation
however, the number of e-foldings is not a well defined object, as it can fluctuate from point
to point in space. The invariant quantity is the total volume of the Universe at the reheating
surface, which matches e3N in the absence of quantum fluctuations. Quantum fluctuation makes
this quantity stochastic too. A probability density for the volume V can nonetheless be defined
and actually computed. This was accomplished in [14] where a sharp formulation for the bound
was also found, namely:

The probability of producing a finite volume V larger than eSdS/2 vanishes up to non-perturbative

quantum gravity effects.

Notice that the bound applies not only in the non-eternal regime (Ω > 1), where the volume
is always finite, but also in the eternal regime, where there is still a non-zero probability to have
a finite volume.

The existence of a sharp bound and the connection with the entropy clearly cries for an
holographic interpretation. Is this bound really set by complementarity? In that case is there a
meaning of the factor 1

2
appearing in the bound? We are not able to give a definitive answer to

these questions yet. It seems however that if the answers to these questions are positive then the
bound should be universal, including the factor 1

2
, as, for example, in the Bekenstein-Hawking

formula.

In this paper we test the universality of the bound against three different generalizations of
the models studied in [14] by changing the number of space-time dimensions (from 4 to D), by
taking into account the effects of higher-dimensional operators in the action, and by considering
more inflaton fields.

In the first test the dependence on the number of dimensions appears in a non-trivial way in
a number of quantities entering the calculation of the bound, such as the relation between the
entropy and the horizon area, the Friedmann equations, the quantum fluctuations of a inflaton
field in de Sitter space, etc. We will show that, surprisingly, when the bound is written in terms
of the total volume and the dSD entropy the dependence on the number of dimensions cancel out
leaving the bound unchanged, with the same factor as in four dimensions.

The second test we performed is with respect to higher derivative terms in the action. These
terms not only change the equations of motion for the metric and the inflaton, thus the Friedmann
equations, but also the expression for the entropy, which is not given anymore by just the horizon
area in Planck units, and the size of the quantum fluctuations of the inflaton. Remarkably we find
that, independently of the corrections considered in the action, the bound is not affected, included
the factor 1

2
, which stays universal.

The third test requires more effort. We have to extend the formalism developed in [14] to the
case of multifield inflation. In particular the possibility to have extended regions in field space
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where inflation can end triggers difficulties both at the technical and the conceptual level. We will
show that the main formula that in the single-field case was a simple Laplace transform of the
solution of a non-linear differential equation maps in this case into a functional integral transform
of the solution of a non-linear partial differential equation. These more involved formulae allow
us to calculate not only the probability distribution of the total volume after inflation, but the
multi-variate probability distribution of each different kind of volume associated with the different
reheating points in field space. The possibility of exiting inflation in different places in field space,
where in particular the Hubble scale and thus the entropy are different, forces us to generalize
the definition of the bound too. A conservative assumption is to assume that the total volume
be bounded by the largest possible entropy on the reheating surface. We believe however that a
stronger version of the bound actually holds.

In all the realizations with finite total volume, the probability of producing a particular volume

with values of the inflaton field within a given region I of the reheating surface and larger than

the largest value of eSdS/2 on the same region I vanishes up to non-perturbative quantum gravity

effects.

In particular given any reheating region in field space the volume produced after inflation with
that kind of inflaton values will be bounded by the corresponding de Sitter entropy.

Because of the complexity of the formulae involved we are not able to test the validity of the
bound in the most general case, however we will discuss the two simplest examples where we are
able to take the calculation till the end. The two examples correspond to two-field inflationary
models with a constant slope of the potential and where the reheating region is a straight line
normal or at angle with respect to the slope direction. We will be able to calculate the average
volume distribution as a function of the reheating point and show that the bound is indeed
satisfied. Interestingly the factor 1

2
is still universal and the bound is saturated only when the

slope is actually orthogonal to the reheating surface. This configuration correspond to single field
inflation with a spectator field. This result suggests that the presence of extra fields only makes
the bounds stronger, by drifting the inflaton trajectories towards region of higher entropy where
the bound is less constraining.

It would be nice to test the bound also for more complex field configuration, but we are
limited by our ability to solve the corresponding equations. Another interesting effect that we
have neglected so far is the inclusion of slow-roll corrections. While they are expected to be
very small, after all in the eternal inflation limit the slow-roll parameter is tiny, when considering
inflaton trajectories that start saturating the bound, the integrated slow-roll effect may be non-
negligible, the tiny slow-roll parameter being compensated by the large field excursion. Arguments
were given in [14] why this effect should not alter the nature of the bound, still a dedicated study
would be worthwhile.

Finally we would like to mention a suggestive relation between our bound and some thermo-
dynamic relations recently found for systems out of equilibrium (see e.g. [15]). The variation of
the entropy in a closed thermodynamical transformation can be thought of as a measure of the
irreversibility of the process. If we consider the cyclic transformation of a piston moving up and
down, the process will be the more irreversible the quicker we move the piston. Analogously in
eternal inflation, we can think of de Sitter space as an equilibrium state, and inflation as the irre-
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versible process associated to moving the scalar field along the potential. The slower the inflaton
moves, the more inflation comes closer to becoming reversible and also closer to de Sitter space.
Let us indeed consider the equality ∆Sds = 12ΩNc with Nc the classical number of e-foldings,
that is described later in the text. This equality is usually taken to represent the second law of
thermodynamics ∆S = (δQ/T )rev, with (δQ/T )rev = 12ΩNc [16, 17]. This interpretation is a
bit puzzling to us, because it may look like that all classical solutions of General Relativity are
reversible. On the other hand, the presence of an horizon suggests the presence of some irre-
versibility. In particular, slow roll inflation is irreversible at the classical level, and the flatter we
make the potential, the closer we should get to reversibility. An interpretation of our formulas
that would be more coherent with this intuition would be to use the bound Ω ≥ 1 for the non-
eternally-inflating potentials, to say that whenever we do not have eternal inflation, ∆S ≥ 12Nc,
with the inequality being saturated at the phase transition to eternal inflation Ω = 1. It would
be very interesting to establish such a connection between slow-roll inflation and thermodynamics
on solid grounds, for it may give deeper understanding about de Sitter space and the onset of the
eternal regime.

2 Mini-review of known results

It has been shown in [14] that many information about the phase transition from non-eternal
to eternal slow-roll inflation are encoded in a rather simple formula. We briefly review here the
results of that paper, which we refer to for details.

In fact the probability distribution ρ(V, τ) for the volume of the reheating surface V , with
φ = Hτ/(2

√
6π) the starting value for the inflaton field, is given by

ρ(V, τ) =
1

2πi

∫ 0++i∞

0+−i∞
dz f(τ, z)ezV , (1)

where at leading order in the slow-roll approximation, f is the solution of the following differential
equation (see also [18])

∂2τf(τ ; z)− 2
√
Ω∂τf(τ ; z) + f(τ ; z) log[f(τ ; z)] = 0 , (2)

with

Ω =
2π2

3

φ̇2

H4
, (3)

and boundary conditions

f(0; z) =e−z , (4)

∂τf(τ ; z)|τ=τb =0 . (5)

The first boundary condition corresponds to the end of inflation at τ = φ = 0, while the second
condition at τ = τb is a barrier condition, to make finite the allowed field space for the inflaton1.

1The barrier point τb can be thought of as the region where the energy density of the inflaton potential becomes
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The meaning of the differential equation is more manifest when rewritten in terms of φ as
follows:

1

2

∆φ2

∆t

∂2

∂φ2
f − φ̇

∂

∂φ
f + 3Hf log f = 0 . (6)

This is a modified Fokker-Planck equation: the first term is the normal dispersion term due to
the quantum fluctuations of the inflaton field in de Sitter space (∆φ2/∆t = H3/(4π2)); the second
term is the drift induced by the tilt of the scalar potential; the last term encodes the volume
growth from the de Sitter expansion.

When rewritten in terms of τ , the differential equation (2) only depends on the single dimen-
sionless parameter Ω—a combination of the rate of quantum fluctuations (∆φ2/∆t), the classical
rolling (φ̇) and the Hubble expansion (3H)—which controls the different phases of slow-roll infla-
tion.

Despite an analytic expression for the solution to eqs. (1) and (2) for ρ(V ; τ) is not available,
the behaviors for the different regions of the parameters V and Ω can be derived. Moreover all
the moments, given by

〈V n〉 = (−1)n∂nz f(τ ; z)|z=0 , (7)

can be computed analytically, as eq. (2) becomes linear for these quantities.

For example the expression for the average volume in terms of the classical number of e-foldings
Nc = Hφ/|φ̇| reads

〈V 〉 = e(
√
Ω−

√
Ω−1)τ = e

3Nc
2

1+
√

1−1/Ω , Ω ≥ 1. (8)

In the classical limit, Ω → ∞, quantum fluctuation become irrelevant, and ρ(V ; τ) approaches
a delta-function picked around the classical value Vc = e3Nc . When Ω → 1 quantum fluctuations
become of order one and the average volume gets large corrections, increasing to 〈V 〉 = e6Nc . At
the critical value Ω = 1, the phase transition to eternal inflation occurs and the average volume
starts diverging.

3 Universality of the Bound in D-dimensions

The first test of the eternal inflation bound we present here is its universality on the number
of space-time dimensions. We remind that the bound follows from two ingredients: a classical
one, which determines the largest non-eternally inflating classical trajectory, and a quantum one,
which compute the deformation due to quantum fluctuations. As described in the previous section
the second computation boils down to solve a differential equation and performing a Laplace
transformation. The transition to eternal inflation happens when the only parameter of the
differential equation Ω crosses 1. The expression for the differential equation given in eq. (6)
is also valid in D space-time dimensions except for the coefficient of the last term, the Hubble
expansion coefficient, which now becomes (D−1)H . The expression for ∆φ2/∆t in D-dimensions

Planckian, or where the potential becomes very steep, or the fixed point of a symmetric potential, such as the peak
in the top-of-the-hill inflationary model. The limit of arbitrary far barrier, τb → ∞, can be subtle and special care
must be put in doing such a limit, see [9, 14] for details.
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is also different, it can be extracted from the coefficient of the linear term in the 2-point function
of a scalar field in dSD,

〈φ2〉 = HD−1

πΘ(D−1)

t+ . . . (9)

where

Θ(d) =
2πd/2

Γ(d
2
)

is the d-dimensional solid angle. The differential equation can be easily brought back to the
form (2), by defining

Ω =
φ̇2

2(D − 1)H

∆t

∆φ2
=

πΘ(D−1)

2(D − 1)

φ̇2

HD
, (10)

τ =φ
√

2(D − 1)H

√
∆t

∆φ2
= 2(D − 1)

√
ΩNc . (11)

Since the differential equation governing quantum fluctuations has the same form in D di-
mensions, the same will be true for the solution when expressed in term of τ . In particular the
expression for the average volume will be

〈V 〉 = e
(D−1)Nc

2

1+
√

1−1/Ω , (12)

with Ω as defined in eq. (10). Again for Ω → ∞ the classical result is recovered 〈V 〉 = e(D−1)Nc ,
while the value at the eternal inflation transition (at Ω = 1 as eq. (2) is formally unchanged), is
〈V 〉 = e2(D−1)Nc , again quantum fluctuations increase the effective number of e-foldings up to a
factor 2 with respect to the classical value when the phase transition is approached.

In order to test the bound we need now to work out the relation between the classical number
of e-folding and the de Sitter entropy in D-dimensions. The difference of de Sitter entropy between
the start and the end of inflation can be written as

∆S =

∫ Send

Sstart

dS =

∫ Aend

Astart

1

4G
dA = −

∫ Nc

0

(D − 2)

4G

Θ(D−1)Ḣ

HD
dN ′

c , (13)

where we used

A =
Θ(D−1)

HD−2

for the de Sitter horizon area. From Friedmann equations in D dimensions we also have

Ḣ = − 8πG

D − 2
φ̇2 , (14)

which allows us to write

∆S =

∫ Nc

0

2πΘ(D−1)
φ̇2

HD
dN ′

c. (15)
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We can now use eq. (10) to rewrite φ̇ in terms of Ω and we finally get

∆S =

∫ Nc

0

4(D − 1)ΩdNc = 4(D − 1)ΩN ′
c , (16)

Send ≥ 4(D − 1)ΩNc , (17)

where we used the fact that at leading order in the slow-roll parameter Ω =const. The result
above gives a bound on the number of classical e-foldings allowed in non-eternal inflation when
Ω > 1. The maximum number is achieved at the phase transition Ω = 1, where Nc ≤ Send/(4(D−
1)). Quite non-trivially the complicated dependence on the number of dimensions D simplifies
considerably in the final expression and only a D − 1 factor remains.

We can now combine this information with the full quantum computation of eq. (12), we thus
have

〈V 〉 = e
(D−1)Nc

2

1+
√

1−1/Ω ≤ e
Send

2
1

Ω(1+
√

1−1/Ω) ≤ e
Send

2 , for Ω ≥ 1. (18)

Remarkably, once written in terms of the de Sitter entropy, the bound on the volume is
universal, independent of the number of dimensions! As in D = 4 the probability to produce a
finite volume violating the bound above is super-exponentially small (see [14] for details), i.e. zero
within the effective field theory regime.

4 Universality of the Bound with Higher-Derivative Cor-

rections

The second test of the bound that we provide is with respect to higher-derivative corrections in the
Einstein-Hilbert plus inflaton action. Higher derivative terms have multiple effects: they modify
the Einstein equations, the expression for the energy-momentum tensor, the inflaton equations of
motion and the formula for the entropy as well. Since we are interested here in slow-roll inflation
we will assume that independently of the modification induced by higher-derivative terms there
exists a solution where the metric is approximately de Sitter up to slow-roll corrections and the
inflaton field rolls slowly, i.e. φ̈≪ Hφ̇.

This assumption may appear somewhat too restrictive. There are inflationary models (such
as DBI [19] and ghost [20] inflation) where the scalar field does not roll slowly even though the
geometry is approximately de Sitter. However, as shown in [13], these models are very far from
saturating the volume bound as soon they obey the null energy condition and do not exhibit
superluminal excitations. On the other hand, ghost inflation is capable of violating the bound
even at the classical level at the expense of violating the null energy condition. Given that the null
energy condition and the absence of superluminal excitations are crucial for the success of black
hole thermodynamics [21] we consider this link as yet another indication that the volume bound
has a thermodynamical origin. We therefore restrict ourselves to models that are perturbatively
close to slow roll inflation.
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The most general action for the graviton plus inflaton system can be written as

L = L(gµν , Rµνρσ,∇αRµνρσ, ..., φ,∇αφ, ...)

= LG(gµν , Rµνρσ,∇αRµνρσ, ..., φ) + Lkin(gµν , Rµνρσ,∇αRµνρσ, ..., φ,∇αφ, ...) , (19)

where we have isolated the part of the Lagrangian that does not depend on ∇αφ (LG = 1
16πG

R−
V (φ) + . . . ) from the one that contains derivatives of the inflaton (Lkin = −1

2
(∂φ)2 + . . . ).

We immediately realize that at leading order in slow-roll parameters we can neglect the contri-
bution of the terms in LG involving covariant derivatives. This is justified in the leading slow-roll
approximation after realizing that all the terms of this form are at least of second order in the
slow-roll parameters. Indeed all such terms must involve at least two derivatives in order to
contract the indexes. Upon integration by parts, it is therefore possible to have at least two of
these derivatives acting on different Riemann tensors. The Riemann tensor in de Sitter space
is proportional to the metric and so covariantly constant, hence its covariant derivatives in an
inflationary spacetime are proportional to the slow roll parameters. This means that terms in LG

involving covariant derivatives start at second order in the slow roll parameters and can therefore
be neglected in our approximation.

For similar reasons at leading order in the slow-roll expansion we will only consider up to
2-derivative terms acting on the inflaton, i.e.

Lkin(gµν , Rµνρσ, ..., φ,∇αφ, ...) = −1

2
(∂αφ∂βφ)Π

αβ(gµν , Rµνρσ, ..., φ) . (20)

In the same approximation, since (∂φ)2 is already subleading in the slow-roll expansion, its coef-
ficient can be taken at 0-th order in slow-roll, i.e. computed with de Sitter metric, this gives

Παβ(gµν , Rµνρσ, ...) = gαβΠ(gµν , Rµνρσ, ...) (21)

where Π = Πµνgµν/4.

We can now proceed to write the Einstein equations. It is possible to show that ignoring higher
derivatives the gravitation Lagrangian can be written simply in terms of Rµν

ρσ and Rµ
ν
ρ
σ without

any explicit dependence on the metric:

LG(gµν , Rµνρσ, ..., φ) = L̃G(R
µν

ρσ, R
µ
ν
ρ
σ, ..., φ) , (22)

and analogously for Π:

Π(gµν , Rµνρσ, ..., φ) = Π̃(Rµν
ρσ, R

µ
ν
ρ
σ, ..., φ) . (23)

This is proven in appendix A. In this way the equations of motion for the metric read

δL̃
δRαβ

ρσ

δRαβ
ρσ

δgµν
+

δL̃
δRα

β
ρ
σ

δRα
β
ρ
σ

δgµν
− 1

2
gµνL̃ =

1

2
Π̃∂µφ∂νφ . (24)

Using the relation

δL
δRµνρσ

δRµνρσ =
δL

δRµνρσ

(
2∇µ∇σδgνρ +Rτ

νρσδgµτ

)
, (25)
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n

Υ

α=0

u

t=const

H Θ

µ

µ

α=1

Figure 1: The stretched horizon (in blue) in de Sitter space, with the unit vectors uµ ∝ ξµ and nµ and
the region Υ (in red) spanned by the area section Σ(t), as defined in the text.

it is possible to rewrite the equations of motion as (see appendix A for details):

− 2∇α∇β
δL

δRα(µν)β

+R(µ
αβγ

δL
δRν)αβγ

− 1

2
gµνL =

1

2
Π∂µφ∂νφ (26)

where indices in between brackets are symmetrized.

From here we can see that higher derivative terms change non trivially several relations used for
the proof of the bound. The Friedmann equation Ḣ = −4πGφ̇2 used to relate the change in entropy
with the Ω parameter gets modified, in particular both the l.h.s. and the r.h.s. receive corrections.
The modification of the inflaton kinetic term changes the 2-point function of the inflaton in the
de Sitter phase, which corresponds to a change in the expression of Ω. Finally also the expression
of the entropy changes, since for a generic gravity Lagrangian the Wald formula [22, 23] must be
employed:

S = −4π

κ

∫

H
dΣµνQ

µν (27)

where κ is the surface gravity on the horizon H, dΣµν = 1
2
ǫµνdA is the area element (ǫµν is a tensor

binormal to H normalized such that ǫµνǫ
µν = −2) and

Qµν =
δL

δRµνρσ

∇ρξσ − 2∇ρ
δL

δRµνρσ

ξσ , (28)

where ξµ is the Killing vector, which on the horizon satisfies the relation ∇µξν = κǫµν .

We can now proceed to calculate the variation of the entropy in analogy to what has been
done in the black hole case [24] or in slow-roll for Einstein gravity [16]. We start defining (see
fig. 1) a stretched horizon Θ inside the true de Sitter horizon H (in FRW coordinates it would
correspond to the region of points with r = αH−1e−Ht, with α < 1). Within Θ the Killing vector
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ξµ = (1,−Hr, 0, 0) has constant norm ξµξ
µ = −(1 − α2). The norm is zero on the horizon, since

ξµ becomes null, and normalized to -1 on the origin r = α = 0, where the FRW observer sits. Θ
is also characterized by two unit vectors uµ = ξµ/(1 − α2)1/2 parallel to the Killing vector and
nµ = (α,−Hr/α)/(1− α2)1/2, which is orthogonal to Θ and pointing away from the horizon. In
the limit where Θ approaches H, α → 1 and both uµ and nµ become proportional to ξµ, which
becomes null. On the stretched horizon, at each moment in time t, we can use these two vectors
to define the area element dΣµν = 1

2
(nµuν −nνuµ)dA ≡ 1

2
ǫµνdA for the 2-sphere Σ(t), which is the

constant-t section of Θ. Moving along ξµ, Σ spans a three-volume Υ where κ is constant and the
variation of the entropy can be computed using Stokes theorem:

− δ
4π

κ

∫

Σ(t)

dΣµνQ
µν = −4π

κ

∮

∂Υ

dΣµνQ
µν =

4π

κ

∫

Υ

dτdAnµ∇νQ
µν . (29)

where dτ is the unit (proper) time interval in Θ.

After few algebraic manipulations (see appendix A) we arrive at the following formula:

dS

dt
=

2π

κ

∫

H
dA ξµξν

(
δL

δRµαβγ

Rν
αβγ − 2∇α∇β

δL
δRµαβν

)
. (30)

After using the equations of motion (26) we have

dS

Hdt
=

2π

κ

A(H)Π

H
∂µφ∂νφ ξ

µξν = 12Π
2π2

3

φ̇2

H4
. (31)

The first non trivial result is that in eq. (31) the non-trivial dependence on the Riemann tensor
of the l.h.s. of the Einstein equation (24) is completely gone after using the Wald formula for the
entropy. We will now show that the residual dependence in the r.h.s. will also disappeared after
taking into account the modification of the inflaton action. Indeed the kinetic term for the inflaton
in eq. (20) is not canonical anymore. This implies that the corresponding 2-points function during
the de Sitter phase now reads

〈φ2〉 = H3

4π2Π
t+ . . . (32)

The corresponding definition (10) for Ω will thus be

Ω =
φ̇2

6H

∆t

∆φ2
= Π

2π2

3

φ̇2

H4
, (33)

which finally allows us to write eq. (31) again in the form

dS

dN
= 12Ω . (34)

The differential equation governing quantum fluctuations of the inflaton will also have the same
form as in the Einstein gravity case once Ω is properly defined according to eq. (33).

We thus conclude that, in the approximation we are working, i.e. at leading order in the
slow-roll parameter, higher derivative corrections in the Lagrangian do not modify the calculation

10
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FRW
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B
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Figure 2: Depending on the starting point, inflaton trajectories in field space (in magenta) drift towards
different points of the reheating surface (in red), which in general correspond to different vacua. The field
space is often confined by boundary regions (in blue) where, for instance, the energy density of the scalar
potential become Planckian.

of the probability distribution of the volume of the reheating surface after inflation. In particular
the bound on the volume of the universe after slow-roll inflation is universal also with respect to
higher derivative corrections—the coefficient “1/2” in the exponent of eq. (18) does not receive
corrections from higher-derivative terms!

5 Universality of the Bound in Multifield Inflation

After having seen that the bound on the finite volume holds in any number of dimensions and
after including higher derivative terms in the Eistein-Hilbert action, we now pass to the study of
the case where we have more than one light field during inflation: multifield inflation.

It is straightforward to generalize the procedure of ref. [14] that led to eq. (2) to the case of
multifield inflation. We now have

∇2f(τ , z)− 2
√
Ω ·∇f(τ , z) + f(τ , z) log[f(τ , z)] = 0 , (35)

where

∇ = ∂τ , τ = 2π
√
6
φ

H
,

√
Ω =

√
2π2

3

φ̇

H2
, (36)

the boldface font is used for vectors in field space, and we assumed for the moment that the
reheating surface is just a single point at τ = τr. We assume there is also a barrier B that bounds
the moduli space. In this case the generating function must satisfy the boundary conditions

f(τr, z) = e−z , (37)

n̂ ·∇f(τ , z)|
τ∈B = 0 .

11



where n̂ is the normal versor to the barrier hypersurface. This is a simple generalization of the
analogous boundary condition for single field inflation eq. (4). The probability distribution for
the volume is given by

ρ(V, τ ) =

∫ 0++i∞

0+−i∞
dz ezV f(τ , z) . (38)

More generally the reheating region may be a surface in field space R, as depicted in fig. 2. In this
case different points on R might correspond to local universes with different physical properties.
Hubble patches terminating inflation on different points of the reheating region may have different
Hubble constants, entropy, and even correspond to different vacua (e.g. if R is disconnected or
it represents a moduli space). In this situation it is not clear the meaning of the bound on the
volume relative to the entropy: the entropy may vary substantially from point to point in R, and
it is not obvious which of the entropies associated to the various vacua we should take. We may
consider the largest one as an upper bound, but, as we are now going to see, we can have a more
stringent definition.

In fact, it is possible to keep track of the type of volume produced at the end of inflation by
tracking the point where the fields exit inflation. If we assume that the reheating surface R is
made of a set of n disjoint points (τ i

r) in field space, the boundary condition at R for f would
read

f(τ i
r , ~z) = e−zi , (39)

generalizing the boundary condition of eq. (37) by using a different variable zi for each reheating
point τ i

r . The conjugate variable to each zi would be Vi, the volume of type τ i
r . The probability

distribution of creating the volumes ~V = {V1, . . . , Vn} of type ~τr = {τ 1
r , . . . , τ

n
r } respectively, is

then the n-dimensional Laplace anti-transform

ρ(~V , ~τ ) =

∫

C
d~z e

~V ·~z f(~τ , ~z) , (40)

where C = {~z : z ∈ C ∧ Re(zi) = 0+} simply generalizes the contour of eq. (1).

In the case of a continuos reheating surface in field space the vector ~τr becomes a continuous
variable τr ∈ R, ~z and ~V become functions of τr respectively z(τr) and V (τr), and the formula
for the probability distribution of the volume becomes a functional integral

ρ(V (τr), τ ) =

∫

C
Dz(τr) e

∫
R dτ ′

rV (τ ′
r)z(τ

′
r) f(τ , z(τr)) , (41)

with τr spanning R and normalized so that
∫
R dτr = 1, and f(τ , z(τr)) now satisfying

∇2f(τ , z(τr))− 2
√
Ω ·∇f(τ , z(τr)) + f(τ , z(τr)) log[f(τ , z(τr))] = 0 , (42)

f(τr, z(τr)) = e−z(τr) ,

n̂ ·∇f(τ , z(τr))|τ∈B = 0 .

It is possible at this point to show that eq. (35) does not apply only to the case where we
have a single reheating point. It is also the generating function for the probability distribution
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of the total volume V =
∫
R dτr V (τr) produced at the end of inflation. Indeed the probability

distribution for the total volume V is given by 2:

ρ(V, τ ) =

∫
DV (τr) ρ(V (τr), τ ) δ

(∫

R
dτ ′

r V (τ ′
r)− V

)
=

∫ 0++i∞

0+−i∞
dz ezV f(τ , z) . (43)

This is exactly eq. (38). Therefore we conclude that solving equation (35) with boundary condi-
tions (37) corresponds to compute the generating function for the probability distribution of the
total reheated volume, independently of the particular kind of volumes this is made of.

At this point the equation for the moments of the distribution (7) can be simply generalized
to the multifield case as follows

〈V (τ ′
r)V (τ ′′

r ) . . . V (τ (n)
r )〉 = (−1)n

δnf (τ , z(τr))

δz(τ ′
r)δz(τ

′′
r ) . . . δz(τ

(n)
r )

∣∣∣∣∣
z(τr)=0

. (44)

The differential equations for the moments of the distributions are linear and in particular the
one for the average volume reads

∇2〈V (τ ′
r
)〉 − 2

√
Ω ·∇〈V (τ ′

r
)〉+ 〈V(τ ′

r
)〉 = 0 (45)

〈V (τ ′
r
)〉|τ=τr = δ(τ ′

r
− τ

r
) ,

n̂ ·∇〈V (τ ′
r
)〉|

τ∈B = 0 .

The bound:

We are now ready to give a more stringent definition of the bound that we believe it will still be
satisfied in general. In the case of multifield inflation, there are multiple kind of vacua. According
to the meaning of the bound on the volume of the reheating surface in single field inflation, we
expect that, in the non eternal inflation phase the total volume produced of any kind be bounded
by the corresponding de-Sitter entropy; in other words we expect a bound to exist for any particular
kind of volume. We are therefore led to conjecture the following simple generalization of the bound
on the volume of inflation:

P

(∫

I
dτr V (τr) > SupI

[
eS(τr)/2

]
;V < +∞

)
= (46)

=

∫

I
dτr

∫ +∞

eS(τr)/2δ(τ ′
r−τr)

DV (τ ′
r) ρ (V (τ ′

r, τ )) . SupI

[
e−k eS(τr)/2

]
,

2The actual derivation reads

ρ(V, τ ) =

∫
DV (τr) ρ(V (τr), τ ) δ

(∫

R

dτ ′

r
V (τ ′

r
)− V

)
=

∫
∞

−∞

dλ

∫
DV (τr) ρ(V (τr), τ ) e

iλ(
∫
R

dτ
′

r
V (τ ′

r
)−V )

=

∫ ∞

−∞

dλ

∫
DV (τr)

∫
Dz(τr) e

∫
R

dτ
′

r
V (τ ′

r
)z(τ ′

r
)+iλ(

∫
R

dτ
′

r
V (τ ′

r
)−V ) f(τ , z(τr))

=

∫ ∞

−∞

dλ

∫
Dz(τr) e

−iλV f(τ , z(τr)) δ(λ− iz(τr)) = −i

∫ ∞

−∞

dλ e−iλV f(τ ,−iλ) =

∫ 0++i∞

0+−i∞

dz ezV f(τ , z) .
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Figure 3: Average volume distribution 〈V (yr)〉 as a function of yr for the two inflationary examples: the
waterfall (left) and the tilted waterfall (right). The red-dashed lines refer to the classical evolution. Near
the classical limit, for large Ω, the distribution (in blue) is peaked around the classical exit point. Near
the phase transition to eternal inflation, at Ωx & 1, the distribution (in magenta) broadens (left) and
drifts towards smaller values of yr (right).

for any subset I of R and with k being a numerical factor of order one. The bound on the volume
states that the probability to create a volume of kind τr larger than e

SdS/2 and total volume finite,
vanishes up to non-perturbatively small quantum gravity effects.

In particular, for the average of the volume this implies

∫

I
dτr 〈V (τr)〉 . SupI

[
eS(τr)/2

]
, (47)

and similarly for higher moments.

Given a certain multifiled inflationary model, one can solve eq. (42) and obtain the probabil-
ity distribution for any kind of volume after performing the (functional) inverse Laplace trans-
form (41). In practice, such a task is extremely difficult from a technical point of view. What we
will do next is presenting two simple examples where we are able to compute explicitly 〈V (τr)〉
and that offer a non-trivial check for the bound in (47). In fact checking for the average is expected
to be enough because as it has been shown in the single field case the probability distribution is
always sharply peaked around the average value.

5.1 First example: the waterfall

The first and simplest example we consider is the two-field case τ = (x, y) where the slope of
the potential is uniform everywhere and orthogonal to the reheating surface at τr = (0, yr), i.e.√
Ω = (

√
Ω, 0). Physically this corresponds to the inflationary model where the second field acts

just as a classically irrelevant spectator (Fig. 3). In this case the two fields decouple because of
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the shift symmetry in y, and we expect the result to be quite close to the single field case. In
particular, we expect to recover the same result as in single field inflation once we integrate over
the position of the reheating point. Though quite similar to the single field case, this example is
simple enough to allow us to calculate explicitly also the distribution of “different volumes” on
the reheating surface. This will lead us to quite non-trivial results.

For example let us calculate the average volume of type yr given the starting point τ = (x, y).
Applying (44) we obtain

〈V (yr)〉 = − δf(x, y; z(y′r))

δz(yr)

∣∣∣∣
z(y′r)=0

≡ −ψ(x,∆y) . (48)

where we have used the shift symmetry in y to assume that the y-dependence can be only in the
form ∆y = y − yr. ψ(x,∆y) satisfies

ψxx + ψyy − 2
√
Ωψx + ψ = 0 , (49)

ψ(0,∆y) = −δ(∆y) ,

ψx(x,∆y)|x=xb
= 0 ,

where xb is the y-independent location of the barrier.

The solution reads

ψ(x,∆y) =

∫ ∞

−∞

dk

2π
ei k∆yωk−e

ωk+x+ωk−xb − ωk+e
ωk−x+ωk+xb

ωk+eωk+xb − ωk−eωk−xb
, (50)

ωk± =
√
Ω±

√
Ω− 1 + k2 .

For Ω > 1 the limit xb → ∞ can easily be done and we get the following expression for the
average volume of type yr

〈V (yr)〉 =
∫ ∞

−∞

dk

2π
ei k∆y+ωk−x =

√
Ω− 1

π

x√
x2 + y2

e
√
Ω xK1[

√
(Ω− 1)(x2 + y2)] , (51)

where K1[x] ≡ 1
2

∫∞
0
dte−

x
2 (t+

1
t ) is the modified Bessel function.

It is easy to check that the average of the total volume

〈V 〉 =
∫ ∞

−∞
dyr〈V (yr)〉 =

∫ ∞

−∞
dyr

∫ ∞

−∞

dk

2π
eik∆y+ωk−x = eω0−x = e

3Nc
2

1+
√

1−1/Ω (52)

coincides with the one-field case, eq. (8). From this we see that the phase transition to eternal
inflation happens at

Ω = 1 . (53)

This result is not surprising given the shift symmetry in y. However from eq. (51) we also have
the information on the shape of the volume distribution on the reheating surface. As expected the
distribution is peaked around yr = y, which is the classical exit point. Let us look at the shape in
several limits (see also fig. 3).
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We can expand the Bessel function to obtain

〈V (yr)〉 → e
−

√
Ω−1
x

∆y2

1+
√

1+∆y2/x2 , for (Ω− 1)(x2 +∆y2) ≫ 1 , (54)

which is a Gaussian in ∆y for ∆y . x (when the y-distance of the starting point from the reheating
point is smaller than the classical trajectory). The tail of the Gaussian turns into an exponential
for ∆y & x while the width of the Gaussian is always smaller than x.

Instead, very near to the transition to eternal inflation, Ω → 1, the distribution approaches a
Lorentzian for ∆y small enough:

〈V (yr)〉 → x

x2 +∆y2
, for (Ω− 1)(x2 +∆y2) ≪ 1 (55)

while the tail becomes again exponential e−(
√
Ω−1 ∆y) for ∆y & (Ω− 1)−1/2.

The bound on the volume is in this case trivially satisfied. The reheating entropy is the same
for every reheating point (S(y) = S), and for the volume associated to each reheating region I we
have ∫

I
dyr 〈V (yr)〉 ≤ 〈V 〉 = e

3Nc
2

1+
√

1−1/Ω < e−S/2 . (56)

5.2 Second example: tilted waterfall

We now consider a generalization of the former case. We imagine that the reheating surface is
defined at x = 0 as in the former case. However, now the gradient of the inflaton potential is not
orthogonal to the reheating surface:

√
Ω = (

√
Ωx,

√
Ωy). Consequently the value of the Hubble

radius at each point of the reheating surface can be different, this fact will allow us to test the
generalized bound in (47) in a non-trivial way.

In this case eq. (49) becomes

ψxx + ψyy − 2
[√

Ωxψx +
√
Ωyψy

]
+ ψ = 0 , (57)

with the same boundary conditions3. The solution for the average volume is similar to the previous
case:

〈V (yr)〉 =
∫ ∞

−∞

dk

2π
eik∆y+

√
Ωxx+

√
Ωy∆y−

√
Ω−1+k2x (58)

=

√
Ω− 1

π

x√
x2 +∆y2

e
√
Ωxx+

√
Ωy∆yK1[

√
(Ω− 1)(x2 +∆y2)] , (59)

3Actually since in this case there is a non vanishing slope also in the y direction, the barrier will be naturally
at angle, normal to the vector

√
Ω, if, for example, corresponds to the region where H =const. In particular it

will always intersect the reheating surface in one point, as H will be Planckian somewhere on R. For this analysis
we are interested only in the region far from the barrier, where boundary effects can be neglected. So we took the
barrier to be parallel to the reheating surface as in the previous example and then took the limit τb → ∞. For our
purposes this is a safe approximation because, as explained in [14], finite boundary effects are expected to make the
actual bound even stronger since they cut-off inflaton trajectories getting arbitrary far from the reheating surface.
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where we defined

Ω ≡
(√

Ω
)2

= Ωx + Ωy . (60)

From the solution above, we notice that this time the phase transition happens when Ωx becomes
smaller than one, i.e. before Ω reaches one. Indeed if we consider the total average volume:

〈V 〉 =
∫ ∞

−∞
dyr〈V (y)〉 =

∫ ∞

−∞
dyr

∫ ∞

−∞

dk

2π
eik∆y+

√
Ωxx+

√
Ωy∆y−

√
Ω−1+k2x = e(

√
Ωx−

√
Ωx−1)x , (61)

we can see that it is not analytic at Ωx = 1, signaling the onset of the eternal inflation regime. This
was indeed expected from the symmetries of the problem—it is only the gradient of the potential
normal to the reheating surface

√
Ωx that matters in determining the transition to eternal inflation.

The slope
√
Ωy along the y-direction, parallel to the reheating surface obviously plays no role for

the phase transition. Still the information about the reheating point yr is non-trivial in this model,
as for example each different volume yr is associated to a different Hubble scale or more generally
to a different kind of vacuum. If we look at the average value of the reheating point defined as

〈yr〉 =
∫∞
−∞ dyr yr 〈V (yr)〉∫∞
−∞ dyr 〈V (yr)〉

= y − x

√
Ωy

Ωx − 1
, (62)

we can see that for Ωx ≫ 1, 〈yr〉 coincides with the exit point of the classical trajectory yclr =
y − x

√
Ωy/Ωx. In this limit, 〈V (yr)〉 is a Gaussian sharply peaked around yclr , as in the previous

example. Instead as Ωx → 1, 〈yr〉 → −∞, and 〈V (yr)〉 broadens as roughly shown in Fig. 3. This
result is qualitatively expected: the closer we get to the phase transition, the longer the stochastic
trajectories become, and the more they drift downhill (because of the

√
Ωy tilt). This explains

why the singularity in 〈V (yr)〉 only appears at Ω = 1. Indeed even when Ωx < 1, 〈V (yr)〉 can
be finite for any yr, the infinity of 〈V 〉 being due to trajectories exiting at yr → −∞. When the
whole Ω = 1, then also 〈V (yr)〉 has to start diverging because trajectories can start to go up-hill
also in the y direction and produce infinite volume at finite yr. Graphically the phase diagram
looks like as follows:

Ωx

Ωy

V  < 8

V  = 8

V  = 8

V(y)  < 8

r

V(y)  < 8

r

8V(y)  =
r

1

10
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Notice that for Ωx < 1 but Ω > 1 (the yellow region above) we have eternal inflation only because
the total volume diverges, while 〈V (yr)〉 stays finite for every finite yr. In realistic models we
would expect also the range of y to be finite (as the shift symmetry in y is broken by Ωy). In this
case the divergence in 〈V 〉 disappears being due to the non integrability of 〈V (yr)〉. The yellow
region turns into a non-eternal slow-roll inflation region and the phase transition is expected to
happen now at Ω = 1.

We are now ready to formulate and test the bound in this multi field case. Eq. (47) must be
checked for any interval I on the reheating surface, however since the entropy in this example is
monotonically decreasing with yr it will be enough to consider just the intervals I = [y0r ,∞) for
every y0r . Notice that the total volume is bounded by

〈V 〉 = e(
√
Ωx−

√
Ωx−1)x = e

6Nc
1

1+
√

1− 1
Ωx < eSc/2 (63)

where Sc is the entropy as calculated at the value of the Hubble constant corresponding to the
classical exit point yclr of the reheating surface and we used the relation x = 6

√
ΩxNc. It follows

that the bound is trivially satisfied on any interval I = [y0r ,∞) with y0r < yc since

∫ ∞

y0r

dyr 〈V (yr)〉 < 〈V 〉 < eSc/2 < eS(y
0
r)/2 . (64)

We just need to show now that the bound is not violated when y0r > yclr .

For (Ω− 1)(x2 +∆y2) ≫ 1, 〈V (yr)〉 behaves like

〈V (yr)〉 ∼ e
√
Ωxx+

√
Ωy∆y−

√
(Ω−1)(x2+∆y2) , (65)

which is a falling exponential for yr > yclr (since 〈V (yr)〉 is peaked around 〈yr〉 < yclr ). Therefore
the integral in the l.h.s. of eq. (47) is dominated by the value of the integrand at y0r . We thus
need to check whether

〈V (y0r)〉 < e
S(y0r)

2 , (66)

up to pre-exponential factors. At leading order in the slow roll approximation we also have that
S(y0r) = Sc − 2

√
Ωy(y

0
r − yclr ) and looking only at the exponents of (66) we have

√
Ωxx+

√
Ωy∆y −

√
(Ω− 1)(x2 +∆y2) <

Sc

2
−
√
Ωy(y

0
r − yclr ) . (67)

Using the fact that x = 6
√
ΩxNc and defining δy = y0r − yclr , after a bit of algebra we get

6
√
ΩNc


√

Ω− 1

√√√√1 +
Ωx

Ω

δy

x

(
δy

x
− 2

√
Ωy

Ωx

)
+
√
Ω

(
Sc

12ΩNc
− 1

)
 > 0 . (68)

This is the sum of two terms. The first is positive and the second is also positive since Sc > ∆S =
Sc − Sstart = 12ΩNc.
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Of course, the bound continues to hold even when (Ω−1)(x2+∆y2) ≫ 1 is not satisfied—right
before entering the phase of eternal inflation—because the distribution of volumes move further
towards large negative values of yr where the bound is trivially satisfied because the volume
produced in I is smaller.

Notice also that the l.h.s. of (68) is minimized at δy = ∆yc (corresponding to y0r = y), where
we get

6Nc

[√
Ωx

√
Ω− 1 + Ω

(
Sc

12ΩNc
− 1

)]
> 0 , (69)

which can be saturated only when Sc = ∆S and Ω = 1, which implies Ωy = 0, i.e. the untilted
potential of the previous section, corresponding in practice to single-field inflation.

This shows that tilting the reheating surface with respect to the gradient in field space actually
makes the bound stronger. It also suggests that only single field slow-roll inflation manages to
actually saturate the bound, any other multifield models which move further away from the
symmetric setup of the single field case, seem to make the bound stronger, by producing less
volume.
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A Some explicit computations

In this appendix we report some of the calculations omitted in section 4.

First we show that any given Lagrangian L, generic function of the metric gµν , the Riemann
tensor Rµνρσ and scalar quantities φ, with no explicit covariant derivatives, can be rewritten just
in terms of the Riemann tensors with two covariant and two contravariant indices (Rµν

ρσ and
Rµ

ν
ρ
σ) without any explicit dependence on the metric gµν , i.e.

L(gµν , Rµνρσ, ..., φ) = L̃(Rµν
ρσ, R

µ
ν
ρ
σ, ..., φ) . (70)

Any term in L can be viewed as a network of nodes and lines, each node corresponding to the
insertion of a Riemann tensor, each line to the contraction of two indices with a metric. Each
node has thus four lines attached to it. The statement (70) corresponds to showing that the lines
of each network can be oriented such that each node has two incoming and two outgoing lines (see
fig. 4).
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Figure 4: Each node corresponds to the insertion of a Riemann tensor, each link to the contraction of
a pair of indices. Closed orientable loops can be identified such that all nodes will end up having an
equal number of incoming and outgoing lines. Hence any scalar contraction of Riemann tensors can be
written just in terms of Riemann tensors with two upper and two lower indices contracted without using
the metric.

Consider now a node of the network and let start following a line departing from it. Since
every node has an even number of lines attached, when the line arrives to a node there will be
another line which has not been used yet, which can be followed, until eventually the path will
close arriving back to the initial node. At this point we have a closed path which we can orient.
Each node in this path will have an equal number of incoming and outgoing lines and an even
number of unused lines. We can thus repeat the construction by starting with another unused
line, forming another closed loop and orienting it. When we will have used all the available links
we will have oriented all lines such that an equal number of incoming and outgoing line will pass
through each node. This proves eq. (70).

We prove now that the equations of motion (24) can be rewritten as in eq. (26). First we use
that

L̃(Rµν
ρσ, R

µ
ν
ρ
σ, ..., φ) = L̃(Rαβρσg

αµgβν , Rανβσg
αµgβρ, ..., φ)

δL̃
δRµν

ρσ

=
δ1L̃

δ1Rαβρσ

gαµgβν

δL̃
δRµ

ν
ρ
σ
=

δ2L̃
δ2Rανβσ

gαµgβρ

where δn/δnRµνρσ means that we only differentiate with respect to the Rµνρσ appearing in the n-th
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argument. We thus have that

δL̃
δRαβ

ρσ
δRαβ

ρσ +
δL̃

δRα
β
ρ
σ
δRα

β
ρ
σ =

δ1L̃
δ1Rαβρσ

gαµgβνδR
µν

ρσ +
δ2L̃

δ2Rανβσ
gαµgβρδR

µ
ν
ρ
σ

=

(
δ1L̃

δ1Rµνρσ

+
δ2L̃

δ2Rµνρσ

)
(δRµνρσ − 2Rα

νρσδgαµ)

=
δL

δRµνρσ
(2∇µ∇σδgνρ −Rα

νρσδgαµ) (71)

where in the last step we used the identity (25) and the fact that

δ1L̃
δ1Rµνρσ

+
δ2L̃

δ2Rµνρσ
=

δL
δRµνρσ

. (72)

Hence, we finally have

δL̃
δRαβ

ρσ

δRαβ
ρσ

δgµν
+

δL̃
δRα

β
ρ
σ

δRα
β
ρ
σ

δgµν
= 2∇ρ∇σ

δL
δRρ(µν)σ

− R(µ
αβγ

δL
δRν)αβγ

, (73)

which can be used to derive eq. (26) from eq. (24).

The last missing step to explicitly show the universality of the bound with respect to higher
derivative terms, is the relation between the variation of the de Sitter entropy and the metric
equations of motion, in particular how to get eq. (30) from the variation of eq. (27). We start
with the Wald formula for the entropy of Σ(t), which reads

S(t) = −4π

κ

∫

Σ(t)

dΣµν

(
δL

δRµνρσ
∇ρξσ − 2∇ρ

δL
δRµνρσ

ξσ

)
, (74)

where κ is the surface gravity on the stretched horizon. Using Stokes theorem it follows that

dS

dt
=

4π

κ

∫

Υ

dτ

dt
dAnµ∇ν

(
δL

δRµνρσ
∇ρξσ − 2∇ρ

δL
δRµνρσ

ξσ

)

=
4π

κ

∫

Υ

dA ñµ

[
∇ν

(
δL

δRµνρσ
− 2

δL
δRµρνσ

)
∇ρξσ +

δL
δRµνρσ

∇ν∇ρξσ − 2∇ν∇ρ
δL

δRµνρσ
ξσ

]

=
4π

κ

∫

Υ

dA ñµξσ

(
δL

δRµνρτ
Rσ

νρτ − 2∇ν∇ρ
δL

δRµνρσ

)

α→0−→ 4π

κ

∫

H
dA ξµξν

(
δL

δRµσρτ
Rν

σρτ − 2∇σ∇ρ
δL

δRσµνρ

)
, (75)

where in the first step we defined ñµ ≡ dτ
dt
nµ = (α,−Hr/α, 0, 0), which is normalized like the

Killing vector (ñµñµ = −ξµξµ), in the second step we used the cyclic properties of the Riemann
tensor, in the third the fact that

∇(µξν) = 0 , ∇µ∇νξρ = Rσ
µνρξσ , (76)

and in the last we performed the horizon limit α → 1. Eq. (75) matches eq. (30) and this
terminates our proof.
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